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Abstract
In this paper, we investigate the application of the copula model
for enhancing features in automatic speech recognition task. We
compute a set of utterance-specific nonlinear transformations
based on the copula model and use these transformations to ob-
tain the enhanced features for every utterance in the dataset.
These features improve the performance of the baseline system
by about 4.3%, 1.4%, and 0.5% (absolute) respectively for 1-
channel, 2-channel and, 6-channel. Further gains were obtained
when our system was combined with the baseline system us-
ing minimum Bayes risk decoding to achieve 4.3%, 2.4%, and
1.2% absolute WER improvements for the respective channels.

1. Background
Generally, the mismatch between the training and testing con-
ditions degrades the performance of machine learning tasks
including automatic speech recognition (ASR). In real-world
ASR applications, it is impractical to obtain training data that is
representative of wide range of background noise and reverber-
ations under which utterances are spoken, even when training
data is modified using additive noise and simulated reverbera-
tions such as in multi-style training (MTR). These variations are
currently modeled implicitly by the ASR acoustic models, such
as deep neural networks (DNNs), recurrent neural networks
(RNNs) and Gaussian mixture models (GMMs). The typical in-
put features presented to the acoustic models are the logarithm
of the mel-warped frequencies after passing it through a filter
bank or mel-warped cepstral coefficient (MFCC).

The strategies to compensate the mismatch between the
training and testing can be categorized into model based and
feature based methods. The model-based methods attempt to
model the variations associated with speech and neglect other
variations such as background noise or channel distortion.
Feature mismatch reduction: In this approach features are ex-
tracted in a manner that minimizes the effect of additive and
convolutional noise. The simplest version of such a normal-
ization is the well-known cepstral mean-variance normalization
(CMVN) that removes the convolutional channel noise in the
homomorphic cepstral domain. The method assumes that the
channel noise varies slowly, a mild assumption that is often true.
The key advantage of this feature-based method is that it gen-
eralizes remarkably well to test utterances with channels distor-
tions that have never been seen before. Many other feature-
based transformations have been developed and investigated,
but with limited success. One such previously developed ap-
proach shares the same motivation as our work [1]. They learn
a coarse transformation so that the histogram of their test fea-
tures matches those of their training features.

These approaches are ad hoc in that they treat each fea-
ture component independently and do not take into account the
joint distribution of the feature vector. Moreover, they do not
consider the influence of the transformation in computing the
likelihood of the input signal. Copula models provide a prin-
cipled approach for decoupling the marginal distributions from
the component that models the interaction between the random
variables. As such, they are well-suited to address the effect
of the mismatch between the train and test set. In our previous
study [2], we showed that the CMVN and histogram equaliza-
tion are two special cases of copula-based models.

In state-of-the-art ASR systems, CMVN is the only fea-
ture processing used to address mismatch between the train-
ing and testing condition. This assumes that components of
input feature vectors are statistically independent, which is typ-
ically a poor assumption. In the section below, we propose a
method to avoid this assumption and address the mismatch us-
ing a very flexible multivariate distribution – the multivariate
copula model.

2. The Multivariate Copula Model
The standard multivariate distribution estimation methods such
as GMM entirely focus on choosing a parametric form for the
joint distribution of the variables. The choice of joint distri-
bution automatically dictates a specific form for marginal dis-
tributions,which may not be appropriate for a given applica-
tion or data. It would be convenient if the choice of suitable
marginal distribution is decoupled from that of the joint distri-
bution. Sklar’s theorem provides the necessary theoretical foun-
dation to decouple these choices. The theory formally states
that any joint distribution can be uniquely factorized into its
univariate marginal distributions and a Copula distribution. The
Copula distribution is a joint distribution with uniform marginal
distributions on the interval [0, 1]:

f(X) = c(F1(x1), F2(x2), . . . , Fn(n))Πn
i=1fi(xi) (1)

where {fi(xi)}ni=1 are the marginal density functions of f ,
{Fi(xi)}ni=1 their corresponding marginal cumulative distribu-
tion functions, and c(·) is the Copula density function.

Equation (1) shows that any continuous density function
can be constructed by combining a Copula density function and
a set of marginal density functions.
Gaussian Copula model: Gaussian Copula density function is
the most common multivariate Copula function:

cgaus(U ;R) =
1
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exp{−1
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where R is the correlation matrix.



The Gaussian Copula model can be constructed by substi-
tuting the Gaussian Copula density function into Equation (1):

f(X;R,Λ) = cgaus(U ;R)

n∏
i=1

fi(xi;λi) (3)

where ui = Φ−1(Fi(xi)) and Φ−1 is the quantile function of
standard univariate normal distribution.

The main difference between the Gaussian Copula model
in Equation (3), and standard Gaussian distribution is that the
marginal density functions in the Gaussian distribution are nec-
essarily Gaussian while the marginal density functions of the
Gaussian Copula model can by any continuous density func-
tion and this capability makes the Gaussian Copula model more
flexible than the Gaussian distribution.

In our previous work, we have shown how to compute the
optimal feature transformation to minimize the KL distance be-
tween two multivariate Gaussian copula distributions [2].

3. Experimental Setup & Results
Akin to speaker adapted training, we estimate the acoustic mod-
els in 3 stages: (a) estimate a canonical multivariate copula
distribution of the 13-dim MFCC features using all the utter-
ances in the single channel noisy training data; (b) transform
each utterance in the training data to reduce the KL distance be-
tween the multivariate distribution of the given utterance and the
canonical distribution; and (c) train a standard acoustic model
in the transformed feature space. At test time, we transform the
features of each utterance to the canonical multivariate copula
distribution space before decoding.

Compared to the performance of the baseline system [3],
tabulated in Table 1 for different conditions, our copula-based
system, in Table 2 shows significant improvement in several
conditions, but not all. Note, 5gkn stands for 5-gram Knesser-
Ney smoothed LM provided with the baseline system. The
gains are particularly remarkable in single channel input for
which it is well-suited. Note, we haven’t applied any special
processing for multi-channel case and hence didn’t expect gains
there. The gains are highest in bus background noise and our
hypothesis is that there is more structure and correlation in the
noise in this case for which the multivariate copula is an apt
representation. We expect applying copula-based feature en-
hancement to give further improvements when it is applied to
frequency spectrum before the filterbank and MFCC where the
noise components can be modeled in a fine grained manner.
Finally, our copula-based system is sufficiently different from
the baseline system that we are able to obtain additional gain
through system combination using MBR, as reported in Table 3.
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Table 1: Average WERs of the baseline systems trained on sin-
gle channel data.

Track System Dev Test
simu real simu real

1ch

DNN 17.4 16.5 26.0 30.0
smbr 15.8 14.6 24.0 27.1

smbr+5gkn 13.9 12.3 22.1 24.3
smbr+rnn 12.8 11.5 20.8 22.9

2ch

GMM 18.7 16.3 27.3 28.7
DNN 13.5 12.2 20.4 22.4
smbr 12.1 10.8 18.8 20.0

smbr+5gkn 10.7 9.6 16.4 17.6
smbr+rnn 9.3 8.4 15.2 16.2

6ch

GMM 14.2 12.7 21.1 21.7
DNN 10.1 9.5 15.9 16.6
smbr 9.0 8.2 14.2 14.7

smbr+5gkn 7.8 7.0 12.1 12.8
smbr+rnn 6.7 6.0 10.9 11.3

Table 2: Average WERs of the baseline systems trained on sin-
gle channel features after copula-based transformation.

Track System Dev Test
simu real simu real

1ch

GMM 23.0 19.8 30.0 29.4
DNN 17.6 15.4 24.9 24.4
smbr 16.5 13.9 23.5 23.1

smbr+5gkn 14.7 12.1 21.7 20.1
smbr+rnn 13.2 10.7 20.4 18.6

copula+baseline 12.1 9.8 19.2 18.6

2ch

GMM 18.1 15.2 24.9 24.4
DNN 13.9 12.1 20.4 19.8
smbr 12.7 10.7 19.1 18.2

smbr+5gkn 10.9 9.1 17.2 16.4
smbr+rnn 9.6 8.0 15.6 14.8

copula+baseline 8.8 7.3 13.9 13.8

6ch

GMM 14.4 12.5 19.7 19.3
DNN 10.8 9.6 16.0 15.4
smbr 9.8 8.2 15.2 14.5

smbr+5gkn 8.2 7.1 13.0 12.2
smbr+rnn 7.1 6.1 11.7 10.8

copula+baseline 6.3 5.4 10.1 10.1

Table 3: Average WERs after combining the baseline and
copula-based system using MBR decoding.

Track Envir. Dev Test
simu real simu real

1ch

BUS 10.3 12.6 13.8 26.0
CAF 15.7 10.5 23.5 20.8
PED 9.3 6.6 18.8 15.7
STR 12.9 9.6 20.6 11.9

2ch bus 7.2 9.2 10.0 19.4
CAF 11.8 7.5 16.2 14.1
PED 6.9 4.9 14.2 12.0
STR 9.1 7.7 15.2 9.7

6ch bus 5.3 6.8 6.7 13.3
CAF 7.7 5.1 11.2 9.5
PED 5.1 3.9 10.0 8.5
STR 7.2 5.7 12.5 9.1


