
Evolution Strategy Based Neural Network Optimization
and LSTM Language Model for Robust Speech Recognition

Tomohiro Tanaka1, Takahiro Shinozaki1,
Shinji Watanabe2, Takaaki Hori2

1Tokyo Institute of Technology, Japan
2Mitsubishi Electric Research Laboratories, USA

Abstract

This paper reports our system for the 1-channel track task in the
4th CHiME challenge (CHiME4). A bottle-neck in developing
neural network based systems is the tuning of meta-parameters.
We automate it by using Covariance Matrix Adaptation Evo-
lution Strategy (CMA-ES) so that high performance system is
obtained without relying on human experts. We run two evolu-
tion experiments for the DNN acoustic model used in the offi-
cial baseline system. One uses development set word error rate
(WER) after the cross-entropy (CE) based training as the ob-
jective function for the evolution, and the other uses the WER
after the sequential discriminative training. Additionally, we
run an evolution experiment for a Long Short-Term Memory
recurrent neural network based language model (LSTM-LM),
replacing the original recurrent neural network language model
(RNN-LM) used in the baseline system for N-best rescoring.
All of these evolution experiments resulted in reduced WERs.
To produce the final results, we augmented training data by
pooling speech data from all the 6 channels and imported the
optimized meta-parameter settings without modification. For
the real test data, reduced WER of 17.40% and 16.58% were
obtained compared to the baseline WER of 22.75% when the
RNN and LSTM-LMs were used, respectively.

1. Background
Neural network based techniques have shown great perfor-
mance in automatic speech recognition (ASR) tasks [1, 2]. To
use neural network, various meta-parameters must be specified
including model topology (e.g., the numbers of layers and hid-
den units), training configuration (e.g., the learning rate and the
maximum number of iterations) and system organization (e.g.,
the choice of features). Properly tuning these meta-parameters
is essential for building high performance systems. Usually,
the tuning is manually performed. However, it requires expert
knowledge and laborious effort. Thus there is a demand to au-
tomate the tuning process using computers.

We have previously investigated several automatic meta-
parameter optimization frameworks for neural network acous-
tic models [3, 4, 5]. In the experiments, covariance matrix
adaptation-evolution strategy (CMA-ES) [6, 7, 8] showed su-
perior performance than Genetic Algorithm (GA) and Bayesian
optimization [9, 10] giving better model with smaller or similar
number of system evaluations. Further, we have applied CMA-
ES to optimize neural network based language models and have
shown that it works well to improve system performance [11].
Here, we apply it to neural network based acoustic and language
models in the CHiME4 1-channel track task.

	LSTM-LM	
rescoring	GMM	 DNN	

CE	
DNN	
sMBR	

5-gram	
rescoring	

evolve	 evolve	

evolve	

Figure 1: Recognition system used for evolution of DNN-AM
and LSTM-LM.

GMM	
6×	

evolved	
DNN	
1×	CE	

evolved	
DNN	

6×	sMBR		

5-gram	
rescoring	

RNN-LM	
rescoring	

ini=al	LSTM-LM	
rescoring	

evolved		
LSTM-LM	
rescoring	

evolved	
DNN	
6×	CE	

(After 2 epochs)	
Re-generate	

Lattices	

(1 epoch)	

Figure 2: Recognition system used with augmented acoustic
model training data.

2. Contributions
2.1. CMA-ES based tuning of neural networks

CMA-ES is a population based algorithm for black box opti-
mization that has demonstrated superior performance in several
benchmarking tasks. Similar to the GA, it encodes possible so-
lutions as genes. It assumes that the value of an objective func-
tion f(x) is available, while the functional form of f might be
too complex to perform analytical optimization. More specifi-
cally, CMA-ES estimates parameters θ of a Gaussian distribu-
tion for a gene x such that the distribution is concentrated in a
region with high values of f(x) as shown in Eq. (1).

x̂ ∼ N (x|θ̂) s.t. θ̂ = arg max
θ

Z

f(x)N (x|θ)dx

| {z }

,E[f(x)|θ]

.
(1)

The estimation of θ is based on an iterative method, where in
each iteration, a set of genes {x} is sampled from the Gaussian,
their performance f(x) is evaluated, and θ is updated based on
the results. In other words, while GA represents a distribution
of genes in a generation by the samples themselves, CMA-ES
uses a Gaussian distribution. In our case, a gene represents a set
of meta-parameters of a neural network to optimize.

Table 1: WER after CE based DNN-AM training.

System Dev Test
real simu real simu

Baseline 16.45 17.81 29.67 26.20
Evolved 15.40 16.88 29.16 25.28

Table 2: WER after sequential DNN-AM training.

System Dev Test
real simu real simu

Baseline 14.90 15.70 27.24 24.34
Evolved 13.82 15.49 25.67 22.95

Table 3: WER after RNN/LSTM-LM based rescoring.

System Dev Test
real simu real simu

Baseline RNN-LM 11.60 12.92 22.75 21.07
+ Evolved DNN-AM 10.98 12.74 21.29 19.74
Evolved LSTM-LM 10.20 12.23 21.09 19.66
+ Evolved DNN-AM 10.00 11.45 20.54 18.85

2.2. LSTM based language model

Neural network based language models have shown to be very
effective for improving speech recognition performance [12].
In the CHiME4 baseline system [13], recurrent neural network
language model (RNN-LM) [14] is used for final rescoring.
The parameters of a RNN are trained using back-propagation
through time (BPTT) so that the context dependency is mod-
eled. However, RNNs cannot effectively use long context in-
formation due to the vanishing gradient problem [15]. To ad-
dress the problem, Long Short-Term Memory RNN that utilizes
LSTM blocks has been proposed [16]. A LSTM block has a
memory cell and three gates (input, forget and output) to con-
trol the value stored in the memory cell. By replacing the unit
in recurrent hidden layer of a RNN language model with the
LSTM block, a LSTM RNN language model (LSTM-LM) [17]
is obtained. We replace RNN-LM with LSTM-LM, which is
known to perform better in various tasks [18].

3. Experimental evaluation
3.1. Evolution using single channel training data

Using the single channel (channel 5) multicondition training
data, we ran two evolution experiments for the DNN acoustic
model (DNN-AM) used in the official baseline system based on
CMA-ES. One used development set WER after the CE based
training as the objective function for the evolution, and the other
used the WER after the sequential discriminative training based
on state-level Minimum Bayes Risk (sMBR) criterion. Addi-
tionally, we ran an evolution experiment for a LSTM-LM re-
placing the original RNN-LM using WER after N-best rescor-
ing as the objective for the evolution, where 100-best was gener-
ated from the decoding result using the 5-gram language model
with Kneser-Ney smoothing [19]. These three evolutions were
performed independently. Figure 1 shows where the evolutions
were performed in the recognition system structure.

For the DNN-AM, 11 meta-parameters were optimized,
which were the same as our previous work [5]. These included
the number of hidden layers, the number of units per a hidden
layer, the initial learning rate, and so on. The population size

Table 4: WER after RNN/LSTM-LM based rescoring. DNN-
AM was trained using the augmented training data.

System Dev Test
real simu real simu

RNN-LM 9.09 10.86 17.40 16.49
Initial LSTM-LM 9.02 10.82 17.52 16.62
Evolved LSTM-LM 8.06 10.15 16.58 15.67

Table 5: Detailed WERs after RNN-LM rescoring. DNN-AM
was trained using the augmented training data.

Env. Dev Test
real simu real simu

BUS 12.27 9.63 26.51 12.27
CAF 9.23 14.69 19.18 19.11
PED 5.58 8.30 13.62 16.51
STR 9.28 10.83 10.29 18.06
AVG. 9.09 10.86 17.40 16.49

(e.g. the number of sampled genes from the Gaussian at each
generation) was 36. The numbers of iterations (e.g. genera-
tions) were 6 and 4 for the two evolutions, respectively. Ta-
ble 1 shows the results when WER after CE based DNN-AM
training was used as the objective, and Table 2 shows the re-
sults when WER after the sequential training was used. In both
cases, lower WERs were obtained by the evolution based auto-
matic tuning. The sequential training gave some gain compared
to the CE based training, and evolution based optimization gave
further gain. The best performing DNN chosen by the develop-
ment set WER had 9 hidden layers and 2461 units per a layer.

For the LSTM-LM, 19 meta-parameters were optimized in-
cluding the vocabulary size, the number of layers, the number
of units per a layer, the initial learning rate and the dropout ra-
tio [20]. The maximum number of hidden layers were set to six
and they were used depending on the number of hidden layer.
The population size was 30 and the number of generations was
4. All LSTM-LMs were trained using the Chainer toolkit 1 [21].
The population sizes were decided based on our previous exper-
iments and available computer resources for this experiment.
Table 3 shows the results. By using LSTM-LM, lower WERs
were obtained than the baseline RNN-LM. When the DNN-AM
evolved by using the WER after the sequential training was
combined, further reduction in WERs was obtained. The vo-
cabulary size of the tuned LSTM-LM was 8112 and the number
of hidden layers was 2. The list of the meta-parameters and their
initial and optimized values are shown in appendix.

3.2. Single channel system with augmented training data

In the official single channel CHiME4 baseline system, only 5th
channel data is used for training. We augmented the training
data by 6 times by pooling speech data from all the 6 chan-
nels of the official data for further improvement. For the DNN-
AM and LSTM-LM, the previously optimized meta-parameters
by the evolutions using the original (1x) training data were im-
ported and used as it is. To save the time for experiment, part
of the CE based DNN training used the 1x data, and lattice re-
generation was performed at slightly different timing from the
baseline system as shown in Figure 2. The sequential train-
ing for DNN-AM was performed for 6 epochs. Table 4 shows

1http://chainer.org/

Table 6: Detailed WERs after LSTM-LM rescoring. LSTM-
LM was trained importing the evolved meta-parameters. DNN-
AM was trained using the augmented training data.

Env. Dev Test
real simu real simu

BUS 10.93 9.22 26.00 11.39
CAF 8.29 13.86 18.58 18.77
PED 4.69 7.80 12.05 15.50
STR 8.32 9.73 9.68 17.02
AVG. 8.06 10.15 16.58 15.67

summary of WERs after the RNN-LM based rescoring and the
LSTM-LM based rescoring using the initial and the evolved
meta-parameters. As can be seen, the lowest WERs were ob-
tained when the evolved LSTM-LM was used. Tables 5 and 6
show the details of the WERs when the RNN and the evolved
LSTM-LM were used. By using the LSTM-LM, the averaged
real environment WER for the development and evaluation sets
were 8.06% and 16.58%, respectively.

4. Acknowledgments
The work of T. Tanaka and T. Shinozaki was supported by JSPS
KAKENHI Grant Number 26280055.

5. References
[1] H. Schwenk and J.-L. Gauvain, “Connectionist language model-

ing for large vocabulary continuous speech recognition.” in Proc.
ICASSP, 2002, pp. 765–768.

[2] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kings-
bury, “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE Sig-
nal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[3] S. Watanabe and J. Le Roux, “Black box optimization for auto-
matic speech recognition,” in Proc. ICASSP. IEEE, 2014, pp.
3256–3260.

[4] T. Shinozaki and S. Watanabe, “Structure discovery of deep neu-
ral network based on evolutionary algorithms,” in Proc. ICASSP,
2015, pp. 4979–4983.

[5] T. Moriya, T. Tanaka, T. Shinozaki, S. Watanabe, and K. Duh,
“Automation of system building for state-of-the-art large vocabu-
lary speech recognition using evolution strategy,” in Proc. ASRU,
2015, pp. 610–616.

[6] N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the
time complexity of the derandomized evolution strategy with co-
variance matrix adaptation (CMA-ES),” Evolutionary Computa-
tion, vol. 11, no. 1, pp. 1–18, 2003.

[7] Y. Akimoto, Y. Nagata, I. Ono, and S. Kobayashi, “Bidirectional
relation between CMA evolution strategies and natural evolu-
tion strategies,” in Proc. Parallel Problem Solving from Nature
(PPSN), 2010, pp. 154–163.

[8] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and
J. Schmidhuber, “Natural evolution strategies,” J. Mach. Learn.
Res., vol. 15, no. 1, pp. 949–980, 2014.

[9] J. Mockus, “On Bayesian methods for seeking the extremum,” in
Proceedings of the IFIP Technical Conference. London, UK,
UK: Springer-Verlag, 1974, pp. 400–404.

[10] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian op-
timization of machine learning algorithms,” in Advances in Neural
Information Processing Systems 25, 2012.

[11] T. Tanaka, T.Moriya, T. Shinozaki, S. Watanabe, T. Hori, and
K. Duh, “Automated structure discovery and parameter tuning

of neural network language model based on evolution strategy,”
in IEEE Workshop on Spoken Language Technology (SLT), 2016,
(accepted).

[12] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural
probabilistic language model,” Journal of Machine Learning Re-
seach, vol. 3, pp. 1137–1155, 2003.

[13] E. Vincent, S. Watanabe, A. A. Nugraha, J. Barker, and R. Marxer,
“An analysis of environment, microphone and data simulation
mismatches in robust speech recognition,” Computer Speech and
Language, 2016, (submitted).

[14] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudan-
pur, “Recurrent neural network based language model,” in Proc.
INTERSPEECH, 2010, pp. 1045–1048.

[15] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term de-
pendencies with gradient descent is difficult,” IEEE Transactions
on Neural Networks, vol. 5, no. 2, pp. 157–166, 1994.

[16] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,”
Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[17] M. Sundermeyer, R. Schlüter, and H. Ney, “LSTM neural net-
works for language modeling,” in Proc. INTERSPEECH, 2012,
pp. 194–197.

[18] T. Hori, C. Hori, S. Watanabe, and J. R. Hershey, “Minimum word
error training of long short-term memory recurrent neural network
language models for speech recognition,” in Proc. ICASSP, 2016,
pp. 5990–5994.

[19] R. Kneser and H. Ney, “Improved backing-off for m-gram lan-
guage modeling,” Proc. ICASSP, pp. 181–184, 1995.

[20] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep neu-
ral networks for LVCSR using rectified linear units and dropout,”
in Proc. ICASSP. IEEE, 2013, pp. 8609–8613.

[21] S. Tokui, K. Oono, S. Hido, and J. Clayton, “Chainer: a next-
generation open source framework for deep learning,” in Neural
Information Processing Systems (NIPS), 2015.

A. Appendix: Meta-parameters
Table 7 shows the initial and optimized meta-parameters for the DNN
acoustic model using the development set WER after the sequential dis-
criminative training as the objective for evolution. Similarly, table 8
lists the initial and optimized meta-parameters for the LSTM language
model. For each table, the best gene of the meta-parameters was se-
lected from the pool of all the generations based on the WER of the
development set.

Table 7: Meta-parameters for DNN-AM.
Description Initial value Best value
feature type({MFCC,FBANK,PLP}) FBANK FBANK
splice (segment length for DNN 5 7
of hidden layers 6 9
of hidden layer units 2048 2461
initial parameters in 1st RBM 1.00E − 1 1.15E − 1
initial parameters in other RBMs 1.00E − 1 5.04E − 2
RBM learning rate 4.00E − 1 5.64E − 1
lower RBM learning rate 1.00E − 2 1.26E − 2
RBM Lasso regularization 2.00E − 4 1.61E − 4
learning rate for fine tuning 8.00E − 3 3.38E − 4
momentum for fine tuning 1.00E − 5 9.33E − 6

Table 8: Meta-parameters for LSTM-LM.
Description Initial value Best value
vocabulary size 5000 8112
of hidden layers 2 2
of projection layer units 300 399
of 1st layer units 300 671
of 2nd layer units 300 438
NNLM weight 0.50 0.52
acoustic weight 14.00 21.56
minibatch size 32 35
dropout ratio 0.50 0.44
initial learn rate 1 0.90
learn decay 0.50 0.48
learn decay epochs 6 7
momentum 1.00E − 10 1.03E − 10
gradient clipping 5.00 6.23
initial forget gate bias 1.00 1.18

