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Abstract 
This paper describes CRIM's contribution to the 4-th CHiME 
speech separation and recognition challenge. We took part in 
all the three tracks of the CHiME-4 challenge. Since the 
focus of this challenge was to address the more difficult 1 
channel and 2 channel tasks, we focussed on algorithms that 
will have the largest impact on these two tasks. We focussed 
on increasing the training data and on using proven robust 
features from previous challenges so that they can favorably 
impact the word error rates (WER) for 1 channel and 2 
channel tasks. We enhanced the training data by using the 
audio from all the microphones (i.e., microphones 1-6) 
instead of just microphone 5. We also added beamformed 
data from mic 1, 3-6. We band-limited the above training 
data to 4 kHz bandwidth and added these to the original 
training set, thereby doubling the training data. We tried 
many different robust feature parameters to see which ones 
actually gave lower WER than the Mel-frequency cepstral 
coefficients. In all our sub-systems we used the baseline 
language model and the backend provided by the organizers.  
Three different robust features actually gave lower WER for 
the 1 channel task. Combining the recognition outputs of 6 or 
7 different features gave the optimal reduction in WER for 
the 1 channel, 2 channel and 6 channel tasks. Among all the 
features used in this task the Regularized MVDR Cepstral 
Coefficients (RMCC) features performed the best. 
 
Index Terms: 4th CHiME challenge, speech recognition, 
robust features, RMCC, ROVER, DNN. 

1. Introduction 
Automatic speech recognition is a key component in hands-
free man-machine interaction. State-of-the-art speech 
recognition systems are based on statistical acoustic models 
which are trained in a clean and controlled environment. In 
recent years the use of deep neural network acoustic model 
and large amount of training data has helped to improve the 
performance of automatic speech recognition significantly. In 
many applications, speech recognition systems are deployed 
in real world scenarios (e.g. cafe, bus station, street, and 
pedestrian area) where the speech signal is severely distorted 
by background noise and reverberation. Consequently, the 
performance of speech recognition systems trained on clean 
data degrades severely in noisy and reverberant environments 
because of the mismatch between the training and the test 
conditions. Therefore, robust speech recognition in real world 
scenarios has attracted increasing attention in ASR research 
and development. This attention is due to the widespread use 
of mobile devices with speech enabled personal assistants. 
The fourth edition of CHiME (CHiME-4) challenge, 
designed to be close to a real world application, provides a 

common framework for the evaluation and comparison of 
various approaches for the noise robustness of speech 
recognition system. Although CHiME-4 challenge revisits 
the corpora originally collected for CHiME-3, the level of 
difficulty has been increased by imposing constraint on the 
number of microphones available for testing. Depending on 
the number of microphones available for testing CHiME-4 
offers three tracks: 1 channel, 2 channel and 6 channel tracks. 
CHiME-4 corpus is comprised of Wall Street Journal corpus 
sentences spoken by speakers situated in challenging noisy 
environments (such as bus, street junction, cafe, and 
pedestrian area) recorded using a 6-channel tablet based 
microphone array [1]. A Kaldi-based [2] baseline speech 
recognizer is provided by the organizers which uses sequence 
trained deep neural network (DNN) acoustic models and 
language model (LM) rescoring based on a linear 
combination of 5-gram LM and RNNLM [3]. 
In this work we present CRIM's system designed for CHiME-
4 challenge tasks and report evaluation results. We took part 
in all the three tracks of the 4-th CHiME challenge: 1 channel 
(1ch), 2 channel (2ch), and 6 channel (6ch) tracks. In our 
contribution we mainly focussed on the robust features 
extraction and combination of systems based on different 
frontends using ROVER. In order to reduce the word error 
rate (WER), we tried many robust features that have 
performed better in other evaluations of noisy corpus such as 
the REVERB challenge [4] / AURORA-4 corpus [5], and 
also features that showed good performance in a speaker 
recognition task. In addition to the conventional Mel-
frequency cepstral coefficients (MFCC) features, we tried the 
following robust features for speech recognition for CHiME-
4 challenge tasks:  

 The regularized MVDR spectrum-based cepstral 
coefficients (RMCC) [6, 7]. 

 Gabor filter-bank feature (GBFB) [8]. 
  The ETSI - advanced front end (ETSI-AFE) [9]. 
  Infinite impulse response – constant Q transform 

(IIR-CQT) [10] - based cepstral coefficients 
(ICQC).  

 The IIR-CQT–based log filterbank (ICQF) features 
[11].  

For the 2ch and 6ch tasks, all our systems employ 
beamformed speech signals supplied by a weighted delay-
and-sum beamforming technique. In two systems we apply 
beamforming after enhancing the signals using weighted 
prediction error (WPE)-based dereverberation [12] and 
Consistent Wiener filtering (CWF)-based audio source 
separation [13] techniques. We denote those two systems as 
the WPE-MFCC, CWF-MFCC, respectively. The only 
difference between the CWF-MFCC and CWF2-MFCC 
systems is in the noise spectrum estimation while performing 
audio source separation using CWF. CWF-MFCC uses a 
MMSE-based noise spectrum estimator whereas CWF2-



MFCC utilizes regional statistics-based noise spectrum 
estimator. The motivation behind using the ICQC and ICQF 
features is that these features provide good performance in 
speaker verification and spoofing detection tasks [11]. As 
mentioned in the abstract, using all the training data 
(channels 1-6) gave significantly lower WER than using just 
the 5 channels (1, 3-6). Also, band-limiting the training data 
and adding it to the training data [14] had only a small effect 
on the WER of the development set. Among all the frontends 
considered for the CHiME-4 tasks, the Regularized MVDR 
Cepstral Coefficients (RMCC) features yielded the lowest 
WER. Combining results of 6 or 7 different feature-based 
systems with ROVER (Recognizer Output Voting Error 
Reduction) [15] gave the lowest WER for all the tasks. 

2. CHiME-4 Tasks 
The CHiME-4 challenge revisits the CHiME-3 corpora with 
increased level of difficulty by imposing a constraint on the 
number of microphones available for testing. CHiME-4 tasks 
consist of three tracks: 1 channel (1ch), 2 channel (2ch) and 6 
channel (6ch) tracks. The 6ch track is based on a subset of 
the channels of CHiME-3 data. CHiME-4 challenge is 
designed to be close to the real world applications having real 
acoustic mix, i.e., speakers speaking in challenging noisy 
environments such as bus, street junction, cafe, and 
pedestrian area. 
 

3. Overview of CRIM System 
In this section we provide an overview of the CRIM system 
as presented in fig. 1, for the 1ch, 2ch and 6ch tasks of 
CHiME-4 challenge. Our main contributions include: 
 

i. We band-limit the training data to 4 kHz bandwidth 
and include these to the original training set, 
thereby doubling the training data. 

ii. For multi-channel tasks, as a pre-processing step, 
we apply beamforming to enhance the target 
speech. This step is same as the baseline system 
provided by the organizer. In two of our systems 
we additionally enhance the signals using weighted 
prediction error (WPE)-based dereverberation [12] 
and Consistent Wiener filtering (CWF)-based audio 
source separation [13] techniques and then apply 
beamforming. 

iii. We extract robust features by employing RMCC 
feature extractor.  

iv. We combine different robust-feature-based systems 
using ROVER. 

 

3.1. Pre-processing 
As a pre-processing for 2ch and 6ch tasks we enhance the 
target speech by using a weighted delay and sum 
beamforming technique. After selecting a reference signal 
based on the pair-wise cross-correlation, the time delay 
between a microphone and the reference is estimated using 
the GCC-PHAT algorithm. Weights for the m-th microphone 
are estimated from the cross-correlations of the m-th 
microphone with other microphones. Finally beamformed 
signal ( )ŷ t is obtained using the estimated delays and 
microphone weights as 
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M
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where m is the microphone index, M is the total number of 
microphones, mw  and mτ are the estimated weights and time 

delays, respectively and ( )my t is the m-th microphone 
signal. 
Among our systems, one system utilizes weighted prediction 
error (WPE)-based dereverberation to enhance the 1ch, 2ch 
and 6ch signals. The WPE does dereverberation using a 
linear time invariant filter and produces M-channel outputs 
from M-channel inputs. From the M-channel dereverberated 
signals (M > 1) beamformed signal is obtained using a 
weighted delay and sum beamforming technique. 
Another one of our systems employs a consistent Wiener 
filtering (CWF)-based audio source separation to enhance the 
signals. The CWF refers to a time-frequency masking which 
takes into account the consistency of spectrograms for the 
computation of true optimal solution to the Wiener filtering 
problem. In this framework, to estimate noise spectrum we 
used either a MMSE-based noise spectrum estimator or a 
regional statistics-based noise spectrum estimator. 
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Fig. 1. Schematic diagram of CRIM’s system for the 4-th 
CHiME challenge. Beamforming is applied to the multi-
channel signals only. Only two of our systems use weighted 
prediction error (WPE)-based dereverberation and consistent 
Wiener filtering (CWF)-based audio source separation 
(shown with dotted rectangle). 
 

3.2. Extraction of robust features 
In this section we describe the robust features used for 
CHiME-4 challenge tasks. 

3.2.1. The ETSI-advanced front-end (ETSI-AFE) 

The ETSI-advanced frontend (ETSI-AFE) [9] employs a 
two-stage Wiener filter and blind equalization technique, 
which is based on the comparison to a flat spectrum and the 
application of the LMS (Least Mean Squares) algorithm, for 
improving robustness of ASR systems against additive noise 
distortions and channel effects.  



3.2.2. Gabor filterbank features (GBFB) 

The Gabor filterbank (GBFB) features [8] are extracted from 
the log Mel-filterbank spectrum using auditory motivated 
spectral-temporal 2D filters. These filters were tuned to 
specific spectro-temporal modulation patterns that occur in 
speech signals and motivated by the fact that some neurons in 
the primary auditory cortex of mammals were found to be 
tuned to very similar spectro-temporal modulation patterns.  

3.2.3. IIR-Constant Q transform-based features 

The ICQC and ICQF feature representations are derived from 
the infinite impulse response - constant Q transform by 
recursively filtering the multi-resolution fast Fourier 
transform of the signal. We refer to these features by the 
acronym ICQC for Infinite impulse response Constant Q 
transform Cepstrum and ICQF for Infinite impulse response 
Constant Q transform log filterbank features. In order to 
compute ICQC features we first estimate the IIR-CQT 
spectra by designing an infinite impulse response (IIR) 
filterbank that has constant Q behavior. The location of the 
poles of the IIR filterbank vary for each frequency bin along 
the real axis in order to make wider window width for lower 
frequency and narrower for higher frequency. Then a linear 
time variant (LTV) IIR filter is devised based on the poles of 
the filterbank. The filter is applied in the forward direction 
followed by reverse filtering to obtain the IIR-CQT spectrum 
[10]. The ICQC features, as shown in fig. 3, are obtained by 
applying discrete cosine transform to the estimated spectrum 
following logarithmic compression [11].  
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Fig. 2. The ICQC and ICQF feature extraction from 
the IIR-CQT spectra. Here Q = 13 was chosen. 

3.2.4. Regularized MVDR cepstral coefficients 

The conventional Mel-frequency cepstral coefficients 
(MFCC) are usually computed from a DFT-based spectral 
estimate. When regularized MVDR (RMVDR) spectrum 
estimator is used to compute the cepstral features instead of 
the DFT-based spectrum estimator we denote the features as 
the regularized MVDR cepstral coefficients (RMCC). RMCC 
was introduced in [6, 7] and evaluated on the AURORA-4 
corpus under both clean and multistyle training modes. Here 
we use RMCC to extract robust features for the CHiMe-4 
challenge tasks.  
 
The first step in computing RMCC is to estimate RMVDR 
spectra. Similar to the MVDR spectrum estimator, the p-th 
order regularized MVDR spectral estimate can be 
parametrically written as 
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where the parameter ( )r kµ of the regularized MVDR 
method can be obtained from a non-iterative computation 
using the regularized LP (RLP) coefficients r

qa and the 

prediction error variance r
eσ as: 
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The regularized predictor coefficients r
qa are computed by 

adding a penalty measure ( )uaψ , which is a function of the 

unknown predictor coefficients ua , to the objective function 
of the LP method and therefore, minimizing the modified 
objective function of the following form [1, 2]   
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Where ( )s n  is the current speech sample, regularization 

constant 0λ >  controls the smoothness of the all-pole 
spectral envelope. RLP method helps to penalize the rapid 
changes in all-pole spectral envelope and therefore, produces 
a smooth spectral estimate keeping the formant positions 
unaffected [6]. The optimal values chosen for the model 
order p and regularization constant λ  are 100 & 10-7, 
respectively [6, 7]. 
After estimating RMVDR spectrum, RMCC features are 
obtained by integrating Mel-scale filterbank and taking 
discrete cosine transform following logarithmic compression. 
Mean and variance normalization is used for feature 
normalization. 
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Fig. 3. Regularized MVDR cepstral coefficients 
(RMCC) feature extraction. 

3.3. Backend 
The backend of our system is very similar to the default 
system provided by the challenge organizers. The language 
models (LM) are the same: the search language model, the 5-
gram rescoring LM and the RNNLM are the same. The 
training process is the same for the features with small 
dimension. For features with large dimension (like GBFB 



and ICQF features), the output states are the same as for the 
MFCC features, but the input to the DNN corresponds to the 
feature dimension (with +/- 5 frames context). For features 
with smaller dimension, the initial alignment of the training 
set with MFCC features is used to train the GMM-HMM sat 
models for the new features. As mentioned before, the 
training data consists of all the training data from channels 1-
6 and also includes the beamformed training data from 
channels 1, 3-6. The data is doubled by band-limiting each 
training audio file to 4 kHz. The training process is the same 
as provided by the organizers. We discriminatively train one 
DNN for each feature. For each track, we generate one ctm 
file for each feature and each set (i.e., development and 
evaluation). These ctm files are generated after rescoring 
with 5-gram LM followed by RNNLM rescoring.  

3.4. Combining systems using ROVER 
In this step we combine the ctm files of 6 or 7 systems, 
obtained in the previous step, using ROVER. As mentioned 
before, some of the features gave significantly lower WER 
for the evaluation set for some of the tracks. Combining the 
results from six or seven different features-based systems 
reduced the WER even further. 
ROVER [15] reduces word error rates for automatic speech 
recognition systems by exploiting differences in the nature of 
the errors made by multiple speech recognition systems. It 
works in two steps:  
 

 The outputs of several speech recognition systems 
are first aligned and a single word transcription 
network (WTN) is built.  

 The best scoring word (with the highest number of 
votes) at each node is selected. The decision can 
also incorporate word confidence scores if these are 
available for all systems [15]. 

4. Experiments and Evaluation Results 
 
Word error rates (WER) for each feature parameter and for 
each task are shown in Table 1. As mentioned before, for 
each feature parameter, we discriminatively train one DNN 
as provided by the default scripts. The same DNN is used to 
compute WER for all the tasks. For 1 channel task, there is 
no beamforming. For 2 channel and 6 channel tasks, the dev 
and eval sets go through appropriate beamforming using the 
beamforming software supplied by the organizers. In Table 1, 
the first row in each task corresponds to the default setup 
provided by the organizers. We ran the provided scripts and 
the results correspond to those scripts. The first row only uses 
channel 5 training data. The 2nd row for each task uses 
training data from channels 1 through 6 (channel 0 is not 
used). We also use the training data after beamforming using 
channels 1, 3, 4, 5, 6. Channel 2 was not used in this 
beamforming. 
 
From Table 1 we can see that for 1ch task, the RMCC, GBFB 
and ETS-AFE features (rows 3-5) gave lower WER for the 
real test set than using the MFCC features (row 2). For 2 
channel and 6 channel cases, only RMCC feature gave better 
results than the MFCC features. We combined results from 
different features using ROVER. We combined them in the 
WER order. 

Table 1 : Average WER for the tested systems. 

Track System 
Dev Test 

real simu real simu 

1ch 

MFCC (5ch) 
MFCC 
RMCC 
GBFB 

ETSI-AFE 
ICQF 

WPE-MFCC 
ICQC 

CWF-MFCC 
CWF2-MFCC 

ROVER 

11.46 
9.46 
8.46 
9.33 

10.02 
11.03 
14.02 
13.62 
16.39 
17.40 
6.79 

13.10 
10.65 
11.24 
12.74 
12.54 
15.93 
15.78 
19.03 
18.39 
19.65 
9.27 

23.08 
18.87 
15.16 
17.61 
17.65 
22.12 
28.44 
26.06 
31.09 
32.47 
12.70 

20.88 
16.43 
15.83 
18.03 
17.01 
22.28 
22.87 
27.62 
23.70 
25.46 
13.72 

2ch 

MFCC (5ch) 
MFCC 
RMCC 
GBFB 

ETSI-AFE 
ICQF 

WPE-MFCC 
ICQC 

CWF-MFCC 
CWF2-MFCC 

ROVER 

8.39 
6.72 
6.22 
7.29 
8.96 
8.48 

10.11 
10.39 
13.40 
12.79 
5.13 

9.44 
7.75 
8.29 
9.63 

10.95 
12.28 
11.11 
14.16 
13.82 
14.31 
6.69 

16.70 
13.77 
11.54 
13.91 
16.14 
18.10 
20.18 
21.17 
23.67 
25.81 
9.97 

15.16 
12.00 
11.74 
14.52 
14.52 
18.13 
17.47 
22.39 
19.89 
21.23 
10.34 

6ch 

MFCC (5ch) 
MFCC 
RMCC 
GBFB 

ETSI-AFE 
ICQF 

WPE-MFCC 
ICQC 

CWF-MFCC 
CWF2-MFCC 

ROVER 

6.08 
4.86 
4.86 
5.96 
7.09 
6.74 
6.75 
8.19 
8.13 
9.20 
4.00 

6.82 
5.49 
5.98 
7.40 
8.67 
9.41 
7.82 

10.16 
9.94 

11.78 
5.07 

11.50 
9.97 
8.65 

10.40 
12.42 
13.31 
13.54 
14.16 
17.09 
18.71 
7.23 

10.73 
8.75 
8.71 

10.70 
11.30 
13.72 
13.27 
16.00 
15.56 
16.47 
7.53 

 

Table 2 : WER per environment for the best system. 

Track Envir. Dev Test 
Real simu real simu 

1ch 

BUS 
CAF 
PED 
STR 

8.54 
7.51 
4.68 
6.43 

7.95 
12.37 
7.04 
9.71 

18.75 
13.80 
9.55 
8.70 

9.73 
16.59 
13.73 
14.85 

2ch 

BUS 
CAF 
PED 
STR 

6.40 
5.24 
3.78 
5.10 

5.66 
8.63 
5.03 
7.42 

14.21 
9.90 
8.20 
7.58 

7.28 
12.05 
10.80 
11.23 

6ch 

BUS 
CAF 
PED 
STR 

5.24 
3.95 
2.74 
4.07 

4.48 
6.28 
3.86 
5.65 

9.44 
6.50 
6.02 
6.95 

4.97 
8.11 
7.47 
9.58 

 
For 1ch task, we achieved the best results when we combine 
following 6 features: RMCC, GBFB, ETSI-AFE, MFCC, 
ICQF, and ICQC as shown in the last row for 1 channel results. 
For the 2 channel task, we achieved the best results when we 
combine 7 different features, namely, RMCC, MFCC, GBFB, 
ETSI-AFE, ICQF, WPE-MFCC and ICQC. For 6 channel task 



also, we achieved the best results when we combine the outputs 
from these 7 different feature parameters in the same order. 
These results are shown in the last row of each track. Results 
for each environment after ROVER are shown in Table 2. For 1 
channel task, for real test set, we have reduced the WER by 
45% (from 23.08% to 12.7%). For 2 channel task, WER has 
been reduced by 40% (from 16.7% to 9.97%), and for the 6 
channel task the WER has been reduced by 37% (from 11.5% 
to 7.23%). 
 
In table 3 we compared the WER of CRIM’s system with the 
USTC-iFlytek system for CHiME-4 challenge with the lowest 
WER on the real portion of evaluation set [16]. Since we only 
used the default LMs, this comparison is with the default LMs 
for both the systems. Note that in [16], DNN-based single 
channel speech enhancement was used to enhance the signals, 
and, besides DNN-based acoustic model, deep convolutional 
neural networks (DCNN)-based upgraded acoustic models 
were also used.  As we can see from table 3, CRIM's WER for 
1ch system is close to the WER for the best CHiME-4 system. 
The primary reason for this is the noise robust RMCC features. 
 

Table 3: WER comparison of CRIM’s system with 
the best CHiMe-4 system [16] using the baseline (or 
default) language models on the evaluation set (real 
only). 

Track 
Real 

CRIM Best system [16] 
1ch 12.7 11.15 
2ch 9.97 5.41 
6ch 7.23 3.24 

 

5. Conclusion and Future Works 
We presented automatic speech recognition systems developed 
at CRIM for the all three tracks (1ch, 2ch and 6ch) of CHiME-
4 challenge. We used the same backend and baseline language 
models provided by the organizer.  Therefore, to reduce word 
error rates (WER) we mainly focussed on the extraction of 
robust features and on system combination of various robust 
features-based sub-systems. Compared to the other features the 
RMCC features provided lowest WERs in all three tracks. By 
combining multiple hypotheses from different robust features-
based systems we were able to reduce WER significantly from 
the baseline system. For 1ch track, for real test set, the WER 
was reduced by 45% (from 23.08% to 12.7%). For 2ch track, 
WER was reduced by 40% (from 16.7% to 9.97%), and for the 
6 channel task the WER was reduced by 37% (from 11.5% to 
7.23%). 

    In our future works we intend to keep RMCC features 
extractor fixed and focus on modifying the acoustic model 
and language models.  
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