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Abstract
Robust automatic speech recognition in adverse environments
is a challenging task. We address the 4th CHiME challenge [1]
multi-channel tracks by proposing a deep eigenvector beam-
former as front-end. To train the acoustic models, we pro-
pose to supplement the beamformed data by the noisy audio
streams of the individual microphones provided in the real set.
Furthermore, we perform data augmentation by modulating the
amplitude and time-scale of the audio. Our proposed system
achieves a word error rate of 4.22% on the real development
and 8.98% on the real evaluation data for 6-channels and 6.45%
and 13.69% for 2-channels, respectively.

1. Background
This report describes our proposed ASR system for the 6- and
2-channel task of the 4th CHiME challenge. The proposed mod-
ifications of the baseline system are:
• As multi-channel front-end we employ an optimal multi-

channel Wiener filter, which consists of an eigenvec-
tor GSC beamformer and a single-channel postfilter.
Both components depend on a speech presence proba-
bility mask, which we learn using a deep neural network
(DNN).

• In addition to the beamformed signals we use noisy
multi-channel real data to train the acoustic model of the
ASR, i.e. we perform multi-channel training.

• We perform data augmentation by modulating the signal
amplitude (volume perturbation) and time-scale modifi-
cations (speed perturbation).

• We perform sequential language model rescoring using
(gated) RNNs.

• We combine multiple systems with a lattice-based ap-
proach which uses minimum Bayes risk decoding.

A detailed introduction of the individual components and rele-
vant literature are provided in the next section.

2. Robust Multi-Channel ASR System
Figure 1 shows the block diagram of the proposed multi-
channel ASR system including the data augmentation and
multi-channel training of the recognizer. Each processing step
is detailed in the following sections.

This work was supported by the LEAD project, the Austrian Sci-
ence Fund (FWF) under the project number P25244-N15 and P27803-
N15 and the K-Project ASD. Furthermore, we acknowledge NVIDIA
for providing GPU computing resources.

Deep Eigenvector
Beamformer Perturbation

Feature
Extraction

ASR

Rescoring

2ch/6ch
real+simu real+simu

WER

2ch/6ch, real

Figure 1: System overview.

2.1. Deep Eigenvector Beamformer

As multi-channel speech enhancement front-end we employ
a deep eigenvector beamformer, which consists of a general-
ized sidelobe canceller (GSC) beamformer [2–6], followed by
a single-channel postfilter. The GSC consists of a steering vec-
tor F , a blocking matrix B, and an adaptive interference can-
celler, such that: W = F −BHAIC . The GSC block diagram
is given in Figure 2. The steering vector F has to model the
acoustic transfer functions (ATFs) from the speaker to the mi-
crophones [7]. Usually this is done by a direction of arrival
(DOA) estimation. However, this method does not include the
complex propagation paths present in the CHiME4 data. There-
fore we use the dominant eigenvector of the speech PSD matrix
Φ̂SS as steering vector F , such that the beamformer is directed
towards the speech source in signal subspace. This allows the
beamformer to account for early echoes and reverberation of
the speaker signal [7–9]. Hence, we refer to this beamformer as
eigenvector GSC (EV-GSC).

Using the steering vector F , the blocking matrix is given as
B = I − FFH . The adaptive interference canceller HAIC is
learned using an adaptive NLMS filter [10]. The single-channel
postfilter consists of a real-valued gain mask G = ξ

1+ξ
, which

is obtained from the SNR ξ at the beamformer output. It is
given as ξ = WHΦ̂SSW

WHΦ̂NNW
. The SNR depends on both the

speech and noise PSD matrices, which are estimated using
a time and frequency dependent speech presence probability
pSPP .

We use a DNN to learn pSPP from the dominant eigenvec-
tor of the PSD matrix of the noisy inputs. As we are operat-
ing in the frequency domain, each frequency bin k is assigned
to a kernel as shown in Figure 3. The feature vector xk for
each kernel consists of the cosine distance between the eigen-
vectors of 5 consecutive frames. This introduces some context-



Figure 2: GSC beamformer

sensitivity into our model. The DNN of each kernel uses a
hybrid model with a generative and a discriminative compo-
nent [11]. The generative component consists of two autoen-
coder layers, which perform unsupervised clustering of the in-
put data xk. The autoencoder kernels operate independently for
each frequency bin. We used 20 neurons in the first layer, and
10 neurons in the second layer. The discriminative component
consists of a regression layer which fuses the activations of all
autoencoder kernels, in order to exploit information which is
distributed across the frequency. The regression layer predicts
the K output labels pSPP (xk)). Figure 3 illustrates the kernel-
ized DNN used in our system.

For more details on the EV-GSC beamformer and the ker-
nelized DNN, we refer the reader to [12]. We use the same
architecture for the 2ch and 6ch track, as the training data is the
same for both tracks.

Figure 3: Kernelized DNN to estimate the speech presence
probability pSPP

2.2. ASR

The ASR system employs a hybrid DNN architecture which is
implemented with the Kaldi toolkit [13]. We do not only use the
beamformed data for training but add the noisy channels of the
real data (except for channel 2 which faces backwards). With
this multi-channel training (MC) we can both compensate for
the small amount of training data and make the acoustic model
less sensitive to noise that might be left over in the evaluation
data. In the evaluation stage we still use only the beamformed
signals.

The GMM system uses 13 MFCCs and their deltas and
delta-deltas. The DNN uses 40 fMLLR features extracted from
this GMM system. For the DNN the data is augmented with
speed-perturbed copies of the original data. Additionally, the
data is volume-perturbed for greater robustness (pert). The
DNN is then generatively pre-trained using restricted Boltz-

mann machines. The DNN has 6 hidden layers and is trained
with a state-level minimum Bayes risk (sMBR) criterion. The
results which have been obtained in this way are then rescored
with a Kneser-Ney smoothed 5-gram model (5-gram), a re-
current neural network language model (RNNLM) and a gated
RNNLM (GRNNLM). The two RNNLMs consist of a single
hidden layer with 300 and 500 neural units, respectively.

We perform system combination by first combining the lat-
tices of the system with perturbed training data (pert), the sys-
tem with multi-channel training (MC) and the system that uses
both (MC + pert). We then decode the resulting lattices with an
sMBR criterion.

3. Experimental Evaluation
Table 1 shows the results of our systems for the 6-channel and
2-channel tasks of the 4th CHiME challenge. For each data set
the best score for a single system and for system combination
is in boldface. Due to time constraints we report only those
results for the 2-channel task which uses the system architecture
that we have found to be optimal for the 6-channel task (SC).
Therefore the following comparison focuses on the 6-channel
task.

On average over the test sets, our proposed EV-GSC beam-
former of S2 performs 2% WER better than the baseline Beam-
formIt beamformer of S1, i.e. 7.95% WER vs. 9.98% WER
for the RNNLM-rescored DNN. However, this performance im-
provement is the least pronounced for the real evaluation data.
Data augmentation through speed perturbation and volume per-
turbation (pert) of S3 results in an improvement of .74% WER
on average, i.e. 7.20% WER vs. 7.95% WER. Multi-channel
(MC) training of S4 leads to an improvement of 0.80% WER on
average, i.e. 7.15% WER vs. 7.95% WER. Both multi-channel
training and amplitude and time-scale perturbation (MC+pert)
of S5 results in an improvement of 1.19% WER on average,
i.e. 6.75% WER vs. 7.95% WER. Further rescoring with the
gated RNNLM leads to a small improvement of 0.04% WER.
The best results for 6-channels are achieved by a combination
of systems S3, S4, and S5 as S6. In particular, we obtain a
WER of 8.98% and 7.02% on the real and simulated test set,
respectively.

Table 2 shows the individual results for each environment
of our best system for the 6- and 2-channel track. For both
systems, performance on the real evaluation data set is consid-
erably worse for BUS than for any other environment.
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Table 1: Average WER (%) for the tested systems.
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Tag ASR Data BF real simu real simu

2ch
SA GMM – EV-GSC 14.16 15.13 26.33 24.12
SB GMM MC EV-GSC 13.41 15.36 23.46 23.49
SC DNN

M
C

+
pe

rt

E
V

-G
SC

9.38 11.33 17.92 18.10
+sMBR 9.24 10.91 17.16 17.46
+5-gram 7.63 9.60 15.29 15.81

+RNNLM 6.66 8.54 14.02 14.46
+GRNNLM 6.45 8.29 13.69 14.33

6ch
S1

GMM
–

be
am

fo
rm

it 12.78 14.87 23.13 23.06
DNN 9.41 10.43 17.26 17.14

+sMBR 8.33 9.21 15.72 15.88
+5-gram 6.91 7.96 13.75 13.63

+RNNLM 5.99 7.16 12.21 12.42
+GRNNLM 6.03 7.21 12.07 12.50

S2

GMM

–

E
V

-G
SC

11.21 11.92 23.41 16.13
DNN 8.32 8.32 17.36 11.75

+sMBR 7.37 7.52 15.55 10.83
+5-gram 6.01 6.14 14.05 9.35

+RNNLM 5.14 5.48 12.60 8.56
+GRNNLM 5.16 5.51 12.64 8.35

S3

DNN

pe
rt

E
V

-G
SC

7.82 7.96 16.13 11.01
+sMBR 6.83 6.86 14.34 10.16
+5-gram 5.66 5.76 12.78 8.70

+RNNLM 4.71 5.13 11.53 7.44
+GRNNLM 4.74 5.05 11.45 7.34

S4

GMM

M
C

E
V

-G
SC

11.05 11.77 19.65 15.93
DNN 8.15 7.94 14.38 11.37

+sMBR 7.30 7.49 13.38 10.56
+5-gram 5.82 6.17 11.55 9.51

+RNNLM 4.96 5.27 10.23 8.14
+GRNNLM 4.86 5.29 10.08 8.06

S5

DNN

M
C

+
pe

rt

E
V

-G
SC

7.65 8.03 13.53 10.89
+sMBR 6.81 7.24 12.50 10.01
+5-gram 5.53 6.08 10.94 8.57

+RNNLM 4.65 5.35 9.63 7.38
+GRNNLM 4.66 5.28 9.54 7.38

S6 combination EV-GSC 4.22 4.73 8.98 7.02
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