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Abstract
This paper presents a noise-robust Wrapper-based acoustic
Group Feature Selection (W-GFS) method and its large noise
Optimized (OW-GFS) version for automatic sleepiness classifi-
cation and compares their performances with Correlation-based
Feature Selection (C-FS) and Pearson Correlation Coefficient
Feature Selection (CC-FS) filters. We use Interspeech 2011
Speaker State Challenge’s “Sleepy Language Corpus” and base-
line feature set. Group Feature Selection (GFS) considers the
feature space in Low Level Descriptor groups rather than indi-
vidually. Reduced time-complexity and potential generalization
power of GFS are discussed. A model to predict on test data
with changing Signal-to-Noise Ratio (SNR) is presented based
on results from artificially corrupted development data with 10
dB SNR white-noise. Using Support Vector Machine, W-GFS
achieves 2.6%, 4.2%, and 1.9% relative Unweighted Average
Recall (UAR) improvement over the C-FS, CC-FS, and baseline
feature set systems, respectively, on white-noise corrupted test
data with randomly changing SNR within a broad range. The
corresponding improvements for OW-GFS, using Voted Percep-
tion, are 4.8%, 9.8%, and 2.2% relative UAR on strongly white-
noise corrupted test data with randomly changing SNR between
-5 and +5 dB. Finally, we discuss consistent results obtained us-
ing everyday environment noises.
Index Terms: robust paralinguistics, computational paralin-
guistics, noise-robust feature selection, wrapper method, filter
method

1. Introduction
The prevalence of sleep related accidents [1, 2, 3] and the im-
perative to prevent them highlights the importance of sleepiness
detection systems. In situations where the use of certain types
of detection methods, e.g., a spontaneous eye-blink detection
system [4] requiring the use of intrusive sensors, is not optimal,
speech can offer a unique advantage [5, 6, 7]. Moreover, the
widespread nature of the sleep phenomenon is indicative of the
abundance of applications concerned with its detection.

Computational paralinguistics tasks like sleepiness classifi-
cation deal with the manner in which something is said rather
than the content of what is said [8]. The binary task of Sleepi-
ness Sub-Challenge was presented as part of the Interspeech
2011 Speaker State Challenge and employed the “Sleepy Lan-
guage Corpus” (SLC) [9]. The 4368 acoustic baseline features
generated using the openSMILE software [10] include those
deemed relevant to sleepiness state [11] and result in a Sub-
Challenge baseline score of 70.3% Unweighted Average Recall

(UAR). The findings of the Sub-Challenge demonstrate that us-
ing larger feature sets result in superior performances. Further-
more, in the presence of various types and levels of noise, larger
feature sets provide a larger pool for subsequent feature selec-
tion operations to choose from, in a data-driven fashion [12].
Using domain knowledge to design relevant features for clas-
sification in noisy environments is an alternative feature-based
approach [13].

The two main types of feature selection methods are fil-
ters and wrappers [14]. The filter evaluates feature subsets
based on statistical properties of data whereas the wrapper uses
a classifier’s performance score for the evaluation. The wrap-
per searches the feature space and evaluates feature subsets for
selection. Wrapper-based Group Feature Selection (W-GFS)
[15] uses a linear method, a fast variant of Best Incremen-
tal Ranked Subset (BIRS) [16], for feature space search and
WEKA toolkit’s [17] Support Vector Machine (SVM) [18] im-
plementation, Sequential Minimal Optimization (SMO) [19]
with linear Kernel, for feature subset evaluation. W-GFS modi-
fies the basic wrapper by considering features in groups defined
by Low Level Descriptor (LLD) partitions [20] rather than in-
dividually. Group Feature Selection (GFS) approach is moti-
vated by two factors. First, GFS improves the tractability of the
computationally intensive wrapper method by reducing the time
complexity of the subset search component [15]. Second, an
LLD-based GFS could potentially improve the generalization
power of the classification algorithm by avoiding overfitting that
may result from using a detailed individual feature search. Opti-
mized Wrapper-based Group Feature Selection (OW-GFS) op-
erates identically to W-GFS but its more restrictive selection
criteria does not consider groups with evaluation scores of less
than 55% UAR for selection.

The novel aspects of this work, to the best of our knowl-
edge, are the following. First, although W-GFS has been used
for another paralinguistics classification task [15], a specialized
selection mechanism was employed that removed less than 1%
of the features in the best performance. In this work, our two
GFS methods remove about 80% and 90% of the features. In
this mode, which achieves meaningful dimensionality reduc-
tion, the use of W-GFS is novel. Second, implementation of
W-GFS in the context of noise-robust paralinguistics is novel.
Finally, OW-GFS is a novel method that provides further noise-
robustness under high noise conditions.

This paper is organized as follows. Section 2 describes
the LLD-based partitioning and the BIRS algorithm for fea-
ture space search. Section 3 provides details about the cor-
pus. Noise-robust feature selection and performance evaluation



Table 1: Results in % UAR of SMO and VP classifications using
the four feature selection methods and the baseline (BL) repre-
sented by columns of the table on high noise level test data. The
best performances for each column are depicted in bold.

CLS W-GFS OW-GFS C-FS CC-FS BL
SMO1 61.5 62.3 59.6 59.9 65.0
SMO2 62.5 62.7 61.1 60.4 64.2
SMO3 64.2 63.5 61.6 60.5 63.2
SMO4 64.2 64.2 62.5 60.4 60.8
SMO5 63.4 64.0 62.9 60.2 58.5
SMO6 63.5 64.3 62.7 60.0 57.5
SMO7 62.6 64.1 62.9 60.4 55.9

VP 63.1 66.4 63.4 59.1 58.9

Table 2: Results on medium noise level test data.
CLS W-GFS OW-GFS C-FS CC-FS BL

SMO1 64.1 64.3 64.1 61.9 65.8
SMO2 66.1 64.7 64.9 62.9 66.4
SMO3 67.2 65.4 65.3 64.6 66.1
SMO4 67.5 65.7 65.9 64.7 64.7
SMO5 67.5 65.9 65.9 64.9 61.7
SMO6 66.7 65.6 66.0 64.7 61.0
SMO7 65.4 66.1 66.1 65.9 59.5

VP 65.1 67.4 66.2 61.9 62.6

methods are explained in section 4. The experimental results
are discussed in section 5 and the paper’s conclusions and sug-
gested future work are covered in the last section.

2. Background
2.1. LLD-Based Groups

Acoustic features are generated by chunk level application of
functionals like arithmetic mean to LLD contours like RMS en-
ergy [21, 9]. The Sleepiness Sub-Challenge uses three sets of
LLDs, each having a corresponding set of functionals listed in
[9]. Using LLD-partitioned groups is acoustically motivated. If
application of a statistical functional to an LLD contour gen-
erates a feature relevant to a classification task, it is likely that
application of other functionals to the same LLD could be use-
ful for the task as well and vice versa [15].

2.2. BIRS Search

BIRS is a linear forward search algorithm performed in two
steps: ranking and feature subset selection. In the ranking step,
the features are ranked from highest to lowest based on their
evaluation score. In the feature subset selection step, the en-
tire ranked feature set is traversed starting with an empty subset
which selects features whose addition results in a subset that
is evaluated to a higher UAR value, by a threshold level. Our
fast variant of the algorithm used here does not employ cross-
validation and t-test in the subset selection step. Wrapper eval-
uation cycles are used as the time complexity measure. The
algorithm performs 2 ∗ N evaluations, where N is the number
of individual features in the search space. Our LLD-based GFS
reduces the algorithm’s N = 4368 evaluation cycles, in each
step, to 118 cycles, i.e., the number of LLDs in the baseline
feature set.

Table 3: Results on low noise level test data. An additional com-
plexity parameter = 0.01 (used by classifier SMO8) is needed to
cover the range of interest for CC-FS.

CLS W-GFS OW-GFS C-FS CC-FS BL
SMO1 66.6 66.6 65.9 63.1 66.8
SMO2 68.2 67.3 66.3 64.8 67.1
SMO3 69.0 68.1 67.2 65.6 67.1
SMO4 69.6 68.2 67.8 66.1 67.2
SMO5 69.3 68.0 67.4 66.2 66.9
SMO6 68.6 68.0 67.1 66.4 67.0
SMO7 67.8 67.0 66.4 66.8 64.6
SMO8 ... ... ... 67.2 ...

VP 63.7 65.1 63.9 63.5 64.5

Table 4: Results on unknown noise level test data.
CLS W-GFS OW-GFS C-FS CC-FS BL

SMO1 64.1 64.4 63.2 61.6 65.9
SMO2 65.6 64.9 64.1 62.7 65.9
SMO3 66.8 65.7 64.7 63.6 65.5
SMO4 67.1 66.1 65.4 63.7 64.2
SMO5 66.7 66.0 65.4 63.8 62.4
SMO6 66.2 66.0 65.3 63.7 61.8
SMO7 65.3 65.7 65.1 64.4 60.0

VP 64.0 66.3 64.5 61.5 62.2

3. Corpus
The SLC used in our classification contains speech recordings
of 99 subjects made in realistic car and lecture-room settings
and has a duration of 21 hours. The original 44.1 kHz record-
ings made with a microphone-to-mouth distance of 0.3 m are
down-sampled to 16 kHz and use 16 bit quantization [9]. The
levels of sleepiness 1 through 10 are reported according to the
Karolinska Sleepiness Scale (KSS) [22] which is shown to be
valid in certain studies [23]. A level equal or below 7.5 is clas-
sified as non-sleepy and one above 7.5 as sleepy.

4. Method
We first explain how our two W-GFS and OW-GFS methods and
the two filters, Correlation-based Feature Selection (C-FS) [24]
and Pearson Correlation Coefficient Feature Selection (CC-FS)
[25] (implemented by WEKA’s CfsSubsetEval and Correlation-
AttributeEval, respectively), are used in the development phase
to obtain the four noise-robust feature sets which are subse-
quently used in the evaluation phase. For the GFS methods,
in the development phase, we train on the training set and pre-
dict on the development set. For the two filters, we train on
the combined training set (training plus development sets com-
bined). Next, we describe our evaluation of the four noise-
robust selected feature sets using test data sets with changing
noise levels. For evaluation, we train on the combined training
set and report predictions on the test set. Features are standard-
ized to standard normal and WEKA’s Synthetic Minority Over-
sampling Technique (SMOTE) implementation [26] is used to
balance the number of the classes in the development sets.

4.1. Noise-Robust Feature Selection on Development Data

In the absence of knowledge about the nature of the background
noise, we model our feature selection systems using additive
white Gaussian noise. First, in matched manner, we use devel-



Table 5: Best performance results (bold entries) from Tables 1,
2, 3, and 4. The highest value of W-GFS and OW-GFS methods
is displayed under “Best GFS” column.

Noise Best GFS C-FS CC-FS BL
High 66.4 63.4 60.5 65.0
Med 67.5 66.5 65.9 66.4
Low 69.6 67.8 67.2 67.2

Unknown 67.1 65.4 64.4 65.9

Table 6: % Improvement in relative UAR of the best perform-
ing model (Best Pair) over the best C-FS, CC-FS, and baseline
models on each noise level test data.

Noise Best Pair ↑ C-FS ↑ CC-FS ↑ BL
High OW-GFS, VP 4.8 9.8 2.2
Med W-GFS, SMO4 1.6 2.5 1.8
Low W-GFS, SMO4 2.6 3.5 3.6

Unknown W-GFS, SMO4 2.6 4.2 1.9

opment data with additive white-noise of 10 dB Signal-to-Noise
Ratio (SNR) level (generated by MATLAB’s Communications
System Toolbox function awgn [27]) to find the optimum linear
kernel SMO complexity parameter. We model our feature se-
lection methods for noise-robustness based on results from this
mid-range SNR level. Second, using the obtained complexity,
we perform W-GFS to obtain the noise-robust feature set which
we will use to evaluate W-GFS on test data. Third, to add more
robustness under high noise levels, the selected feature set ob-
tained by W-GFS is reduced by removing groups with less than
55% UAR scores. The resultant feature set will be used to eval-
uate OW-GFS on test data. Finally, we obtain the two other fea-
ture sets using the C-FS and CC-FS filters. For CC-FS, we use
the top 400 features as in [28]. The four noise-robust selected
feature sets, in the mentioned order, are of sizes 935, 407, 138,
and 400, respectively.

4.2. Evaluation System on Test Data

We use WEKA’s linear kernel SMO and VotedPerceptron (VP)
[29] implementations in the evaluation phase. If the type of
noise is known, evaluation can be performed in a matched man-
ner. In the absence of knowledge about the nature of the every-
day environment noise, our four prediction models are trained in
a partially matched fashion, i.e., using the clean combined train-
ing set reduced by the four noise-robust feature sets obtained
using additive white-noise in the development phase. Predic-
tions are made on noisy test data. Since the degree of similarity
between white-noise and the particular everyday environment
noise is unknown, prediction in a fully matched manner could
produce unpredictable outcome. Noisy test data is produced as
described below.

We generate three test sets with high, medium, and low lev-
els of additive white-noise, respectively. To generate the high
level noise test data, following a uniform distribution, we ran-
domly add white-noise to the test data using an SNR level be-
tween -5 and +5 dB. This generation process allows for evalu-
ation under changing noise levels. The medium noise level test
data is generated in a similar manner except that the SNR range
is between +5 and +15 dB. In order to include clean data as
part of our test sets, the low noise level test data is generated
similarly to the other levels using the +15 to +25 dB range but
only with a 50% chance following a uniform distribution. The

Table 7: Results on everyday environment noise test data (coun-
terpart of Table 6’s last row). The “Best Pair” obtains 63.1 %
UAR.

Noise Best Pair ↑ C-FS ↑ CC-FS ↑ BL
Unknown OW-GFS, SMO7 2.1 3.1 1.4

remaining 50% of data is clean.
In practice, hyperparameters tuned in the development

phase are used for prediction in the test and evaluation phases.
However, using W-GFS for tuning the SMO complexity pa-
rameter gives the model an unfair advantage over others. To
fairly compare our four feature selection and baseline models
using the SMO classifier, therefore, we need to evaluate their
performances using several SMO complexity parameters span-
ning the range of interest. The seven values of interest range
from 0.00005 to 0.005 in approximately double increments, i.e.,
0.00005, 0.0001, 0.0002, ..., 0.005. The corresponding classi-
fiers are named SMO1, SMO2, SMO3, ..., SMO7, respectively.
For the VP classifier, WEKA’s default settings are used.

5. Experimental Results
Table 1 depicts results obtained on high noise level test data.
The highest value in this table represents the model (feature
selection method and classifier pair) that achieves best perfor-
mance on high noise level test data. Tables 2 and 3 are generated
similarly for the medium and low level noise test data. Table 4
is the average of the high, medium, and low noise level test
data tables and represents the unknown noise level. The high-
est value in this table represents the model that achieves best
performance under changing and unknown noise levels.

To facilitate comparison of results obtained by the four fea-
ture selection methods and the baseline we generate Tables 5
and 6. Table 5 displays the best performance results (bold en-
tries) from Tables 1, 2, 3, and 4. Results from these tables
demonstrate that our two GFS methods obtain the top two per-
formances for each noise level. The highest value obtained by
the W-GFS and OW-GFS methods is displayed under the com-
mon “Best GFS” column. Table 6 is constructed in the fol-
lowing manner. Column 1 displays the noise level. Column 2
identifies the model (method and classifier pair) that attains best
performance on each noise level test data. Column 3 (↑ C-FS)
depicts, for each level, the percent improvement in relative UAR
of the best model over the best C-FS model. Similarly, columns
4 (↑ CC-FS) and 5 (↑ BL) show improvements of the best model
over the best CC-FS and best baseline models. These results
demonstrate that the best GFS method consistently outperforms
the C-FS, CC-FS, and baseline models on all four noise level
test data. Specifically, for high noise, the OW-GFS and VP
pair outperforms the best C-FS, CC-FS, and baseline models
by 4.8%, 9.8%, and 2.2% relative UAR, respectively. The over-
all best performing model under changing and unknown noise
level, the W-GFS and SMO4 (SMO with complexity = 0.0005)
pair, outperforms the best C-FS, CC-FS, and baseline models
by 2.6%, 4.2%, and 1.9% relative UAR, respectively.

Finally, we evaluated the four feature selection methods and
the baseline on test data with additive everyday environment
noises. Recording of nature plus driving car sounds was un-
dergone SNR level changes according to the same distributions
that was used in generating the unknown noise level test data
for additive white-noise. The resultant test data was generated
directly rather than through the averaging process used for the



white-noise case. The results are displayed in Table 7. The per-
formance improvement pattern is similar to that of the white-
noise case (last row of Table 6) although the best performance
value of 63.1% UAR using everyday environment noise (not
shown in the table) is expectedly lower than the 67.1% obtained
by the white-noise counterpart.

6. Conclusions and Future Work
In the absence of specific knowledge about the type and num-
ber of noise sources, we used additive Gaussian white-noise to
model the background noise. This noise model was employed
by four feature selection methods to obtain four reduced fea-
ture sets. Systems based on these reduced feature sets per-
formed sleepiness classification on the SLC test data with addi-
tive white and everyday environment noises whose SNR levels
are changed dynamically following a uniform distribution. In a
partially matched design, our best GFS systems showed perfor-
mance improvement over the two alternative filter systems and
the baseline. For further real-world noise-robustness, our GFS
systems could be trained on models that incorporate actual ev-
eryday environment noises and subsequent predictions could be
made in a matched manner.
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