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Abstract
This paper describes automatic speech recognition (ASR) sys-
tems developed jointly by RWTH, UPB and FORTH for the
1ch, 2ch and 6ch track of the 4th CHiME Challenge. In the
2ch and 6ch tracks the final system output is obtained by a Con-
fusion Network Combination (CNC) of multiple systems. The
Acoustic Model (AM) is a deep neural network based on Bidi-
rectional Long Short-Term Memory (BLSTM) units. The sys-
tems differ by front ends and training sets used for the acoustic
training. The model for the 1ch track is trained without any
preprocessing. For each front end we trained and evaluated in-
dividual acoustic models. We compare the ASR performance of
different beamforming approaches: a conventional superdirec-
tive beamformer [1] and an MVDR beamformer as in [2], where
the steering vector is estimated based on [3]. Furthermore we
evaluated a BLSTM supported Generalized Eigenvalue beam-
former using NN-GEV [4]. The back end is implemented using
RWTH’s open-source toolkits RASR [5], RETURNN [6] and
rwthlm [7]. We rescore lattices with a Long Short-Term Mem-
ory (LSTM) based language model. The overall best results
are obtained by a system combination that includes the lattices
from the system of UPB’s submission [8]. Our final submis-
sion scored second in each of the three tracks of the 4th CHiME
Challenge.

1. Background
This paper describes ASR systems for the 1ch, 2ch and 6ch
tracks of the 4th CHiME Challenge. In contrast to the provided
baseline system [9] the back end has been replaced completely
and is described in Section 2.2. Furthermore we developed ad-
ditional systems using different front ends. The front ends are
described in Section 2.1. All experimental results presented in
this work (Sections 3 and 4) are obtained with the official train-
ing set following the rules of the CHiME challenge.

2. Contributions
2.1. Front ends

In addition to the baseline (BL) front end we developed three
other front ends that utilize different beamformers. The final

enhanced signal at the output of each beamformer is given by:

ZZZ(k, l) = www(k, l)HXXX(k, l) (1)

where k, l denote the frequency index and time-frame, respec-
tively, www(k, l) is the M × 1 vector of beamformer filter coef-
ficients for a given front end, XXX(k, l) is the M × 1 vector of
microphone array signals in the Short-time Fourier Transform
(STFT) domain, and M denotes the number of microphones.

We also improved the microphone failure detection mecha-
nism of [2], so as to better identify corrupted microphones. The
enhanced microphone failure detection was used in the front
ends described in Sections 2.1.2 & 2.1.3.

2.1.1. Microphone failure detection

Our microphone failure detection mechanism is based on mea-
suring the consistency of the energies (calculated in each time
frame) between the microphone signals. To do that, we con-
struct M time-series em(l),m = 1, . . . ,M , each one contain-
ing the energy of the signal for l = 1, . . . , L frames, where L
denotes the total number of frames in the utterance. Then, for
each microphone m, the average correlation coefficient rAV

m be-
tween em(l) and en(l) for n 6= m is calculated. A microphone
is considered to have failed if rAV

m is less than a threshold δ,
which was set empirically to 0.8. These microphones, in addi-
tion to the microphones which are considered to have failed by
the system of [2], are excluded from further processing.

2.1.2. MVDR beamformer with steering vector estimation

This front end (MV) utilizes a minimum variance distortionless
response (MVDR) beamformer with diagonal loading, similar
to the one in [2]. The filter coefficients are calculated as:

wwwMVDR(k, l) =

[
RRRn(k) + ε diag(|XXX(k, l)|2)

]−1
ddd(k)

ddd(k)H [RRRn(k) + ε diag(|XXX(k, l)|2)]−1 ddd(k)
(2)

where ε = 10−3 is the diagonal loading term, ddd(k) is the steer-
ing vector,RRRn(k) is the spatial correlation matrix of noise, and
diag(xxx) denotes the conversion of vector xxx to a diagonal matrix.

For the estimation of the unknown quantities ddd(k) and
RRRn(k) we use the method of [3], which does not require knowl-
edge of the array geometry or the speaker location. We assume



that each frequency bin contains either speech and noise or is
dominated only by noise. This assumptions allows the cluster-
ing of the STFT coefficients into two classes: the noisy (i.e.,
speech + noise) and the noise-only class. The clustering is per-
formed by modeling the STFT coefficients at each frequency
with a 2-component complex Gaussian mixture model. To as-
sociate each Gaussian component to its correct class, we mea-
sure the ratio of the first to second largest eigenvalues of the
estimated covariance matrices. The component for which this
ratio is the largest is assigned to the noisy class.

The spatial correlation matrices of speech, RRRs(k), noise,
RRRn(k), and noisy signals, RRRsn(k), are then estimated based on
the posterior probabilities of each bin to belong to the noisy or
noise-only class as:

RRRsn(k) =
1

L

L∑
l=1

XXX(k, l)XXX(k, l)H (3)

RRRn(k) =
1∑L

l=1 λn(k, l)

L∑
l=1

λn(k, l)XXX(k, l)XXX(k, l)H (4)

RRRs(k) = RRRsn(k)−RRRn(k) (5)

where λn(k, l) denotes the posterior probability that the time-
frequency bin (k, l) is dominated by noise.

Finally, the steering vector for each frequency bin k is esti-
mated as the principal component of RRRs(k). For the 6ch track
the spatial correlation matrix of noise which is used in Eq. (2)
is estimated from Eq. (4), while for the 2ch track it is estimated
from 400 ms to 800 ms of context immediately before the utter-
ance, as it was shown to produce better recognition performance
in the 2ch case. Each utterance was processed using frames of
512 samples with 50% overlap, windowed with sine windows
and an FFT size of 512 samples, while channel 2 was excluded
from processing.

2.1.3. Superdirective beamformer using time-delays

The superdirective beamformer maximizes the array gain, while
maintaining a minimum constraint on the white noise gain [1].
The beamformer filter coefficients are computed as:

wwwSD(k, l) =
[ΓΓΓ(k) + εIII]−1 ddd(k, l)

ddd(k, l)H [ΓΓΓ(k) + εIII]−1 ddd(k, l)
(6)

where III is the identity matrix and ε is the diagonal loading term
which is used to control the white noise gain (WNG) constraint.
ΓΓΓ(k) is the noise coherence matrix for frequency bin k (as-
sumed to be spherically isotropic diffuse [10]) whose elements
are given by:

Γij(k) = sinc
(

2πfdij
c

)
(7)

where f is the frequency in Hz, c = 343 m/s is the speed of
sound and dij denotes the distance between the ith and jth mi-
crophone. Finally, the steering vector is represented by:

ddd(k, l) =
[
e−j2πfτ1(l) · · · e−j2πfτM (l)

]
(8)

where τi(l) denotes the time delay to the ith microphone for
time-frame l, which was estimated using the nonlinear SRP-
PHAT pseudo-spectrum [2]. To determine ε, we start from ε =
0 and iteratively increase it by 0.05 until the WNG becomes
equal or greater than −10 dB.

This front end (SD) is used in the 6ch track, as well as in
the 2ch track. For both tracks, we used frames of 1024 samples
with 50% overlap, windowed with sine windows and an FFT
size of 1024, while channel 2 was excluded from processing.

2.1.4. BLSTM supported GEV

The Generalized Eigenvalue (GEV) front end (GE) maximizes
the signal-to-noise ratio after the beamforming operation:

wwwGEV(k) = argmax
ddd

ddd(k)HRRRs(k)ddd(k)

ddd(k)HRRRn(k)ddd(k)
. (9)

Maximizing this equation leads to the generalized eigenvalue
problem and its solution to the beamforming vector wwwGEV(k)
for each frequency. Similar to the MVDR beamformer de-
scribed above, this beamformer only relies on the signal statis-
tics, i.e. no assumptions on the microphone array configurations
are made. In contrast to the MVDR however, the GEV can
introduce arbitrary distortions because the magnitude of each
beamforming vector can be chosen arbitrarily. We therefore
normalize the steering vectors using Blind Analytic Normaliza-
tion (BAN) [11]. This postfilter normalizes the Acoustic Trans-
fer Function (ATF) from the target source to unit gain for each
frequency.

The spatial correlation matrices needed for the beamform-
ing operation are estimated using time-frequency masks from a
neural network [12][4]. Here, we calculate two masks, one for
the target and one for the distortion. These masks do not neces-
sarily sum to one. We only want to take those time-frequency
bins into consideration where the respective source is surely
predominant. To calculate the masks we treat each microphone
separately and then use median pooling to condense the masks
into one for each source. This strategy makes the mask esti-
mation immune to corrupted channels. It also allows us to use
the same front end for the 6 channel, as well as for the 2 chan-
nel track without making any changes to the network. The net-
work is the same as described in [12] and is trained using binary
masks as targets.

2.2. Back end

2.2.1. Data sets

The participants of the CHiME 4 Challenge were given a train-
ing corpus that was derived from the WSJ0 SI-84 data set (ap-
prox. 18 hours) recorded with a close talk microphone (chan-
nel 0) and 6 distant microphones (channels 1-6). First off we
trained a fairly standard GMM/HMM acoustic model on the
quasi-clean data (channel 0 of the real training data as well
as the booth training data and the original WSJ corpus) in or-
der to use its alignments on all other channels without having
to re-align the data for every subsequent experiment. We fur-
ther created a flattened training set (referred to as a set of front
facing microphones FC) by simply concatenating the channels
{1, 3, 4, 5, 6} of both real and simulated data into a 90 hours
corpus. We mostly discard the second channel since the corre-
sponding microphone points away from the speaker, resulting
in a slightly worse quality. In order to investigate the effect
of beamforming on the overall ASR performance, we further
define an extension of the flattened set FC by adding the beam-
formed signal to the concatenation. The resulting 108 hours
corpus is referred to as set FC+B.

For the processing of test data we followed the rules of the
challenge. In the 1ch track, no beamforming is required. In the
2ch and 6ch tracks, we first beamform all available channels
into a single signal before decoding. The recognition was done
using the standard 5k lexicon and baseline 5-gram count LM,
followed by lattice rescoring with a neural network language
model.



2.2.2. RWTH’s BLSTM acoustic model

The first back end was implemented using RWTH’s open-
source toolkits RASR [5] and RETURNN [6]. We will refer to
this back end as “R” and the Kaldi baseline back end as “K”.
The architecture and training algorithms for the speaker inde-
pendent and speaker adapted AM are identical. The AM is a
Deep Neural Network (DNN) with five BLSTM layers of size
600. The mini-batch training is carried out using stochastic gra-
dient descent with Nadam [13] and the learning rate reduction
is controlled by Newbob [14]. The initial learning rate is set to
10−3 and the gradient is distorted by Gaussian noise [15] with
an initial variance of 0.3. The cross-entropy training is regu-
larized by a dropout rate of 10% and L2 norm of the weights
with a factor of 0.01. The decoding pipeline is shown in Fig-
ure 1. It differs from a standard two-pass decoding strategy by
an additional LM rescoring with a neural network LM after both
passes.

2.2.3. UPB’s wide residual BLSTM acoustic model

The lower part of the second back end follows a slightly modi-
fied design of a Wide Residual Network (WRN) [16] with d =
22 and k = 5, where d describes the depth of the network (i.e.
number of layers) while k is a multiplicative factor for the num-
ber of channels (i.e. the width of the network). This number in-
creases with the depth as follows: 16→ k·16→ k·32→ k·64.
We halve the frequency resolution by using a stride of 2 each
time we increase the number of channels except for the first
time. On top of these layers are two BLSTM layers with 512
units for each direction and a final fully connected layer. We call
this configuration Wide Residual BLSTM Network (WRBN)
(or “W” for short in Section 3).

For training, we first extract the alignments with the base-
line back-end and the GEV front end using all six channels.
We then train this network with a cross-entropy criterion and
Adam [17]. To prevent overfitting we use dropout on the in-
put of each layer. Additionally we use it on the hidden-hidden
transitions of the BLSTM. Here, we sample the mask once per
sequence [18]. We use 80 dimensional mean-normalized log-
Mel filter bank features as input. Their delta and delta-delta
features act as extra channels. The network is trained on the un-
processed training data from all six channels. Instead of training
on a mini-batch of a few frames, we train it on a whole utter-
ance with full backpropagation through time. This allows the
WRN and BLSTM to exploit the full temporal context. Also,
it enables us to use Batch-Normalization (BN) [19] in an effec-
tive way. Here, we do not rely on statistics estimated on the
training or development data. We can normalize the networks
activations using the utterance statistics during test time. This is
not possible when working with frames because their high cor-
relation due to their overlap prohibits a good estimation of the
statistics. For (speaker) adaptation, we train an additional layer
consisting of a 80×80 weight matrix for each speaker and each
track. That layer with tied weights is applied to all three feature
channels equally.

2.2.4. RNN language model lattice rescoring

For the RASR back end (R) we carried out lattice rescoring
[20] with an LSTM-RNN language model [21, 22] as follows.
For each of the two rescoring steps (speaker independent and
adapted) shown in Figure 1, a specific model was used. The first
pass lattices were always rescored with a small LSTM model
we refer to as L1. For the rescoring of the second pass lat-

Figure 1: Decoding pipeline

tices we compared our own LSTM model L2 with the baseline
RNN model LB. The model L1 is based on a one-layer stan-
dard LSTM while L2 is based on a 3-layer LSTM with high-
way connections. The size of all hidden layers is set to 500
for both models. For the training of model L2 we applied a
dropout rate of 20% on the non-recurrent connections. The
output layer is factorized with word classes trained using the
exchange algorithm [23]. We used 100 classes for L1 and 70
for L2. For the training of the model L2, the sentences with
high OOV rates were removed from the training data, exactly
as described in [24]. The model L1 was trained without this
pre-processing. The interpolation weights between the baseline
5-gram count model and the LSTM model were optimized w.r.t.
the perplexity on the development data [25]. We used RWTH’s
open-source toolkit rwthlm [7] for both training and rescoring.

For the UPB back end (W) we employ a two layer LSTM
language model with 650 hidden units each – similar to the ex-
ample provided by [26]. Instead of training on an endless word
stream (initial state of next batch is end state of current batch),
we found that training on full sentences from the provided lan-
guage model training data in a random mini-batch improved
cross validation scores slightly. Again we use Adam [17] for op-
timization for 39 epochs and apply a dropout rate of 50% (this
time in the vertical connections only). Global gradient clip-
ping with a maximum value of 5 is used. All weight matrices
and bias vectors, including the embedding matrix, are initial-
ized with random weights sampled from a uniform distribution
in [−0.1, 0.1]. We experiment with restricted training sets limit-
ing the maximum number of unknown symbols during training.
This yielded reduced cross validation perplexities. Neverthe-
less, we finally selected a model trained on unrestricted training
data, since this lead to the lowest WER on the dev set.

2.3. System combination

For every track we obtain the final recognition result by per-
forming confusion network combination (CNC) of multiple sys-
tems. The lattices are first converted to individual confusion
networks [27, 28] and the combination is performed by align-
ing the confusion networks in the order of increasing word error
rate. We optimize the system weights w.r.t. the WER on the real
dev set using the downhill simplex algorithm. The frame-wise
CN construction algorithm is described in greater detail in Sec-
tion 4.4.4 of [29].

3. Experimental evaluation
The following section gives an overview over the effects of the
different components of the final system in the 6 channel track.
The following notation is used. The columns FE and BE de-



scribe the front end and back end used in the decoding step, re-
spectively. The front end is either the baseline model (BL), the
superdirective beamformer (SD), the minimum variance distor-
tionless response beamformer (MV) or the GEV beamformer
(GE). The RWTH back end (R) is described in Sections 2.2.2
and the UPB back end (W) is summarized in Section 2.2.3.
See [9] for the description of the baseline Kaldi back end (K).
All optimization have been done exclusively on the real dev set.
The results on the simulated data are only provided for refer-
ence. All tables show absolute word error rates (WER) in per-
cent.

3.1. MVDR configurations

The MVDR beamformer uses a slightly different configuration
to estimate the spatial correlation matrix of noise used in Eq. (2)
for the 2ch and 6ch track. As described in Section 2.1.2, for the
6ch track the spatial correlation matrix of noise is estimated us-
ing the time-frequency masks derived from the complex Gaus-
sian Mixture Model (MV-NoiseMasks), while for the 2ch track
the matrix is estimated from 400 ms to 800 ms of context im-
mediately before the utterance (MV-NoiseContext).

The respective configurations have shown to yield better re-
sults on the real dev set, which has been used exclusively for
selection and optimization. Table 1 shows the recognition per-
formance of the MVDR beamformer with the two configura-
tions. In the following, MV will denote the MVDR front end
with the best performing configuration for each track, i.e., MV-
NoiseMasks for the 6ch track and MV-NoiseContext for the 2ch
track. These systems were trained on the FC+B data set.

Table 1: Configuration comparison for MVDR beamformer

Track MVDR configuration Dev Test
real simu real simu

6ch MV-NoiseContext 3.69 4.44 5.56 6.26
MV-NoiseMasks 3.57 4.73 5.58 6.28

2ch MV-NoiseContext 4.94 7.09 8.77 10.17
MV-NoiseMasks 5.09 7.61 10.53 12.01

3.2. Speaker adaptation and lattice rescoring

Table 2 shows the effect of speaker adaptation (SA) using Con-
strained Maximum Likelihood Linear Regression (CMLLR)
and lattice rescoring using an RNN-LM. It can be seen that both
components have a significant influence on the performance.
A relative improvement of 40% can be reached by using the
RWTH back end presented in Section 2.2.2 with speaker adap-
tation and lattice rescoring compared to the baseline back end
(compare first and last row).

Table 2: Effect of speaker adaptation (SA) and lattice rescoring
on the 6ch track evaluated on system trained on the FC training
set.

System Dev Test
FE BE SA RNN-LM real simu real simu

BL

K + LB 5.75 6.76 11.49 10.89

R

- - 7.80 8.71 11.81 13.89
- L1 5.87 6.43 9.35 10.55
+ - 6.22 8.10 9.69 11.70
+ LB 5.76 7.37 8.92 10.67
+ L2 4.34 5.65 6.83 8.16

3.3. Front end performance

In order to compare the front ends, we evaluate speaker adapted
systems trained on the FC training set and apply LM rescoring
with RNNs. Table 3 shows the performance of different beam-
formers on the 6ch track test data using both Kaldi and RWTH
back ends. The results indicate that all front ends presented here
have a positive effect on the ASR performance on the real data.
The best front end (GE) leads to a further relative improvement
of up to 41% over the baseline front end (BL).

Table 3: Comparison of front ends on a speaker adapted model
with lattice rescoring for the 6ch track.

System Dev Test
FE BE real simu real simu
BL

K

5.75 6.76 11.49 10.89
SD 5.47 6.34 11.47 10.42
MV 4.63 5.44 8.73 8.62
GE 3.70 3.72 5.76 4.24
BL

R

4.34 5.65 6.83 8.16
SD 3.89 5.14 6.59 7.99
MV 3.90 5.23 5.65 8.36
GE 3.27 3.41 4.02 3.93

3.4. Including beamformed signal in the training

Table 4 shows the effect of extending the training set of the
speaker adapted model by the pre-processed training data. The
recognition is performed with the RWTH back end and includes
lattice rescoring with the model L2. It can be seen that only mi-
nor improvements on the real data can be achieved. In the case
of the baseline front end (BL) the performance on the simu-
lated data even degrades. Nevertheless we decided to use the
extended training set (FC+B) for further experiments.

Table 4: Effect of enhancing the training set FC consisting of
channels 1,3-6 by the data obtained by pre-processing the train-
ing set with the matching front end on the 6ch track (FC+B).

System Dev Test
FE Training set real simu real simu

BL FC 4.34 5.65 6.83 8.16
FC+B 4.11 5.77 6.82 8.53

SD FC 3.89 5.14 6.59 7.99
FC+B 3.74 5.03 6.52 7.84

MV FC 3.90 5.23 5.65 8.36
FC+B 3.57 4.73 5.58 6.28

GE FC 3.27 3.41 4.02 3.93
FC+B∗ 3.05 2.79 3.77 2.67

∗ This system has not been available at time of evaluation and is only
included here for completeness

3.5. System combination

Table 5 shows the single systems used for system combination
and Table 6 shows the result of combining multiple systems.
It can be seen that in case of using only the RWTH back end
(R) each additional front end has a positive effect on the per-
formance on the real data. However, the optimization algorithm
reduces the weight of the system using the baseline front end
(BL) to zero when we include UPB’s back end W (last row).
The best result obtained for the real evaluation data on the 6



channel track is 2.91%, which is a relative improvement of al-
most 75% over the baseline system.

Table 5: Single systems used for system combination in the 6
channel track

System Dev Test
ID FE BE Training set real simu real simu
1 BL

R

CH1,3-6+BL 4.11 5.77 6.82 8.53
2 SD CH1,3-6+SD 3.74 5.03 6.52 7.84
3 MV CH1,3-6+MV 3.57 4.73 5.58 6.28
4 GE CH1,3-6 3.27 3.41 4.02 3.93
5 GE W CH1-6 2.73 2.34 3.48 2.76

Table 6: Results of CNC system combination of different sys-
tems for the 6 channel track

System weights Dev Test
5 4 3 2 1 real simu real simu

0.50 0.50 2.75 3.13 3.57 3.56
0.33 0.33 0.33 2.70 3.18 3.55 3.77
0.40 0.25 0.25 0.10 2.61 3.07 3.40 3.46

0.45 0.55 2.48 2.47 3.12 2.90
0.43 0.33 0.34 2.25 2.30 2.98 2.61
0.35 0.20 0.20 0.25 2.19 2.34 2.91 2.68
0.35 0.20 0.20 0.25 0.00 2.19 2.34 2.91 2.68

3.6. Systems for 1 and 2 channel tracks

Table 7 shows the results of the single systems and the final
system combination in the 1ch and 2ch track of the challenge.
All shown systems have been included in the system combina-
tion. In the 1ch track no pre-processing has been used. Table 8
shows the breakdown of the results by environment for the best
systems in each track.

Table 7: Single system, system combination results for the 1ch
and 2ch track and best system combination result for the 6ch
track.

Tr. System Dev Test
FE BE Training set real simu real simu

1ch

- K CH5 11.58 12.99 23.77 20.82
- R CH1,3-6 7.42 9.86 12.02 15.22
- W CH1-6 5.19 6.69 9.34 11.11

COM 1ch 5.14 7.40 9.29 12.36

2ch

BL

K CH5

8.25 9.51 16.63 15.33
MV 8.11 9.12 16.41 14.03
SD 8.03 9.15 15.97 15.15
GE 6.93 8.03 13.76 9.90
BL

R

CH1,3-6+BL 5.43 7.35 9.12 11.74
MV CH1,3-6+MV 4.94 7.09 8.77 10.17
SD CH1,3-6+SD 5.53 7.54 9.60 12.33
GE CH1,3-6 4.90 6.48 7.69 7.49
GE W CH1-6 3.54 4.05 5.96 5.16

COM 2ch 3.02 4.04 5.32 5.27
6ch COM 6ch 2.19 2.34 2.91 2.68

4. Post evaluation results
The following results were not part of the submitted system for
the 4th CHiME challenge. Table 9 shows the performance gain
obtained by the sequence-discriminative training of the BLSTM

Table 8: Breakdown of the best results by environment.

Tr. Environment Dev Test
real simu real simu

1ch

BUS 6.59 5.88 13.12 8.91
CAF 5.90 9.88 9.84 15.11
PED 3.45 6.14 7.57 11.95
STR 4.60 7.71 6.63 13.45

2ch

BUS 3.91 3.44 7.52 3.68
CAF 3.07 5.43 5.04 6.33
PED 2.36 3.38 4.39 5.49
STR 2.73 3.91 4.33 5.57

6ch

BUS 2.61 2.06 3.16 2.19
CAF 2.01 2.92 2.65 2.95
PED 2.05 2.12 2.93 2.99
STR 2.11 2.26 2.91 2.60

acoustic model w.r.t. the sMBR criterion [30] in the 6ch track.
The cross-entropy (CE) model is trained on the FC data set us-
ing the RWTH back end and the GE front end. This model is
used to initialize the sMBR training. The lattices for the sMBR
training were generated with a 3-gram language model. During
the training we use state priors which were calculated from the
output layer of the CE model as was proposed in [31]. In order
to prevent overfitting we used CE-smoothing [32] with a factor
of 0.1. Table 10 shows that replacing the CE model (4) by the
sMBR model (4+) in the combination reduces the WER from
2.9 to 2.7% on the real test set.

Table 9: Effect of sequence training of the BLSTM acoustic
model in the RWTH back end. Results with the GE front end
on the 6ch track.

System Dev Test
ID Criterion real simu real simu
4 CE 3.27 3.41 4.02 3.93
4+ sMBR 2.77 3.11 3.43 3.30

Table 10: Effect of replacing the CE system (4) by the sMBR
trained system (4+) in the system combination. Results on the
6ch track.

System weights Dev Test
5 4 4+ 3 2 1 real simu real simu

0.35 0.20 0.20 0.25 0.00 2.19 2.34 2.91 2.68
0.30 0.25 0.20 0.10 0.15 2.09 2.32 2.71 2.47

5. Conclusion
In this paper we presented a detailed analysis of the acoustic
models developed by RWTH, UPB and FORTH for the 4th
CHiME challenge. Our joint submission based on confusion
network combination of multiple systems scored second in each
of the three tracks of the challenge. More specifically, we com-
pared four different front-ends and found that the BLSTM sup-
ported GEV-beamformer consistently leads to the best ASR re-
sults in 2ch and 6ch tracks. Further we found that extending the
training data set by the beamformed data only works well on
real test data.

We plan to further investigate the sequence training of
BLSTM back ends, since the post evaluation results have shown



clearly, that further performance gain can be achieved and trans-
ferred to the final system combination.
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