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Abstract
Noise robust speech recognition is one of the most challeng-
ing problems. This paper described the most important tech-
nical designs in the SJTU CHiME-4 Challenge system cover-
ing data usage, feature normalization, advanced acoustic model,
auxiliary feature joint training, multi-model joint decoding and
multi-pass decoding pipeline. The impacts on the final recog-
nition accuracy from each technology are explored and com-
pared. With the proposed technologies, our final system ob-
tains a very large improvement compared to the formal released
baseline system. The final average WERs of the real test set
are 6.41%, 9.14%, 13.91% for 6-channel, 2-channel, and 1-
channel, respectively.

1. Background
This paper describes the key points and contributions of the
SJTU system (Shanghai Jiao Tong University) for the 4th
CHiME Challenge [1]. We participate in all the evaluations for
the challenge, including 6-ch / 2-ch / 1-ch tracks. Our works
mainly focus on the acoustic modeling, so the front-end we used
is the released baseline BeamformIt, the language model is the
baseline RNNLM. In comparison to CHiME-3 challenge, our
new progress mainly includes:

• Data augmentation using all channels with the beam-
formed data

• Feature normalization

• Advanced acoustic model including very deep CNN [2]
and auxiliary feature joint training [3]

• System combination using the multi-model joint decod-
ing and multi-pass decoding pipeline.

In the next section, we will describe these key technologies
in detail.

2. Contributions
2.1. Data usage

Compared to the released baseline only using 18 hours noisy
training data from channel 5, the training set is augmented with
data from all channels (excluding the channel 2 located at the
back of the device), and moreover the beamformed audio stream
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Figure 1: Model structures and configs used in our systems

on these channels is also pooled together, which totally results
6×18=108 hours for training.

2.2. Feature normalization

The appropriate feature normalization is very important for
speech recognition in noisy scenarios. It can make the sys-
tem more robust to the changes in environments and channels.
CMN, CVN and CMVN are compared with FBANK, and the
FBANK with CMN on per speaker shows the best performance.

2.3. Advanced acoustic models

In addition to the basic DNN model, which is used in the re-
leased baseline, other advanced models are applied. One is
named very deep CNN (VDCNN), which is proposed in our
recent work [2, 4, 5], and particularly it shows the powerful po-
tentiality on noise robustness [2]. Another is LSTM-RNN, and
it has been verified effective on several tasks [6]. The model
structures and configurations used in this work are illustrated in
Figure 1, and more details can be referred to the work in [2].

2.4. Joint training with auxiliary features

The use of auxiliary features in factor-aware training is one type
of adaptation popular for robust ASR [3, 7, 8, 9]. We use the
same framework as our previous work for LSTM-RNN based
speaker-aware training using i-vector [8], which concatenating
the auxiliary feature with the original feature at the input layer.

In contrast, for the VDCNN usage, [5] proposed another
auxiliary feature joint training architecture shown as the left
part of Figure 2. Considering the auxiliary features, such as fM-
LLR and i-vector, are the non-topographical, they are separately



(a) Joint training of VDCNNs
with auxiliary features

(b) Joint decoding of VDCNN &
RNN

Figure 2: The architectures of VDCNN with auxiliary features
joint training, and VDCNN & RNN joint decoding

transformed with a normal fully-connected layer first, and then
the outputs are concatenated with those of the VDCNN block to
be fed into the following shared MLP layers. Both fMLLR and
i-vector can be used as auxiliary features for VDCNNs here.

2.5. Joint decoding with VDCNN and RNN

To explore the huge complementarity within VDCNN and
LSTM-RNN, a joint decoding scheme shown as the right part
of Figure 2 is implemented [5, 10]. It uses a weighted sum com-
bination of acoustic log likelihoods from VDCNN and LSTM-
RNN systems. Moreover, the DNN system also can be added
into this framework to perform the multi-model (three) joint de-
coding.

2.6. Final multi-pass decoding system

Embedded with these above key features, our final submitted
system is based on a multi-pass decoding framework, which is
illustrated as Figure 3. It consists of 5 stages, shown as P1∼P5.

• P1: The front-end audio processing, including beam-
forming for multi-channel condition and feature extrac-
tion. In the 1-ch track, the single channel audio is used
to extract all types of features directly.

• P2: Speaker-independent acoustic models are built indi-
vidually, including DNN, VDCNN & LSTM-RNN. and
auxiliary features based modeling are also constructed.

• P3: The DNN-SI system is adapted by the 2-pass mode,
which uses 1-best from the first pass SI model. Then
the 1-best from the adapted DNN-SA model is used to
do the cross-adaptation for VDCNN and LSTM-RNN,
named VDCNN-SA and LSTM-RNN-SA respectively.

• P4: Three speaker-adaptation models, including DNN-
SA, VDCNN-SA and LSTM-RNN-SA are integrated to
perform the proposed multi-model joint-decoding.

• P5: The RNNLM rescoring is applied on the lattices
from the P4 stage to get the final results of the fusion sys-
tem. If only considering the best single system, the lat-
tices from VDCNN-SA in P3 are applied with RNNLM
rescoring to generate the best single system results.
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Figure 3: The multi-pass decoding for the CHiME4-Challenge

3. Experimental evaluation
The detailed results comparison in our system will be described
in this section. The GMM-HMM system was trained using the
released standard Kaldi [11] recipe. It is a MFCC-LDA-MLLT-
FMLLR GMM-HMMs system. After that, a forced-alignment
is performed to get the state level labels for NN training. In this
work, all the DNN models are constructed using Kaldi [11], and
other models are built using CNTK [12]. It is noted that except
the results in Table 4 which used SMBR training and RNNLM
rescoring, all the results in other tables used the CE criterion in
training and the released trigram in decoding.

3.1. Data augmentation

Data augmentation was first evaluated, different amount of data,
described in Section 2.1, were compared. In this experiment,
DNN systems with fMLLR feature were used. As shown in
Table 1, using more data always get better performance. For the
fast investigation on the other system configuration, only the
beamformed audio stream was used in training first (18 hours)
in the following experiments, and the final submitted system
will be retrained using all 108 hours data.

Table 1: WER (%) comparison of different training data usages
for the 6ch-track, using fMLLR features in DNN models. The
beamformed data on ch1-ch6 is used for testing in all setups

System fMLLR
dev-real dev-sim

Chan5 9.39 10.46
BF 9.30 10.51

Chan1-6 8.49 9.29
Chan1-6+BF 8.20 8.90



3.2. Acoustic models

Different acoustic models were then constructed, including
DNN, LSTM, CNN and very deep CNN. As shown in Table
2, VDCNN get a 10% relative improvement on the real data
over the DNN with the speaker dependent feature.

Table 2: WER (%) comparison of different acoustic models for
the 6ch-track. Beamformed data on ch1-ch6 is used for both
training and testing in all setups. Feats indicates the model in-
put feature

System Feats dev-real dev-sim
DNN fMLLR 9.30 10.51

LSTM fMLLR 10.26 11.69
CNN FBANK 10.14 12.22

VDCNN 8.66 10.52

3.3. Auxiliary feature joint training

The auxiliary feature joint trainings in the VDCNN model and
LSTM-RNN model are implemented. The different types of
auxiliary features are explored and the related results are shown
in Table 3. For the i-vector, a GMM with 2048 Gaussians is
used to extract a 10-dimensional i-vector for each utterance, and
these i-vectors were obtained using MFCC features. We can
see that joint training with auxiliary features obtain consistent
gains on both VDCNN and LSTM-RNN, and the improvement
in VDCNN is especially large which demonstrats the superior-
ity of the proposed new architecture.

Table 3: WER (%) comparison of the very deep CNNs and
LSTM-RNNs with auxiliary features joint training for the 6ch-
track. Beamformed data on ch1-ch6 is used for both training
and testing in all setups. Aux indicates the auxiliary feature

System Feats Aux dev-real dev-sim

VDCNN FBANK
— 8.66 10.52

fMLLR 7.92 8.90
fMLLR+ivec 7.69 8.83

LSTM fMLLR — 10.26 11.69
ivec 10.23 11.52

3.4. Submitted system

At last, we give the final submitted results in Table 4. As stated
above, the augmented 108 hours data was used for all model
trainings, and the multi-pass decoding shown as the Figure 3
was performed to obtain the 1-best results. Considering we
only want to focus on the acoustic modeling, so the released
RNNLM was applied for the rescoring.

Due to the limited evaluation time, we can not finish the
testing using the best fusion system on time. Accordingly
the results from the best single system (applying RNNLM on
VDCNN-SA in P3) are submitted as our final results for the
challenge. All the results covering three tracks, including both
dev and eval under different environments.
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