
The MELCO/MERL System Combination Approach
for the Fourth CHiME Challenge

Yuuki Tachioka1, Shinji Watanabe2, Takaaki Hori2

1Information Technology R&D Center, Mitsubishi Electric Corporation
2Mitsubishi Electric Research Laboratories

Tachioka.Yuki@eb.MitsubishiElectric.co.jp, watanabe@merl.com, thori@merl.com

Abstract

This paper describes our approach for all three tracks of the
fourth CHiME challenge. Front-end process prepared two
speech enhancements. Back-end process extracted three types
of different features and after decoding, it used neural network
based rescoring. Finally, the hypotheses of the multiple sys-
tems were combined and the word error rate of our best system
became less than half of that of the state-of-the-art baseline.

1. Background
The 4th CHiME challenge provides three tracks: 1ch, 2ch, and
6ch track [1]. We entered all three tracks. For all tracks, state-
of-the-art baseline scripts were prepared. They employed dis-
criminatively trained deep neural network (DNN) acoustic mod-
els and recurrent neural network (RNN) based rescoring with
advanced speech enhancement. There are four different envi-
ronments in the tasks and for these kinds of tasks, system com-
bination was effective. To realize more effective combination,
we prepared multiple systems with different speech enhance-
ment and different feature extractions. This paper separately
confirmed the effectiveness of our approach in terms of the word
error rate (WER).

2. Front-end process
For single-channel track, sparse non-negative matrix factor-
ization (NMF) [2] was used to suppress noise. To reduce
distortions, enhanced speech was mixed with original noisy
speech. For multi-channel track, in addition to the provided
beamformer (BeamformIt), minimum variance distortionless
response (MVDR) beamformer with precise steering vector es-
timation [3] was employed.

3. Back-end process
In addition to the provided 13-dimensional MFCC+∆ + ∆∆
with feature-space maximum likelihood linear regression (fM-

Table 1: System description for Table 2. All systems used DNN
acoustic model.

{m,p,f}-{s,m}-{n,s,b,m}-{u,a,a2}+{r,l}
{m,p,f} MFCC / PLP / fbank
{s,m} Single / multi-channel data training

{n,s,b,m} Noisy / sparse NMF / BeamformIt / MVDR
{u,a,a2} Unadapted / adapted / adapted-2 DNN
{r,l} RNN / LSTM-LM rescoring

Table 2: Average WER [%] for the tested systems. For 1ch,
“baseline1” was “m-s-n-u” and “baseline2” was “m-s-n-u+r”.
For 2ch and 6ch, “baseline1” was “m-s-b-u” and “baseline2”
was “m-s-b-u+r”. “best” combined asterisk-marked systems.

Track System
Dev Test

real simu real simu

1ch

baseline1 14.67 15.67 27.69 24.15
baseline2 11.69 15.43 23.71 20.95
m-m-n-u 12.67 13.55 22.17 20.29

m-m-n-u+l* 7.76 8.92 15.66 15.12
p-m-n-u+l* 7.74 9.23 16.03 15.31
f-m-n-u+l* 5.60 7.60 11.76 12.75
f-m-n-a+l* 5.58 7.70 11.85 12.72
m-m-s-u+l* 7.78 8.86 15.49 15.08
p-m-s-u+l* 7.60 9.33 15.47 15.61
f-m-s-u+l* 5.56 7.30 11.64 12.76
f-m-s-a+l* 5.41 7.48 11.64 12.90

best 5.15 7.15 11.13 12.15

2ch

baseline1 10.90 12.36 20.44 19.03
baseline2 9.63 10.72 18.08 16.88
m-m-b-u 9.90 10.60 16.89 16.27

m-m-b-u+l* 5.59 6.33 11.43 10.55
p-m-b-u+l* 5.51 6.48 11.71 10.77
f-m-b-u+l* 4.19 5.23 8.38 9.10
f-m-b-a+l* 3.96 5.15 8.23 8.49

m-m-m-u+l* 5.34 6.09 11.21 11.55
p-m-m-u+l* 5.03 6.40 11.11 11.61
f-m-m-u+l* 3.96 5.23 8.45 9.62
f-m-m-a+l* 3.80 5.06 7.99 9.10

best 3.50 4.63 7.28 8.03

6ch

baseline1 8.14 9.07 15.04 14.20
baseline2 5.75 6.77 11.47 10.91
m-m-b-u 7.69 8.23 12.57 12.66

m-m-b-u+r 4.99 5.72 9.22 8.96
m-m-b-u+l* 3.94 4.49 7.77 7.51
p-m-b-u+l* 3.90 4.62 7.64 7.71
f-m-b-u+r 4.18 4.95 7.20 7.47
f-m-b-u+l* 3.10 3.63 5.94 6.28
f-m-b-a+l* 3.05 3.60 5.71 5.94
m-m-m-u+r 4.45 4.19 7.45 7.51
m-m-m-u+l* 3.47 3.06 6.42 6.39
p-m-m-u+l* 3.43 2.99 6.36 6.23
f-m-m-u+r 3.72 3.66 6.11 6.67
f-m-m-u+l* 2.75 2.61 5.19 5.72
f-m-m-a+l* 2.60 2.53 5.06 5.01
f-m-m-a2+l* 2.47 2.45 4.75 4.39

best 2.30 2.32 4.31 4.18
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Figure 1: Schematic diagram of the proposed ASR systems.

Table 3: WER [%] per environment for the best system.

Track Envir.
Dev Test

real simu real simu

1ch

BUS 7.15 6.24 18.00 8.55
CAF 5.19 9.81 11.73 13.93
PED 3.05 4.97 7.81 11.71
STR 5.19 7.57 6.99 14.40

2ch

BUS 4.54 3.92 11.42 5.08
CAF 3.63 6.28 7.08 9.41
PED 2.21 3.38 5.59 8.33
STR 3.63 4.96 5.04 9.28

6ch

BUS 3.07 2.01 5.16 2.95
CAF 2.40 2.99 3.90 4.63
PED 1.64 1.76 4.00 4.18
STR 2.11 2.51 4.17 4.97

LLR) transformation, we employed 13-dimensional PLP+∆+
∆∆ with fMLLR transformation and 40-dimensional filter-
bank (fbank) feature+∆ + ∆∆ with maximum likelihood
linear transformation (MLLT) and fMLLR transformation [4].
Features in the consecutive 11 frames were input to the DNN.

In addition to the feature-space adaptation, model-space
adaptation of DNN [5] was also used where the second layer
of DNN was switched for each speaker. To train DNN acous-
tic models, multi-channel (6ch) data were all used whereas
baseline only used single-channel data. These modification in-
creased the training data size [3]. All training data were noisy
without any speech enhancement, i.e., noisy data training.

After decoding, we used long short-term memory (LSTM)-
language model (LM) rescoring [6] instead of the baseline
recurrent neural network (RNN)-LM. Figure 1 shows the
schematics of the proposed method. In each track, there were
two types of speech enhancement. For each enhancement, three
different features were used; and for fbank feature, model-space
speaker adaptation was performed. In total, hypotheses of eight
systems are combined by using lattice combination.

4. Experimental evaluation
Table 2 shows the WERs of the challenge. Descriptions of the
system ID is shown in Table 1. Comparison of baseline1 and
“m-m-n-u” shows the effectiveness of multi-channel data train-
ing, which was especially effective for 1ch track and improved
the WERs by around 2–5%. Comparison of baseline1 and base-
line2 and that of “m-m-n-u” and “m-m-n-u+l” show the effec-
tiveness of LSTM-LM rescoring, which improved WER more
than RNN-LM rescoring. The performances of MFCC and PLP
features were almost equivalent but fbank feature significantly
improved the WERs. DNN model adaptation was also effective.
MVDR beamformer shows its effectiveness for the 6ch track
more than 2ch track, compared with the baseline beamformer.
Combining multiple systems additionally improved WERs by
around 0.3–0.6%. WERs of the best system were less than half
of those of “baseline2” except one case (Test and simu in the
1ch track).

Table 3 shows the WER of the best system per environment
in Table 2. Increasing the number of microphones was effective
for all conditions. In real data, “BUS” was the most difficult
task.

5. Conclusion
This paper showed our approach for the fourth CHiME chal-
lenge. Multi-channel data training, fbank feature, and LSTM-
LM based rescoring were the most effective. System combina-
tion gave additional improvements for all conditions.
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