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Abstract
This paper presents a comparative study of three learning based
beamforming methods that are specifically designed for robust
speech recognition. The three methods are 1) neural network
that predicts beamforming weights from generalized cross cor-
relation (GCC) features; 2) neural network that predicts time-
frequency (TF) mask which is used to estimate MVDR (min-
imum variance distortionless response) beamforming weights;
3) maximum likelihood estimation of beamforming weights to
fit enhanced features to clean trained Gaussian mixture model.
All three methods operate in frequency domain. They are
evaluated on the CHiME-4 benchmarking speech recognition
task and compared with traditional delay-and-sum and MVDR
beamforming methods on the same speech recognition task.
Discussions and future research directions are presented.

1. Introduction
Beamforming is an important approach to improve the perfor-
mance of automatic speech recognition (ASR) in far field sce-
narios.. Traditional beamforming methods enhance the speech
signals to improve signal level criteria, e.g. the signal-to-noise
ratio (SNR) of output signal. As these criteria are not directly
related to the ASR’s performance measure, tradiitonal methods
are usually not optimized for the ASR task.

Recently, several learning based beamforming methods are
proposed for the ASR task. By learning based methods, we
mean these methods learn from a large amount of training data
(single or multi-channel), and apply the learned knowledge at
run time to estimate parameters for ASR, e.g. beamforming
weights. In one approach [1–3], multi-channel raw waveforms
are fed into the neural network acoustic model directly. A tem-
poral convolution layer at the bottom of the network is used to
approximate the filter-and-sum beamforming operation. After
training, the temporal convolution layer learnes a fixed bank of
spatial and temporal filters, each with specific looking direc-
tions. We call this approach the spatial filter learning approach.
In another approach, beamforming filter weights are predicted
by neural networks that are jointly optimized with the acous-
tic model networks. Deep neural network (DNN) is used to
predict beamforming weights in frequency domain from gen-
eralized cross correlation (GCC) features [4] or spatial covari-
ance matrix (SCM) features [5]. In [6], long short-term memory
(LSTM) networks are used to predict the beamforming weights
in the time domain directly which has less number of free pa-
rameters than the frequency domain. We call this appraoch the
spatial filter prediction approach. While the filter learning ap-

proach learns a fixed set of spatial filters, the filter prediction ap-
proach predicts spatial filters dynamically from the input data.
In another approach, neural networks are used to predict time-
frequency (TF) mask that specifies whether a TF bin is dom-
inated by speech or noise. The TF mask is used to help esti-
mating the speech and noise SCMs required by beamforming
methods, such as the minimum variance distortionless response
(MVDR) [7, 8] and generalized eigenvalue (GEV) [9, 10] beam-
formers. The mask predicting network can be trained by using
ideal masks as target [11–13] or by minimizing the ASR cost
function [14]. The filter learning, filter predicting, and mask
predicting approaches are called discriminative approach in this
paper, as the models are trained to minimize the ASR error.

Besides discriminative methods, there is also learning based
beamforming methods based on generative modeling of speech
features. In [15, 17], a method called LIMABEAM estimates
time or frequency domain filter-and-sum weights to maximize
the likelihood of the enhanced feature vectors on clean trained
HMM/GMM acoustic model. In the unsupervised implemen-
tation, multi-pass decoding is required, where the first pass de-
coding provides the hypothesized text used to obtain HMM state
alignment. Beamforming weights can be estimated iteratively
to maximize the likelihood of the enhanced features given the
state alignment. It is reported that LIMABEAM outperforms
delay-and sum beamforming in several ASR tasks.

Although several learning based methods have been pro-
posed in the past, they are usually implemented by different re-
searchers and evaluated on different ASR tasks. As a result, it is
difficult to compare their performance. In this paper, we attempt
to study three learning based beamforming methods compara-
tively, with the implementation in the same toolkit, i.e. Signal-
Graph [25], and evaluation in the same task, i.e. the CHiME-4
speech recognition task [16]. The three methods include a max-
imum likelihood (ML) beamforming (a variant of LIMABEAM
[15]), the spatial filter weight predicting network [4], and the
mask predicting network [14].

2. Learning Based Beamforming Methods
2.1. Spatial Filter Weight Predicting Network

The system diagram of the spatial filter weight predicting net-
work [4] is shown in Fig. 1. On the bottom left of the figure,
a network is used to predict the beamforming weights in fre-
quency domain. The weights are then applied on the multi-
channel inputs to generate enhanced speech, from which fea-
tures are extracted for acoustic modeling.
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Figure 1: Discriminative beamforming weight prediction.

The weight prediction network and the acoustic model net-
work are jointly optimized using the ASR cost function. The
weight predicting network is initialized by learning from a
delay-and-sum filter on simulated data. Specifically, if the true
time difference of arrival (TDOA) of the different channels are
known, which is the case for simulated data, we can use the
ideal delay-and-sum filter weights as the target for the weight
predicting network to learn. The network predicts the real and
imaginary of the ideal weights independently. Mean square er-
ror (MSE) between the ideal weights and predicted weights is
used as the cost function in initialization. After the initializa-
tion, the weight predicting network is jointly refined with the
acoustic model using back propagation and ASR cost.

The details of the weight predicting network is illustrated
in Fig. 2. From the waveforms, we extract feature vectors from
GCC function between two channels [18] for every 0.2s long
frame with 0.1s shift. The GCC feature vectors encode the
phase information of channels and the features extracted from
all channel pairs are concatenated to form a single feature vec-
tor for each frame. For the CHiME-4 data [16], the dimen-
sionality of the GCC feature vector is 27 for each channel pair.
This is because the maximum TDOA is less than 13 samples for
the array geometry used in CHiME-4 and 16kHz sampling rate.
The bottom right of Fig. 2 shows example GCC features. As
different direction of arrival (DOA) angles have different GCC
patterns, the GCC features contain information for DNN to de-
termine spatial direction of the source and also TDOA [19]. In
this work, a DNN is used to map the GCC features to the beam-
forming weights in frequency domain. For stable estimation of
weights, we take the mean of predicted weight vectors of all
frames for each sentence.

While the array geometry is assumed to be fixed in [4], in
the two channel track of the CHiME-4 benchmarking task, the
geometry of the array depends on the distance bewteen the two
microphones randomly selected from a 6-microphone array. We
will test whether one single weight predicting network is able
to cover several array geometries.

2.2. Time Frequency Mask Predicting Network

The TF mask predicting network is illustrated in Fig. 3. The
log power spectra of input signals are mean normalized on an
utterance basis and used as features for mask prediction. The
mask prediction is carried out for each channel independently,
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Figure 2: Details of weight predicting network. The size of the
GCC feature matrix (bottom right) depends on the number of
unique channel pairs.

but shares the same LSTM mask predictor. For each channel,
two TF masks are predicted by the LSTM network, one speech
mask that specifies whether a TF bin is speech dominated and
one noise mask. We call this splitted mask. We can also force
the speech and noise masks to sum to 1 for each TF bin. This
can be implemented by only predicting the speech mask and
obtain the noise mask by 1-speech mask.

The LSTM network contains one hidden layer, whose acti-
vation vector is projected to noise and speech mask vectors by
using two independent projection layers. The sigmoid activa-
tion function is used for projection layers to ensure that the pre-
dicted masks will have value between 0 and 1. For both noise
and speech masks, pooling is used to reduce the set of masks of
all channels to a single mask. Four types of pooling functions
are compared, including mean, median, min, and max. Note
that during training, we only uses one channel (the first chan-
nel) to predict the mask, and hence pooling is not necessary.
Only at testing, we may estimate the masks for all channels and
use pooling.

Given the mask, the MVDR beamforming weights can be
determined as follows [20],

w(f) =
Φ−1
nn(f)Φss(f)u

Tr[Φ−1
nn(f)Φyy(f)]

(1)

where u is a vector with the element for reference channel being
1 and all others being 0. Tr[·] denotes trace of a matrix. Φnn
and Φss are the noise and speech SCMs estimated as

Φss(f) =

∑T

t=1
m̂s
t (f)yt(f)yHt (f)∑T

t=1
m̂s
t (f)

(2)

Φnn(f) =

∑T

t=1
m̂n
t (f)yt(f)yHt (f)∑T

t=1
m̂n
t (f)

(3)

where m̂s
t and m̂n

t are the estimated mask values at frame t
and frequency f for speech and noise, respectively. yt(f) is the
observed signal in frequency domain.
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Figure 3: Details of mask predicting network and the estimating
of MVDR weights.

The LSTM mask predicting network is initialized by learn-
ing from ideal binary mask (IBM) of speech. For simulated
data, we can obtain the oracle local SNR for each TF bin. The
speech IBM is set to 1 if the local SNR is larger than 0dB and
vice versa. Then the LSTM network is trained to predict the
speech IBM from single channel log power spectrum by min-
imizing the mean square error (MSE) between the predicted
mask and the IBM. Once initialized, the network in Fig. 3 is
used to replace the weight predicting module in Fig. 1, and the
LSTM mask predictor is jointly refined with the acoustic model
to minimize ASR cost function. The noise projection layer’s
weights and bias can be initialized as the negative weights and
bias of the speech projection layer so the sum of noise and
speech masks sum to one for each TF bin. Note that, after joint
training, the noise and speech masks usually do not sum to 1.

2.3. Maximum Likelihood Spatial Filter Estimation

We also investigate a modified version of the LIMABEAM [15].
The beamforming parameters are estimated as follows:

ŴML = arg max
W

1

T
log p (O(W); Θ)

+
1

2
log
∣∣ΣO(W)

∣∣− α

2
|W−W0|2F (4)

where O(W) is the enhanced feature vectors and is a function of
the beamforming weights. Θ is the parameters of the acoustic
model and T is the number of frames in the test utterance. The
first term in (4) measures the likelihood of the enhanced features
evaluated on the acoustic model, which can be an HMM/GMM
or GMM. When the acoustic model represents clean features’
distribution, it is a reasonable assumption that the higher the
likelihood is, the higher the quality of the enhanced features
[15]. The second and third terms are added in this work to the
orginal LIMABEAM. The second term is the log determinant
of the covariance matrix of the enhanced features (also a func-
tion of weights) and it acounts for the nonlinear transformation
of the feature space [21, 22] due to the beamforming operation.
The third term is the Frobenius norm between the weight matrix
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Figure 4: System diagram of maximum likelihood based beam-
forming weight estimation.

and its initial values. This term is used to impose L2 norm reg-
ularization on the parameters to prevent overfitting. The modi-
fied LIMABEAM is called maximum likelihood beamforming
(MLBF) in this paper and illustrated in Fig. 4. The three terms
in (4) are represented as three cost function nodes in blue color.

Instead of using HMM/GMM as the acoustic model, we use
a single GMM to model the distribution of the clean MFCC fea-
tures. The advantage of using GMM is that there is no need to
perform one extra pass of decoding to obtain the HMM state
alignment. However, it is possible that performance will de-
grade compared with using HMM/GMM.

There are two ways to represent the frequency domain
beamforming weights. In the first way, we treat the real and
imaginary parts of the weights as free parameters, hence there
are 2IK free parameters, where I and K are the number of
channels and frequency bins, respectively. In the second way,
the weights are represented as follows

wi(f) = gi(f) exp(j2πf
τi
fs

) (5)

where wi(f) and gi(f) are the weight and gain for channel i at
frequency f , respectively. fs is the sampling frequency, τi

fs
is

the TDOA of channel i and assumed to be frequency indepen-
dent. The first channel is always selected as the reference chan-
nel and its TDOA is set to 0. Hence, there are totally I − 1 free
parameters from TDOA, and IK free parameters from gain.

3. Experiments
3.1. Settings

We evaluate the three learning based beamforming methods on
the 2-channel and 6-channel tracks of the CHiME-4 task [16].
The baseline DNN acoustic model is used, except that the fM-
LLR [23] features are replaced by 40D log Mel filterbank fea-
tures, due to the fact that fMLLR needs to be dynamically esti-
mated and makes it difficult to conduct joint training of beam-
forming networks and acoustic model. No pre-emphasis or



DC removal is applied. Delta and acceleration features are ap-
pended and then 11 frames of feature vectors are concatenated
to form the input for the DNN acoustic model. Two types of
DNN acoustic model is used, one is trained from the fifth chan-
nel (called ch5 model, channel 5 is the single best channel in the
array), while the other is trained from all the 6 channels (called
chall model). The baseline trigram language model is used if
not otherwise specified. Speech recognition is performed using
the sequentially trained DNN acoustic model, i.e. the state-level
minimum Bayes risk (SMBR) model [24].

All the three learning based beamforming methods are im-
plemented in SignalGraph, a Matlab based toolkit for apply-
ing deep learning to signal processing [25]. The beamforming
weight predicting network uses either a 3 hidden layer DNN
or an 1 hidden layer LSTM, both using 1024 hidden nodes.
The input to the network is 27D (1 microphone pair) for 2-
channel case and 405D (15 microphone pairs) for 6-channel
case. The output dimension is 257x2x2=1028 for 2-channel
case and 257x2x6=3084 for 6-channel case, as 257 complex
numbers (512 FFT length) need to be predicted for each chan-
nel. The network is initilized on 71680 simulated sentences (10
times of the official simulated training data) generated by our-
selves using the provided simulation tool. After initilization, the
network is refined together with the ch5 acoustic model (trained
with cross entropy, or CE, criterion) by using the frame level CE
cost function. As we will use the SMBR model for decoding,
we fixed the acoustic model during joint training to prevent the
acoustic feature space from drifting too much from the one used
to train the SMBR model.

The mask predicting network is implemented by using a
one hidden layer LSTM containing 1024 memory cells. The
memory cells’ outputs are projected to noise and speech masks
by using two 1024 to 257 affine transorms in projection lay-
ers. The network is initialized on the 71680 simulated sentences
(same as the data used to initialize the weight predicting net-
work). After initialization, the network is jointly refined with
the ch5 acoustic model in the same way as the joint training of
weight predicting network.

The GMM used in the ML beamforming is trained from
the close talk version of the 1680 real training sentences. The
GMM uses 39D MFCC features and diagonal covariance ma-
trix, and contains either 512 or 1024 Gaussians. The beamform-
ing parameters are estimated iteratively using the expectation-
maximization (EM) algorithm [26]. At most 3 EM iterations
are used. At the E step of each EM iteration, the posteriors of
the Gaussians are re-estimated using the enhanced features. At
the M step, the beamforming parameters are re-estimated given
the updated Gaussian posteriors by using the L-BFGS algorithm
[27]. Due to the iterative nature of the EM algorithm, the real
time factor is usually 1-5 for the whole estimation process for
each sentence, which is much slower than the other two meth-
ods. When L2 regualization is used, it is used on all parameters
except for the TDOAs.

3.2. Results of Beamforming Weight Predicting Network

The performance of weight predicting network is shown in Ta-
ble 1. Row 2 and 3 show the results of MSE training in which
the neural networks learn from the ideal unweighted delay-and-
sum beamforming and simulated data. Comparing with the
weighted delay-and-sum implemented in BeamformIt [28] (row
1), the neural networks perform slightly worse in overall, and
LSTM performs slightly better than DNN. Row 4 and 5 show
the results of CE training in which the neural networks are re-

Table 1: Recognition word error rate (WER %) obtained by
weight predicting network on the CHiME-4 task. “DNN*”
and “LSTM*” refer to CE refined model only using 1680 real
recorded training sentences. The 5 channel case does not in-
clude the second channel. “DS” refers to BeamformIt.

Real Simu Real Simu Real Simu
1 DS - 14.8 12.6 13.6 14.2 17.2 18.2
2 DNN 15.8 13.8 13.5 16.5 17.2 18.5
3 LSTM 14.7 13.4 12.9 14.9 16.5 18.3
4 DNN 15.0 11.4 15.9 11.6 16.5 16.8
5 LSTM 14.6 11.5 14.7 11.6 16.8 17.3
6 DNN* 13.6 16.0
7 LSTM* 14.6 14.5

Row

-

Cost

MSE

CE

Model
2	channels

EvalEval
6	channels 5	channels

Eval

fined using the ASR cross entropy cost function on the official
training data. For the two channel case, moderate imporvement
is obtained by CE training over MSE training for DNN model
(17.2% versas 16.5% on real data), while the results of LSTM
model is mixed which could be due to overfitting.

For 6 channel case, CE training obtains significant improve-
ment overal MSE training on simulated data, but not on real
data. One possible reason is that the target signal’s gain is
not equal at different channels for real data. Sometimes, chan-
nels may even totally fail to receive signals. The neural net-
works takes GCC features as input where the gain information
is largely removed. Hence, the neural networks are unable to
predict the gains of channels properly. To investigate the issue,
we conducted two more experiments. First, we train the neu-
ral networks without using the second channel (5 channel case)
which is known to have poor signal quality for real data. This
leads to better performance of MSE trained models (row 2 and
3) on real data (as the bad channel is removed), but worse results
on simulated data (as a good channel is removed). This pattern
is also observed for the BeamformIt results (row 1). However,
the CE trained models still perform poorly on real data. Sec-
ond, we refine the neural networks only on 1680 real sentences
of the official training set (row 6 and 7 of the 6 channel case).
WER on real data is improved for DNN model, however, WER
on simulated data gets much worse for both models. This shows
that the CE training should use data similar to the eval data.

In summary, we found that the weight predicting framework
[4] do not consistently outperform BeamformIt on CHiME-4,
while it does outperform BeamformIt significantly on the AMI
corpus. We hypothesize that this is because the AMI is a far
field scenario and the gains of the channels are similar, while
CHiME-4 is a near field scenario where the gains of channels
could be very different. As the network only uses GCC as input,
it is not able to estimate the channel gains proporly.

3.3. Results of Mask Predicting Network

The performance obtained with mask predicting network and
MVDR beamforming is shown in Table 3 for 2 channel case
and Table 2 for 6 channel case. Let’s go through the 6 channel
case as the results of 2 channel case will be similar. A con-
ventional MVDR beamforming [29] with TDOA tracking, fre-
quency dependent channel gain estimation, and noise estima-
tion using 0.5s noises prior to the test utterance obtains a WER
of 12.0% on the real eval data (row 3). By comparison, the
MVDR using masks predicted by IBM-initialized LSTM pro-
duces a WER of 12.8% (row 4). By using ASR cost function to



Table 2: Recognition word error rate (WER %) obtained by
mask predicting network on the CHiME-4 6-channel track.
“Split Mask” specifies whether we estimate speech and noise
masks separately. LM: “3” means trigram, “5” means 5-gram,
while “R” is RNN LM rescoring.

#ch for mask
ASR 

cost

Split 

Mask
Pooling #Pass LM Real Simu Real Simu

1 12.4 14.8 21.6 22.0
2 8.2 9.4 13.6 14.2

3 7.6 6.6 12.0 8.2

4 No 1 8.3 7.1 12.8 19.5

5 1 7.3 6.4 10.9 15.2

6 3 6.4 6.1 9.4 11.1

7 1 6.5 6.1 10.1 11.9

8 3 6.1 6.0 9.0 9.9

9 max 1 6.6 6.0 10.2 10.0

10 min 1 6.6 6.0 10.3 8.9

11 mean 1 6.4 5.9 9.8 9.2

12 1 6.2 6.0 9.5 8.9

13 3 6.1 5.9 8.9 9.6

14 3 5 4.8 4.9 7.4 7.9

15 3 R 4.1 4.3 6.3 6.9

Row

Settings Dev Eval

Delay-and-sum (BeamformIt)

Traditional MVDR

Yes

Yes

No

1-channel track

3

Estimate 

masks for all 

6 channels, 

then pool 

the masks

First channel

No

median

fine tune the LSTM mask predictor, the WER reduces to 10.9%
(row 5). The reason for poor performance on simulated eval
data is that the first channel of this data set has much lower SNR
than other channels and the network predicts the mask from the
first channel only. In overall, the results show the effectiveness
of using ASR cost function to fine tune mask predictor.

We investigated several approaches to further improve the
performance on mask based MVDR. The first is to use multi-
ple passes of mask estimation and beamforming. Specifically,
the mask estimation (using enhanced speech) and beamforming
can be performed alternately until converge. In row 6, apply-
ing the mask estimation and beamforming 3 times is found to
reduce WER further to 9.4% (3 passes) from 10.9% (1 pass).
The second approach we studied is the splitted mask, i.e. pre-
dicting the speech and noise masks independently. Comparing
row 7 to row 5, using splitted masks consistently outperforms
using unsplitted mask. Lastly, we investigated the use of mask
pooling. From row 9 onwards, the masks of all the 6 channels
are estimated and pooled. It is observed that median pooling
produces the best performance, which agrees with findings in
[11]. For the 2 channel case, no pooling is used. We investi-
gated the mask predicting using concatenation of two channels’
log power spectra. Comparing row 7 and 8 of Table 3, concate-
nated input outperforms the single channel input significantly.
By combining all the methods together, we obtain the best WER
on the real eval data in row 13 in Table 2, with a WER of 8.9%.
This represents a 3.1% absolute WER reduction compared to
conventional MVDR.

3.4. Results of Maximum Likelihood Weight Estimation

The performance of MLBF on the 6 channel track is shown
in Table 4. Row 1 shows that by only estimating 5 TDOAs
of channel 2-6 using the MLBF, a WER of 17.1% is obtained,
which is significantly lower than 1 channel case (21.6%) shown
in row 1 of Table 2. By only using TDOAs, the signals are
aligned and added together, similar to unweighted delay-and-
sum beamforming. If frequency dependent gains are also esti-
mated and L2 norm is tuned, the WER can be further reduced
to 16.1% (row 3). We also tried to use frequency independent

Table 3: Recognition word error rate (WER %) obtained by
mask predicting network on the CHiME-4 2-channel track.

#ch for mask
ASR 

cost

Split 

Mask
#Pass AM LM Real Simu Real Simu

1 10.9 12.4 20.4 19.0
2 11.9 13.1 20.8 20.2
3 10.1 11.7 17.2 18.2
7 First channel 1 9.8 10.4 16.6 17.0
8 ch 1&2 1 9.2 10.2 15.5 14.9
9 1 9.4 10.1 15.7 16.2

10 3 9.1 10.0 15.0 15.0
11 1 8.9 10.0 15.2 15.3
12 3 8.8 9.9 14.5 14.3
13 3 8.4 9.5 14.4 14.2
14 3 5 7.0 8.1 12.3 12.1
15 3 R 6.1 7.1 10.8 10.7

Row

Settings Dev Eval

chall

Not applicable for BeamformIt

No

No

Yes

Yes

3

First channel

ch5

Table 4: Recognition WER (%) obtained by MLBF on the
CHiME-4 6-channel track.

Parameters Init. #Gau. Real Simu

1 No 512 17.1 17.6
2 No 512 16.2 14.6
3 No 1024 16.1 14.5
4 No 1024 16.1 14.5
5 Row 4 1024 14.5 12.2

6 9.5 8.9
7 Row 6 1024 9.2 8.3

Real + Imag.
MVDR using mask prediction

-

Row

Settings Eval

Gain

TDOA + 

Gain

None

Freq. Dependent

Freq. Dependent

Freq. Independent

Freq. Dependent

gains (row 4), i.e. only uses one global gain for each channel,
the same WER of 16.1% WER is obtained. We improve the
frequency dependent gain estimation by using frequency inde-
pendent gains as the initial gains W0 in equation (4). The L2
regularization ensures that the frequency dependent gains are
not too far from the frequent independent gains. Results in row
5 show that this way of initialization and L2 regularization re-
duce the WER significantly to 14.5%.

We initialize the real and imaginary parts of the weights
with the weights generated by the mask based MVDR (shown
in row 6, also row 12 of Table 2). L2 regularization is applied
to prevent big deviations of the weights from the initial weights.
Results show that the WERs on both simulated and real data
are improved moderately. It is worth noting that there is a big
gap in performance between row 5 and 7. This could be due
to different parameterization of weights and/or the MLBF may
easily stuck in a local minimum of cost function.

3.5. Discussions and Future Works

In this paper, we conducted a comparative study of three learn-
ing based beamforming methods for far field speech recogni-
tion. We found that the MVDR beamformer using LSTM pre-
dicted time frequency masks perform the best, while the beam-
forming filter weight predicting network and MLBF also im-
prove the ASR performance significantly compared to the sin-
gle channel baseline. In terms of computational cost, the weight
predicting network is the most efficient, followed by mask pre-
dicting network. Both of these networks are faster than real
time. The MLBF is the slowest due to iterative weight opti-
mization at run time.

The better performance of MVDR formulation could be due



to that the noise information is important in this task. While the
mask based MVDR explicitly makes use of noise estimation,
the weight predicting network does not use noise information
since only the phase-carrying GCC features are used as input.
Although the MLBF has access to the raw noisy data in fre-
quency domain, it does not find good weight solution similar
to the MVDR’s, possibly due to the local minimum problem of
EM algorithm. Hence, the future works could be done to add
noise information explicitly to these two types of methods. An-
other observation is that for near field scenario, it is important to
estimate the channel gains as shown in the results of MLBF. The
weight predicting network may be improved by explicitly pre-
dicting the gains and also use MVDR weights as the supervision
during initialization. The MLBF could be integrated with tra-
ditional methods. For example, besides maximizing likelihood,
one can also maximize the output SNR so more supervision in-
formation is used and better solution could be obtained.
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