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Abstract

This paper describes the ASR system submitted by FBK
to the CHiME-4 challenge for the single channel track.
The proposed solution employs multiple subsystems,
whose DNNs are trained with different training crite-
ria and strategies (i.e. diverse training material, with
and without batch normalization). A “self” adaptation
of acoustic models is applied to each subsystem, rely-
ing on a blind estimate of the accuracy of automatic tran-
scriptions. This adaptation, performed in a batch fashion
over the entire evaluation set, significantly improves the
performance of each subsystem. The final output is ob-
tained by combining the multiple transcriptions through
ROVER, which provides a further improvement, reduc-
ing the average WER on the evaluation set from 22.3% to
16.5%.

1. Introduction

In a number of application scenarios (e.g., home au-
tomation, smart cars, robots), performance of automatic
speech recognition (ASR) is heavily affected by noises
of various types, competing speakers and reverberation
effects. The CHiME challenges [1, 2, 3, 4] represent an
excellent framework to evaluate signal enhancement and
noise-robust acoustic models for ASR in such realistic
conditions. Built upon the previous CHiME-3 challenge,
the CHiME-4 dataset comprises utterances recorded by
a 6-channel tablet-based microphone array. The recogni-
tion task is the automatic transcription of read sentences
from the Wall Street Journal (WSJ) corpus, acquired in
four noisy conditions; [4] illustrates training, develop-
ment and evaluation data sets released for the competi-
tion. The results in [3] proved the effectiveness of signal
enhancement approaches combined with the use of hy-
brid acoustic models based on deep neural networks hid-
den Markov models (DNN-HMMs) [5, 6, 7, 8].

In this submission we consider the /ch-track of the
challenge, focusing specifically on deep learning tech-
niques and building upon our previous submission for
the CHiME-3 challenge [9], where an effective two-pass
strategy was explored. In that work the DNNs employed
to recognize each input stream (beamformed or single
channels) were re-trained using the corresponding auto-
matic transcription generated with the baseline acoustic

models. A MAP selection procedure, at sentence level,
produced the improved final transcriptions.

For the current /ch-track CHiME-4 challenge, only a
single channel is available in the decoding pass and the
multiple hypotheses generated for a final ROVER combi-
nation are derived from systems exploiting not only dif-
ferent training material, as done in [9], but also introduc-
ing a variety of DNN architectures. Secondly, we im-
prove the model adaptation stage, replacing the standard
retraining on the whole adaptation set with a more so-
phisticated solution, which enhances the adaptation with
effective instance weighing and selection criteria. Fi-
nally, the combination of the hypotheses provided by
the sub-systems is based on our previous work on driv-
ing ROVER with segment-based ASR quality estima-
tion [10].

The paper presents in Section 2 the approach and the
main features of the proposed system while Section 3 de-
scribes the steps of the processing pipeline and Section 4
reports the corresponding WER results. Section 5 con-
cludes the work, presenting possible future directions.

2. Main characteristics

The main features explored in our current submission are
the introduction of diverse DNN architectures in order to
be able to rank, select and combine multiple hypotheses
after an effective DNN adaptation stage; Figure 1 shows
the blocks detailed in Section3.

In particular, we explored the use of batch-
normalized DNNs. Training DNNSs is indeed complicated
by the fact that the distribution of each layer’s inputs
changes during training, as the parameters of the previ-
ous layers change. This problem, known as internal co-
variate shift, slows down the training of deep neural net-
works. Batch normalization [11] addresses this issue by
normalizing the mean and the variance of each layer for
each training mini-batch, and back-propagating through
the normalization step. It has been long known that the
network training converges faster if its inputs are properly
normalized [12] and, in such a way, batch normalization
extends the normalization to all the layers of the archi-
tecture. However, since a per-layer normalization may
impair the model capacity, a trainable scaling parameter
~ and a trainable shifting parameter 3 are introduced in
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Figure 1: The architecture of the proposed CHiME-4
automatic transcription system, characterized by a four-
steps pipeline.

each layer to restore the representational power of the
network. The above-mentioned systems, implemented
with Theano [13], are coupled with the Kaldi toolkit [14]
to form a context-dependent DNN-HMM speech recog-
nizer.

Another technique explored in this work is DNN
adaptation. The usual way to adapt a DNN trained on
a large set of data, given a much smaller set of adaptation
data, is to retrain the DNN over the adaptation set, which
could lead to overfitting the model on the adaptation data.
A solution to prevent these detrimental effects is to adopt
a conservative learning procedure by adding a regulariza-
tion component to the loss function. The adaptation tech-
nique proposed here is based on a Kullback-Leibler di-
vergence (KLD) regularization [15]. KLD regularization
can be implemented through cross-entropy minimization
between a new target probability distribution and the cur-
rent probability distribution. Moreover, this regulariza-
tion binds directly the DNN output probabilities rather
than the model parameters; as a consequence, the method
can be easily implemented with any software tool based
on back-propagation, without introducing any modifica-
tion.

In addition, we evolved our previous system by ex-
ploiting a recently developed automatic quality estimator
(QE), which is able to provide (sentence by sentence) a
confidence score related to the expected word error rate
(WER%). Automatic assessment methods can be used
to select audio data for unsupervised training [16], ac-
tive learning of acoustic models [17, 18], combination of
multiple transcription hypotheses into a single and more
accurate one [19]. The proposed technique, which has
shown promising in both ASR and machine translation
applications [20, 10], contributed to this submission in
two ways. First, we used the confidence scores to auto-
matically select the best subset of utterance for the un-
supervised adaptation step. Secondly, we exploit such a
confidence score to rank multiple hypothesis prior to a
standard system combination based on ROVER, as done
in our previous submission.

3. System implementation

The architecture of our proposed system, depicted in
Fig.1, is based on four steps: generation of preliminary
transcriptions using the models trained on the noisy chan-
nels; quality estimation of the resulting hypotheses and
selection of suitable adaptation sentences according to
WER predictions; DNN adaptation using KLD regular-
ization; systems combination through ROVER.

3.1. Step 1: multiple DNN-based speech recognizers

With the final purpose of improving system diversity, dif-
ferent DNNs have been considered. All the DNNs use
the standard 40 fMLLR features used in the CHiME-4
baseline recipe [4]. Such features are then gathered into a
context windows of 11 consecutive frames prior to feed-
ing a feed-forward DNN. A Stochastic Gradient Descend
(SGD) algorithm is used as DNN optimizer.

A first system (dnn0) based on the CHiME-4 base-
line has been trained using one single channel (CHS5), as
originally proposed. A second DNN (dnnl), is trained
following again the baseline recipe but exploiting all the
six channels available in the training-set (CH1-CH®6).

In addition, a set of batch-normalized DNNs are
trained (dnn2-4). For these systems (due to time
and computational restrictions) the standard training-set
(based on channel 5 only) was used. The adopted batch-
normalized DNNs are based on Rectified Linear Units
(ReLLU) and employ drop-out (with a drop-out rate of
p = 0.2). Moreover, to further improve the system per-
formance, the labels for DNN training are derived by
a forced-alignment over the close-talking signals. Such
an approach has been studied in [21]. The first batch-
normalized DNN (dnn2) is based on six hidden layers
composed of 2048 neurons. A second batch-normalized
DNN (dnn3) is trained with the same architecture, but ex-
ploiting features derived by an automatic classification of
the environment. More specifically, a DNN is trained us-
ing the environmental labels in the training set and the
posterior probabilities generated by such a network are
concatenated with the standard fMLLR features. The
last batch-normalized DNN (dnn4), inspired by our re-
cent work on joint training [22], concatenates a speech
enhancement and a speech recognition deep neural net-
work, whose parameters are jointly updated as if they
were within a single bigger network. More precisely, in
the joint training framework we perform a forward pass,
compute the loss functions at the output of each DNN
(mean-squared error for speech enhancement and cross-
entropy for speech recognition), compute the correspond-
ing gradients, and back-propagate them though.

Particular attention should be devoted to the initial-
ization of the ~y parameter. Contrary to [11], where it
was initialized to unit variance (y = 1), in this work we
have observed better performance and convergence prop-



erties with a smaller variance initialization (y = 0.1). A
similar outcome was found in [23, 24], where fewer van-
ishing gradient problems are empirically observed with
small values of y in the case of recurrent neural networks.

3.2. Step 2: Quality Estimation

The transcriptions generated by each hybrid DNN-
HMMs systems are processed by a system that automati-
cally estimates the WERs of each sentence. The approach
makes use of a supervised regression method that effec-
tively exploits a combination of “glass-box” and “black-
box” features [20, 10]. Glass-box features, similar to
confidence scores, refer to the one extracted when the
ASR features such as lattice and confidence scores are
available, and capture information inherent to the inner
workings of the ASR system that produced the transcrip-
tions. The black-box ones, instead, are extracted by look-
ing only at the signal and the transcription. On one side,
they try to capture the difficulty of transcribing the signal
while, on the other side, they try to capture the plausibil-
ity of the output transcriptions. In both cases, the infor-
mation used is independent of knowledge about the ASR
system, making the approach of [20] ASR QE applicable
to a wide range of scenarios in which the only elements
available for quality prediction are the signal and the tran-
scription. The extensive experiments in different testing
conditions discussed in [20, 10] indicate that regression
models based on Extremely Randomized Trees (XRT)
[25] can achieve competitive performance, being able to
outperform strong baselines and to approximate the true
WER scores computed against reference transcripts. For
the experiments reported here we trained two different
XRT based regressor on the CHiME-4 development sets:
dt05_simu and dt05_real, and used the resulting models
on the related evaluation sets.

3.3. Step 3: DNN unsupervised adaptation

The WER predictions of the sentences in each evalua-
tion set are hence used to build adaptation sets containing
sentences of mid-high quality. In particular, for these ex-
periments we selected all the sentences with a predicted
WER below 20%. The selected material is used to per-
form “self” DNNs adaptation (i.e. we are using, as adap-
tation sets, selected subsets of the test data.

The KLD regularization introduced for the adaptation
step is implemented through cross-entropy minimization
between a new target probability distribution and the cur-
rent probability distribution. The new target distribution
is obtained as a linear interpolation of the original dis-
tribution and the distribution computed via forced align-
ment with the adaptation data:

Plsilo] = (1 —a)p[silo]] + aplsilor] 0<a <1 (1)

Note that, in Eq. 1, a = 0 is equivalent to a “pure”

Table 1: Average WER (%) for the each systems and the
final combination

Dev Test
real simu real simu
sys0 10.42 | 12.54 | 20.09 | 18.17
1ch sysl 9.02 | 10.98 | 17.21 | 16.52
sys2 9.64 | 1148 | 18.44 | 17.40
sys3 9.65 11.52 | 18.26 | 16.99
sys4 10.02 | 12.92 | 18.62 | 18.23
comb 9.02 9.51 | 16.87 | 16.09

Track | System

retraining of the DNN over the adaptation data, while
o = 1 means that the output probability distribution of
the adapted DNN is forced to follow that of the origi-
nal DNN . What one can expect is that the optimal value
of « is close to 0 when the size of the adaptation set is
large and the transcriptions of the adaptation sentences
are not affected by errors (i.e. in supervised conditions).
Conversely, when the size of the adaptation set is small
and/or its transcription can be affected by errors (i.e. in
the case of unsupervised adaptation), o should increase.

DNNs are adapted to the acoustic conditions of each
evaluation set: we adapt a different DNN for each one of
the two sets: dt05 and et05. The automatic supervision
of each adaptation set is given by the ASR hypotheses
generated in the first decoding pass of Figure 1.

A final decoding step is then carried out using the
adapted DNNs, followed by the LM rescoring pass in-
cluded in the CHiME-4 baseline (based on a linear com-
bination of 5-gram LM and RNNLM).

3.4. Step 4: hypotheses combination

A common way to combine multiple ASR hypotheses
is through ROVER [CITE]. However, the behaviour of
ROVER strongly depends on the order of the hypothe-
ses[CITE], and the overall performance could substan-
tially improve if the ARS transcription are ranked accord-
ing to they accuracy [10]. Therefore, the ASR transcrip-
tions, obtained after the unsupervised DNN adaptation,
are automatically ranked at sentence level using the QE
system described in [10]. We train an automatic rank-
ing system for each development data sets (dt05_simu and
dt05_real), and used it to rank the sentence hypotheses of
the evaluation sets: et05_simu and et05_real.

4. Experimental evaluation
4.1. Submitted system

Table 1 reports the results obtained with each subsystems
and with their final combination. The systems labeled as
“sys0-4” refer to five DNNs (dnn0-4) after the unsuper-
vised adaptation. The system “comb’ represents the final
ROVER combination.

We can observe that, as expected, the best single sys-



Table 2: WER (%) per environment for the submitted sys-
tem

Dev Test
real simu real simu
BUS | 12.41 8.01 24.57 | 12.01
CAF 8.70 | 12.12 | 18.36 | 18.36
PED 6.23 7.30 | 13.60 | 15.57
STR 8.73 10.59 | 10.96 | 18.23

Track | Envir.

1ch

tem is sys/, since it is trained with all the available chan-
nels. However, the performance obtained with batch-
normalized DNNs (sys2-sys4) are rather competitive with
sys1, even if such systems are training with a single chan-
nel only. However, the comparison between sysO (no
batch-norm) and sys2 (with batch norm) confirms the sig-
nificant benefits obtained with such a technique. Results
also reveals that the addition of the environmental fea-
tures seems to give only minor benefits (compare sys2
and sys3). We also found that, differently to what we
experimented in [22], the joint training systems (sys3)
performs slightly worse than a single DNN case. The
last row of Table 1 reports the results obtained by com-
bining all the considered systems. The performance ob-
tained with the latter system for each noise conditions is
reported in Table 2.

4.2. Updated system

The importance of the quality of automatic transcriptions
for the adaptation pass suggested us to introduce a mod-
ification in the system architecture, i.e. to make use of
an additional combination stage after the initial decod-
ing step; indeed, it is possible to automatically rank [10]
also the hypotheses generated in the pass-1 and select the
“best” one as supervision for all the systems in pass-3.
Table 3 shows the results obtained with this new adap-
tation strategy, represented in Figure 2. An additional
gain is achieved, indicating that the improved transcrip-
tion obtained exploiting the diversity of multiple systems
produces better adapted DNN models.

hyph ranking |}
ROVER :
! | SELECTION | !

unsupervised transcription

Figure 2: The updated pass-2: a unique QE-based super-
vision is derived for all the DNN systems.

Table 3: Average WER (%) for the updated system in
which the pass-2 produces a single supervision for all the
DNN systems.

Dev Test
real simu real simu
1ch comb (new) | 8.45 | 10.56 | 16.17 | 15.20

Track System

5. Discussion and conclusions

In this work we have proposed a refinement of the system
previously submitted to the CHiME-3 challenge [9]. The
two-pass decoding combined with automatic data selec-
tion for DNN adaptation benefited from previous expe-
rience on quality estimation of ASR hypotheses in the
framework of ASR system combination [10].

To perform data selection we applied ASR quality es-
timation, using automatic WER prediction as a criterion
to isolate subsets of the adaptation data featuring vari-
able quality. As a result, ASR QE-based data selection,
in combination with KLD-based DNN adaptation, pro-
vides a significant advantage. Instead, the diversity of the
hypotheses generated by DNNss trained on different chan-
nels or with different procedure (batch-normalization)
is quite limited and the final combination step provides
small improvements with respect to the single systems.

Overall, the experimental results confirm the effec-
tiveness of the proposed approach that, using the pro-
vided training set and the baseline language models, al-
lows to improve from 22.3% to 16.5% WER (average on
the evaluation set).

Finally, note that the regularization coefficient « in
Eq. 1 can be made dependent on the quality of each test
sentence (e.g., by predicting the corresponding WER or
by implementing a specific training phase for estimating
sentence dependent o, being k the identifier of the k"
test utterance) allowing to implement a soft scheme for
DNN adaptation: this approach has given promising re-
sults on the recognition of a data set of children speech
[26].

A planned direction for further investigations is the
introduction of more effective types of neural network
architectures (Convolutional Neural Networks or Long-
Short Term Memory Recurrent Neural Networks [27]),
both for improving the overall performance of the related
ASR systems and for augmenting the diversity of the hy-
potheses. In this way both the quality of the supervision
and the efficacy of hypotheses combination are expected
to increase.
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