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Abstract
Long Short-Term Memory recurrent neural networks (LSTMs)
have demonstrable advantages on a variety of sequential learn-
ing tasks. In this paper we demonstrate an LSTM “triple threat”
system for speech recognition, where LSTMs drive the three
main subsystems: microphone array processing, acoustic mod-
eling, and language modeling. This LSTM trifecta is applied
to the CHiME-4 distant recognition challenge. Our previous
state-of-the-art ASR systems for the previous CHiME challenge
employed LSTM mask estimation based beamforming, noise
robust features, in addition to DNN/RNNLM based back end.
The proposed system refines each module of the previous sys-
tem including bidirectional LSTM (BLSTM) mask estimation
based beamforming, BLSTM-DNN hybrid acoustic model, and
language model rescoring based on LSTM. We perform con-
strained re-estimation based speaker adaptation, and also pre-
pare several complementary systems by changing the beam-
forming strategy and the acoustic model configurations, and
combine these systems based on word-posterior based system
combination. The final system achieved 2.98% WER for the
real test set in the 6-channel track, which reduces the WER from
the baseline by 8.5% absolute, and also outperforms our previ-
ous CHiME-3 system by 6.1% absolutely.

1. Background
The MERL-Sabanci system, as shown in Figure 1, is a multi-
channel ASR system that focuses on the CHiME-4 6ch track
[1]. It is an extension of our CHiME-3 system [2], and improves
upon it using the following methods:

• BLSTM mask estimation for Minimum Variance Distor-
tionless Response (MVDR) and Generalized EigenVec-
tor (GEV) beamformers.

• BLSTM-DNN hybrid acoustic model via state posterior
combination.

• Expanded noisy data training using all 6 channels of of-
ficial training speech data (i.e., 6 times the amount of
training data).

• Unsupervised speaker adaptation based on constrained
retraining of DNN.

• Language model re-scoring based on LSTM.

• System combination across multiple methods and input
features.

The authors are listed in the alphabetic order. Tomoki Hayashi,
Wei-Ning Hsu, Suyoun Kim, and Zhong Meng performed the work dur-
ing their internship programs at MERL.

These techniques steadily improve the performance from the
baseline. Their technical details are explained in the following
section.

2. Contributions
2.1. BLSTM mask estimation for beamformers

We train a unique BLSTM neural network for single-channel
mask prediction using the simulated training data for all six
channels. The network takes a single channel as input and
predicts both speech and noise masks for that channel using
sigmoid output activations and ideal binary masks as targets.
The network is trained with the binary cross-entropy loss func-
tion [3]. During recognition, the network is applied separately
to each channel, and the predicted masks for the six channels
are combined to obtain a single mask by taking their median.
The obtained speech and noise masks are then used to predict
speech and noise spatial covariance matrices which are used in
MVDR and GEV beamformers to perform beamforming-based
enhancement on the multi-channel signal to be recognized.

2.2. Beamforming

We perform MVDR and GEV beamforming. The version of
MVDR beamforming we use only uses spatial covariance esti-
mates of speech and noise. To obtain these spatial covariances,
we make use of the masks predicted by the network. The co-
variances are estimated as follows:

Φ̂x(f) =

∑
t M̂x(t, f)Y (t, f)Y H(t, f)∑

t M̂x(t, f)
,

where M̂x is the predicted mask for speech or noise and Y (t, f)
is the received multi-channel signal’s spatial vector correspond-
ing to time-frequency bin (t, f). For GEV beamforming [3],
we form the beamforming filters by maximizing the SNR for
each frequency by solving the generalized eigenvalue problem
for the spatial filter h:

Φ̂speechh = λΦ̂noiseh.

For MVDR beamforming, we first choose a reference micro-
phone and then find the direction of minimum noise variance
while keeping the speech signal distortionless. Using one pos-
sible formulation [4], the solution can be found as:

ĥ =
1

trace(Φ̂
−1

noiseΦ̂speech)
Φ̂

−1

noiseΦ̂speecheref,

where eref is a standard unit vector in direction ref.



Figure 1: A flow chart of the proposed system for decoding.

2.3. Acoustic modeling and adaptation

Although RNNs (especially LSTMs) have been shown to be
very effective for noise robust speech recognition [5, 6], our pre-
liminary attempt at applying LSTMs/BLSTMs to the CHiME-4
task was not successful probably due to the limited amount of
training data and the difficulty of obtaining correct state align-
ments from noisy speech. Instead, the acoustic models we used
in our experiments are hybrid BLSTM-DNN systems. BLSTM
and DNN models are separately trained with augmented train-
ing data by using the noisy speech training data from all 6 chan-
nels [7]. The DNN model configuration is the same as that
of the official baseline acoustic model [1]: a 7 hidden layer
sigmoid DNN with 2048 activations per layer trained by us-
ing state-level Minimum Bayes Risk (sMBR) criterion in the
kaldi nnet1 module [8]. The BLSTM acoustic model has 3 lay-
ers, where each layer consists of forward and backward unidi-
rectional LSTMs with 512 cell states and one linear bottleneck
layer to combine the outputs of both unidirectional LSTMs out-
putting 512 activations. The BLSTM was trained based on the
cross entropy criterion by using stochastic gradient descent. We
used a state alignment obtained by using the DNN as a target.

On top of the training, we adapt the speaker-independent
DNN to the data of each speaker in an unsupervised way. We
used a constrained re-training (CRT) adaptation method where
we re-estimate the DNN parameters of only a subset of layers
while holding the remaining parameters fixed with the cross en-
tropy criterion. The optimal subset of layers to be estimated is
selected according to the development set performance. Since
we cannot use any prior knowledge about the environment ac-
cording to the CHiME-4 regulation, we train each speaker-
dependent DNN with the speaker’s speech from all different
environments. We also use KL divergence adaptation [9] by
using the speaker-independent DNN to regularize the speaker-
dependent DNN. The adaptation target (1-best alignment) was
obtained at the first-pass decoding, and the second-pass decod-
ing is performed using this speaker-adapted DNN, as shown in
Figure 1.

The BLSTM acoustic model and DNN model adaptation
are implemented by using chainer deep learning toolkit [10].

2.4. Language model re-scoring

We train an LSTM-based RNN language model (LSTMLM) us-
ing the official training data for language modeling in CHiME-
4.

RNN language models (RNNLMs) [11] robustly estimate
word probability distributions by representing the contextual in-
formation in a continuous space, which are kept in the hidden
layer with recurrent connections. Compared to N-gram models,
RNNLMs can exploit more long-distance interword dependen-
cies to predict the next word, and yield better performance in
many tasks. However, RNNs are not able to keep very long
histories because the contextual information at a certain time

exponentially decays by doing recurrent propagations through
time. Accordingly, we introduce LSTMLM [12, 13] to im-
prove the system performance. The LSTM RNN has a mem-
ory cell in each hidden unit instead of a regular network unit,
which can remember the contextual information for an arbitrary
length of time. By expoiting the longer contextual information,
LSTMLM can predict the next word more accurately than the
standard RNNLMs.

In the decoding phase, word lattices are first generated us-
ing the baseline language model for CHiME-4, which is the
standard 5k WSJ trigram downsized with an entropy pruning
technique [14]. After that, N -best lists are generated from the
lattices using a 5-gram language model with a modified Kneser-
Ney smoothing [15, 16]. Finally, the N -best lists are rescored
using a linear combination of the 5-gram and LSTMLM proba-
bilities in the log domain, i.e.,

logP (W ) =

L∑
i=1

{λ logPlstm(wi|hi)

+(1− λ) logP5gkn(wi|hi)}, (1)

where W = w1, w2, . . . , wL denotes each sentence hypothe-
sis, λ the interpolation weight, and hi the history of wi.. The
best-rescored hypothesis is selected as the result of each single
system. The N -best lists are also used for system combination.

For the challenge, LSTMLM was designed as an RNN with
one projection layer of 1000 units and one hidden layer of 1500
LSTM cells. We set the interpolation weight λ in Eq. (1) to
0.9 and the number of N -best hypotheses to 100, which were
selected based on word error rate for the development set.

2.5. System combination

In the proposed system, multiple feature vector sequences are
obtained for different pairs of beamforming and feature extrac-
tion methods, and they are separately processed by a WFST-
based decoder to output word lattices. After rescoring with the
LSTMLM, multiple lists ofN -best hypotheses are obtained and
then used for system combination.

System combination is a technique to improve recognition
accuracy by combining different recognition hypotheses from
different systems [17]. First, the multiple hypotheses are com-
bined by taking their union after reweighting each hypothesis
with its posterior probability. After that, minimum Bayes risk
(MBR) decoding is performed on the combined hypotheses us-
ing an algorithm in [18]. With this decoding, we can find the
hypothesis with the minimum expected word error rate from
among all the hypotheses obtained by the multiple systems.



3. Experimental evaluation
3.1. Mask prediction network and beamforming setup

For mask prediction and beamforming, we used windows of
length 1024 samples with a frame shift of 256 samples. The
non-redundant FFT vector dimension was 513. Magnitude FFT
was used as an input to the mask prediction network for each
frame. The mask prediction network had a single BLSTM layer
with 256 nodes. After the BLSTM layer, we used two feedfor-
ward layers with rectified linear unit activations with an output
dimension of 513. The output layer predicted predicted 513
dimensional masks for speech and noise separately with a sig-
moid activation for each output. The target ideal binary masks
did not sum to one for each time-frequency bin. Ideal binary
masks were chosen to be one when the corresponding source
was significantly larger than the other source.

For beamforming, we pass each channel’s input through the
network, take the median of each channel’s outputs for each
time-frequency bin and use the value as a mask directly. For
the MVDR beamformer, we chose microphone CH5 as the ref-
erence microphone.

3.2. Experimental Results

The first set of experiments compare the baseline script (Beam-
formIt [19], DNN sMBR, and 3-gram) with two beamform-
ing techniques. Table 1 summarizes results for three types of
beamforming, and both methods using the BLSTM based masks
greatly improve the performance from BeamformIt. The train-
ing utilizes noisy data from channel 5 only. Also we observed
that the GEV beamformer yields similar performance on simu-
lated versus real data, both for the development and for the test
sets, whereas the MVDR beamformer has systematically better
performance on the simulation data. Because these properties
are complementary, both beamformers are included in the final
system combination.

Table 1: Average WER (%) for the front-end systems with fixed
DNN sMBR, 3-gram back-end.

Track System Dev Test
real simu real simu

6ch

Baseline: BeamformIt 8.14 9.07 15.00 14.23
BLSTM-Mask MVDR 6.66 5.55 11.39 6.39
BLSTM-Mask GEV 7.19 7.50 10.32 9.62

The second group of experiments compares acoustic model
techniques with fixed front end based on BeamformIt [19]. Ta-
ble 2 shows that using all 6 channels for training is particularly
effective for generalization to the test set, presumably due to the
increase in speech signal variety in the training data. Although
an individual BLSTM acoustic model does not outperform the
DNN sMBR, the state posterior patterns of both models seem
to be complementary, and the hybrid BLSTM-DNN acoustic
model achieves significant improvement. Based on the result,
we adopt BLSTM-DNN acoustic model as the main system, but
still use DNN sMBR as a complementary system to investigate
several features and training variations due to its lower compu-
tational cost.

Table 3 reports the results on combined front-end tech-
niques and BLSTM-DNN acoustic modeling. Here, we also
report the speaker adaptation and language model re-scoring on
top of the systems for both BLSTM-Mask MVDR and GEV
beamformers. Note that the speaker adaptation is only per-
formed for the DNN part of the BLSTM-DNN. The table clearly

Table 2: Average WER (%) for the back-end systems with fixed
BeamformIt front-end.

Track System Dev Test
real simu real simu

6ch

Baseline: DNN sMBR 3gram 8.14 9.07 15.00 14.23
6ch Training 7.71 8.21 12.79 12.67

BLSTM 6ch Training 8.50 8.96 13.59 13.28
BLSTM-DNN 7.44 7.48 11.51 11.51

Table 3: Average WER (%) for combined single systems with
BLSM-mask beamformers, BLSTM-DNN, LM re-scoring us-
ing LSTM, and speaker adaptation

Track System Dev Test
real simu real simu

6ch

BLSTM-Mask MVDR 5.80 4.68 8.57 5.23
+ LM re-scoring 2.92 2.27 4.83 2.51

+ Adaptation 2.54 1.95 4.18 1.84
BLSTM-Mask GEV 6.26 6.34 8.13 7.83

+ LM re-scoring 3.12 3.11 4.23 4.06
+ Adaptation 2.77 2.63 3.81 2.94

shows the improvement of the combination of beamforming and
BLSTM-DNN from Tables 1 and 2, and the effectiveness of the
LM re-scoring and speaker adaptation is also confirmed.

Finally we have combined our main BLSTM-DNN systems
with DNN sub systems. In addition to the two beamformer re-
sults (MVDR and GEV) in Table 3, we have additionally pre-
pared comparable systems by changing features with PNCC
[20] (pncc), ETSI AFE [21] (afe), and PLP [22] with pitch fea-
tures (plp+p) using DNN sMBR acoustic models (DNN), re-
trained DNN with beamformed features (DNN, ret), and using
alternative implementation of the BLSTM-Mask GEV beam-
former by [3] (GEV [3]). After that, we have combined all the
lattices obtained by these systems and performed system com-
bination using minimum Bayes risk decoding.

Table 4: Average WER (%) with final system combination.

Track System Dev Test
real simu real simu

6ch

GEV [3], DNN 2.62 2.58 3.74 3.26
GEV, DNN, ret 2.63 2.48 3.63 2.87

MVDR, DNN, ret 2.47 1.79 4.13 1.67
MVDR, afe, DNN 3.20 2.89 4.99 2.57
GEV, pncc, DNN 3.62 3.68 5.49 4.66

GEV [3], plp+p, DNN 3.31 3.26 4.85 4.43
Combination 2.11 1.95 2.98 1.97

Using these complementary systems, the system combina-
tion achieved 2.98%, representing an improvement of 0.6% ab-
solute over our best single system.

Table 5: WER (%) per environment for the best system.

Track Envir. Dev Test
real simu real simu

6ch

BUS 2.73 1.53 4.30 1.59
CAF 2.08 2.14 2.71 1.83
PED 1.78 1.67 2.37 1.81
STR 1.81 1.92 3.10 1.72



4. Summary
This paper describes the MERL/Sabanci submission system
for the CHiME-4 speech separation and recognition challenge.
Our main single system consists of BLSTM-mask-estimation
based beamforming, DNN-BLSTM hybrid acoustic model, and
rescoring based on LSTMLM, leading to a system that employs
LSTMs all the way through. With acoustic model adaptation
and system combination, we finally obtained 2.98% WER, plac-
ing third among 15 submissions. Future work will consider how
to integrate these complicated modules within a deep learning
framework, including beamforming network [23, 24] and end-
to-end ASR [25, 26, 27].
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