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Abstract
In this work, we focus on methods for enhancing the six-
channel CHiME4 data using beamforming that is driven by
voice activity detectors (VAD). We propose two beamformers
and two VADs that are based on trained deep neural networks
(DNN). Their combinations are compared when used as front-
ends whose outputs are forwarded to the baseline automatic
speech recognition system. Results in term of Word-Error-Rate
(WER) achieved when the acoustic model of the baseline is or
is not adapted for the given front-end (re-trained on enhanced
training sets) are reported.

1. Introduction
Many multichannel speech enhancement systems apply beam-
forming methods such as the conventional Delay-and-Sum
Beamformer (DSB), various implementations of minimum vari-
ance distortionless (MVDR) beamformer, or a generalization
of the latter one, the linearly constrained minimum variance
(LCMV) beamformer [1]. In order to achieve optimum per-
formance, parameters have to be estimated and tracked with a
sufficient accuracy. If not, the target signal in the system output
can be distorted, which often deteriorates the final performance
achieved by back-end processors (e.g., automatic speech recog-
nition systems) even if the Signal-to-Noise Ratio (SNR) in a
beamformer’s output is improved.

In the conventional beamforming, the free-field sound prop-
agation is assumed, and the DSB relies purely on the Time-
Difference-Of-Arrival (TDOA) estimation. By contrast, the
MVDR and LCMV can regard reverberation and multiple
sources when using relative transfer functions (RTFs); see [2].
Such systems tend to be less robust as compared to the con-
ventional approach. In particular, they are more sensitive to
possible nonlinearities in the signal path as well as to various
measurement (sensor) failures. On the other hand, their perfor-
mance is potentially higher than that of the DSB, especially, in
multi-source and reverberant conditions. The goal of this work
is to compare the methods within CHiME4.

The baseline system of CHiME4 utilizes a state-of-the-
art DSB technique named BeamformIt, proposed in [3]. The
method estimates TDOAs using generalized cross-correlations
(GCC-PHAT) and performs a robust multichannel TDOA track-
ing, which significantly helps to avoid sudden changes and esti-
mation errors in TDOA. This and other straightforward modifi-
cations such as a mechanism that helps to avoid microphone
failures make BeamformIt robust and useful for CHiME4.
A practical drawback is that BeamformIt is passing through the
signals several times before the output is computed, which ham-
pers its direct applicability in continuous (on-line) processing.

Multichannel enhancement systems applying MVDR or
LCMV with the aid of Deep Neural Networks (DNN) were ap-
plied to CHiME3 data; see, e.g., [4, 5]. The beamformers rely
on the estimation of the noise covariance and of the source steer-
ing vector from masked signals, where the masks are obtained
as outputs of DNNs.

In this work, approximate Minimum Mean-Squared Er-
ror beamformer (MMSE), recently proposed in [6], is mod-
ified in order to be applied within CHiME4. Similarly to
[4, 5], the beamformer exploits DNNs, however, the DNNs are
used to control the estimation of RTFs, not the estimation of
noise/speech covariances. This is done through applying the
RTF estimator from [7] where speech presence probabilities are
obtained as the outputs of Voice-Activity Detectors (VAD) that
are realized using the DNNs.

The performance of the MMSE depends purely on the accu-
racy of the estimated RTFs. As such, the beamformer strongly
relies on the linearity of the observed signals. However, this ap-
pears to be often violated in the CHiME4 data, e.g., because of
microphone failures and nonlinear gain fluctuations. The results
of this work thus provide a comparison of the advanced beam-
forming with BeamformIt. We compare also a Filter-and-Sum
Beamformer (FSB) based on the estimated RTFs, which could
be seen as a solution on the half way between the MMSE and
BeamformIt.

The paper is organized as follows. Section 2 describes the
problem and basic beamforming approaches. Section 3 pro-
vides details of the proposed multichannel enhancement sys-
tems. Section 4 defines the back-end solutions that we use for
CHiME4. Section 5 reports the results and Section 6 concludes
the paper.

2. Problem Description
2.1. Model

A noisy recording of a directional source observed through m
microphones can be described, in the short-term frequency do-
main, as

x(k, `) = g(k, `)s(k, `) + y(k, `), (1)

where x(k, `) is them×1 vector of the signals on microphones,
s(k, `) is the target speech as observed on a reference micro-
phone, and y(k, `) involves all other interfering sources and
noise components that are uncorrelated with s(k, `); k is the
frequency index and ` is the frame index.

The vector g(k, `) determines the position of the target
speaker. Its elements contain relative transfer functions (RTFs)
related to the reference microphone [2]. Since the speaker can
perform movements during utterances, g(k, `) is varying in



time. Nevertheless, we assume that the changes are slow, so
g(k, `) is approximately constant during blocks of frames.

From now on we will omit the arguments k and ` from the
notation. They will be used only when the more precise notation
is needed.

2.2. MVDR and MMSE beamforming

The MVDR beamformer is a popular multichannel processor
that extracts s from x, thereby reduces noise, enhances or even
dereverberates the target signal [8]. Its output is u = wH

MVDRx
where

wMVDR =
C−1

y g

gHC−1
y g

. (2)

Here, Cy = E[yyH ] is the covariance matrix of the noise sig-
nal y, E[·] stands for the expectation operator, and ·∗ and ·H
denote the conjugate value and the conjugate transpose, respec-
tively.

The beamformer can be followed by a Wiener postfilter that
attenuates the residual noise yres = wH

MVDRy in the output
of MVDR. The whole operation is equivalent to the Minimum
Mean Square Error (MMSE) beamforming [1] and is given by

wMMSE = wMVDR
E[|u|2]− E[|yres|2]

E[|u|2]︸ ︷︷ ︸
Wiener postfilter

. (3)

To apply MMSE and MVDR efficiently in practice, it is
crucial to estimate Cy, g and yres with a sufficient accuracy.

2.3. Previous MVDR implementations for CHiME3

In [4, 5], Cy is estimated with the aid of trained DNNs that
compute frequency-dependent speech presence probabilities.
The probabilities are used to control the noise covariance update
so that the update is suspended during the speaker activity and
vice versa. Then, the steering vector is estimated as the princi-
pal vector of the target covariance, which is estimated as the dif-
ference between the covariance of input signals C = E[xxH ]
and that of noise Cy.

The principal vector can be significantly biased in low SNR
conditions. In the frequency bands where the target signal is not
active, a vector steered towards another directional (interfering)
source can be obtained instead. The above noise covariance es-
timation is not effective in two aspects. First, the computation
of masks requires to pass data through a large DNN with as
many outputs as is the number of frequency bins, which is com-
putationally expensive. Second, the noise covariance should be
updated continuously, also during the speaker activity, when the
noise is nonstationary. The methods we propose here aims to
overcome these drawbacks.

2.4. Filter-and-sum beamforming

The computation of the inversion matrix in (2) increases the
computational burden and makes the MVDR (MMSE) beam-
former sensitive to estimation errors. Once the steering vector
g is estimated, a method that is less sensitive to possible errors
and does not require the knowledge (estimation) of Cy is rep-
resented by

wFSB =
1

m
(g−1)∗, (4)

where g−1 contains the reciprocal values of the elements of g.
This method, in fact, performs a filter-and-sum beamforming

(FSB) that is a generalization of the DSB for reverberant envi-
ronments. Indeed, in the free-field conditions, the FSB coin-
cides with the DSB, because the elements of g correspond to
pure delay filters, and g−1 are their respective inverse delays.

The FSB can be followed by the Wiener postfilter similarly
to (3) if any estimate of the residual noise in the FSB output
(i.e., an estimate of wH

FSBy) is available.

3. Front-End
In this section, details of four different systems for multichannel
speech enhancement are described. Each system is a combina-
tions of a VAD and of a beamformer.

Two VADs are considered where both are designed through
trained DNNs. One VAD performs a detailed speech presence
detection, that is, within each frequency bin. The other VAD
performs only the per-frame detection. The VADs are used to
estimate g−1 using the method from [7].

Then, two beamformers are considered: A variant of the ap-
proximate MMSE beamformer described in [6], and the simpler
FSB, which was described above.

The processing of signals proceeds in the short-time Fourier
(STFT) domain where the window length is 512 samples and
the frame shift is 128 samples. The systems operate in a batch-
online processing regime. Each batch of 100 STFT frames is
processed independently in the following steps.

1. The input channels are selected based on their time do-
main correlation coefficients. Specifically, for the ith
channel, the maximal correlation coefficient with the
other channels is computed; let us denote the value µi. If
this value is smaller than a threshold, the channel is not
used. However, at least two channels are kept for further
processing (the channels with maximum µi).

2. The reference channel is CH5 unless it has been with-
drawn in the previous step. If yes, the channel with the
maximum µi is selected.

3. VAD is applied to the selected channels.

4. The steering vector g as well as g−1 are assumed to be
approximately constant within the batch of frames. The
elements of g−1, that is, the respective RTFs related to
the reference channel, are estimated using the estima-
tor from [7] where speech presence probabilities are re-
placed by the outputs of VAD.

5. A given beamformer is applied. Its output is transformed
back to the time domain using the inverse Fourier trans-
form and overlap-add.

3.1. VAD using DNN

We consider two VADs: The first detector, referred to as sVAD,
yields the speech activity over every frame of the processed sig-
nal. The second one detector, referred to as dVAD, estimates the
speech activity for every frequency bin and every signal frame.
Both VADs are implemented as DNNs trained using the Torch
framework1. Training as well as testing sets were created from
the CHiME4 training data.

sVAD is trained to estimate Wiener gains (values between
0 and 1). Each STFT frame is represented by raw magnitude of
the 40 mel filter bank features (which are not decorrelated). The
input feature vector concatenates the analyzed frame, 10 frames

1http://torch.ch
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Figure 1: Illustration of the data flow of dVAD FB 4 (white–black color scale refers to 0–maximum values)

before and 2 after it. Global zero-mean and unit-variance nor-
malization is applied (computed from the training data).

sVAD consists of 5 hidden layers (3x256 and 2x128 neu-
rons, respectively) all with sigmoid activation function. Binary
Cross Entropy criterion was optimized using 1024 minibatches
and finished within 50 epochs. No pre-training or dropout was
used, data order was randomized every epoch.

dVAD consists of 6 smaller DNNs, referred to as
dVAD FB 1,. . . ,dVAD FB 6. Each DNN has one of six fre-
quency bands (FB 1,. . . ,FB 6) on its input together with re-
duced outputs of the previous DNNs. For example, the input
of dVAD FB 4 is illustrated in Figure 1.

The output of each DNN is a vector of values from the
interval [0; 1] containing the speech presence probabilities for
the respective frequency band and frame. The reduced outputs
(used on the inputs of the other DNNs) contain averages over 10
neighboring bins. For a given frequency bin, the training output
label is zero if the SNR for the frequency is smaller than 5 dB.
Otherwise, the label is set to one.

The structure of dVAD is computationally cheaper by about
50% as compared to a VAD that resides in a big DNN that com-
putes the speech probabilities in all frequency bins simultane-
ously. dVAD FB 1,. . . ,dVAD FB 6 were trained subsequently.
Therefore, zero mean and unit variance normalization of the in-
put data was applied between the training of each DNN.

Each dVAD FB x consists of 5 hidden layers (2x350, 256
and 2x128 neurons, respectively) all with ReLU activation func-
tion. For the kth frame, the context of frames k−8, k−6, k−4,
k−2, k+2 and k+4 is used. Mean Square Error criterion is op-
timized within 1024 minibatches. No pre-training was applied;
training data order was randomized. The training was finished
between epochs 54 and 60.

3.2. Approximate MMSE beamformer

We implement the MMSE beamformer as an approximate
MVDR followed by the Wiener post-filter. The MVDR part ex-
ploits a blocking matrix to obtain noise reference signals. The
blocking matrix is defined as (without any loss on generality,
assume that the reference channel is CH1)

B =


−1 g−1

2 0 . . . 0
−1 0 g−1

3 . . . 0
...

...
...

. . .
...

−1 0 0 . . . g−1
m

 , (5)

where g−1
i denotes the ith element of g−1. The noise reference

signal is obtained by passing the input through the blocking ma-

trix, that is,
u = Bx, (6)

however, this signal is different from the noise term y in (1).
Since the beamformer operates with a batch of frames, the least-
square estimate of y using u can be computed as

ŷ = CBH(BCBH)−1Bx, (7)

where C = E[xxH ] is replaced by its sample mean estimate.
The estimator (7) is scale-invariant in the sense that any scaling
substitution B ← ΛB where Λ is regular does not have any
influence on ŷ. In particular, this property is useful when B is
derived using blind methods such as Independent Component
Analysis (ICA) that can estimate B only up to the unknown
scaling factor Λ; see, e.g., [9].

The covariance of ŷ is equal to

Cŷ = E[ŷŷH ] = CBH(BCBH)−1BC. (8)

In the approximate MVDR, the strategy is to replace Cy in (2)
by Cŷ. The steering vector g can be computed directly from
g−1; an alternative approach is to compute g as a vector from
the null space of B.

Since the rank of Cŷ ism−1, its inversion matrix does not
exist. We therefore replace C−1

ŷ by the Moore-Penrose pseu-
doinverse denoted as C†ŷ. Then, the approximate MVDR beam-
former is represented by

ŵMVDR =
C†ŷg

gHC†ŷg
. (9)

In case that the target channel is different from the reference
channel, the scale-invariant least-squares can be applied as in
(7). Then, all enhanced channels can be obtained as ŴMVDRx
where

ŴMVDR =
CŵMVDR(ŵMVDR)

H

(ŵMVDR)HCŵMVDR
. (10)

From now on, let ŵMVDR denote the approximate MVDR for
the selected target channel. Let the output be denoted as v =
ŵH

MVDRx.
Using (7), the residual noise in the output can be estimated

as
r = ŵH

MVDRŷ. (11)

According to (3), the gain of the Wiener postfilter can be ap-
proximated as

G(k, `) =
max{|v(k, `)|2 − |r(k, `)|2, ε}

|v(k, `)|2 + ε
, (12)
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Figure 2: Results of the objective evaluation experiment in
terms of SDR and SIR. The results were averaged over the four
noisy environments BUS, CAF, STR and PED.

where ε is a small positive constant that prevents from division
by zero. The final output of the approximate MMSE is

ŝ(k, `) = G(k, `)v(k, `). (13)

It is worth noting that G(k, `) can be modified in various
heuristic ways before it is applied in (13). In CHiME-4, we
set G(k, `) = 1 for k corresponding to frequencies higher
than 3 kHz. By contrast, for the frequencies below 100 Hz,
G(k, `) = 0.01. The gain could be also modified according
to the output of the VAD. For example, if for given k the VAD
yields speech probability higher than 0.5, we set G(k, `) = 1
to avoid the distortion of the speech in the system output.

4. Back-End Solutions
For the experimental evaluation, we consider two automatic
speech recognition back-ends:

1. the baseline DNN+RNNLM back-end [10] provided by
CHiME4 organizers, and

2. the same back-end with a re-trained acoustic model.

The front-end processing usually introduces additional ar-
tifacts into the processed speech signals, which are unknown to
the acoustic model trained on the unprocessed signals. This may
lead to a deterioration of the performance of the ASR system
and motivates us to adapt the acoustic model for the given front-
end. This is done as follows. The training set is enhanced by
the front-end processor, by which a new training set is obtained.
Then, this set is used by the training procedure of the baseline
DNN models, which results in an adapted acoustic model.

5. Experiments and Results
5.1. Objective evaluation

Here, we describe an experiment where the proposed mul-
tichannel enhancement (front-end) systems are compared
with BeamformIt in terms of signal separation criteria from
BSS Eval [11]2. Two utterances were selected from the
development set: F01 421C0201 (a female speaker) and
M04 052C0112 (a male speaker). Four simulated (SIMU)
noisy variants of each utterance (BUS, CAF, STR and PED)
were processed by the enhancement systems. The outputs were
evaluated in terms of Signal-to-Distortion Ratio (SDR) and
Signal-to-Artefact Ratio (SAR). The results in terms of Signal-
to-Interference Ratio (SIR) were similar to SDR, but we do not

2We use version 2.3 of BSS Eval, which contains
bss decomp tvfilt.m, a function that enables us to evaluate
time-variant mixtures.

show them to save space. Averaged SDR and SAR over the
environments are shown in Figure 2.

The proposed systems outperform BeamformIt in terms of
SDR and SIR, which confirms their advanced ability to enhance
the signal. The best SDR was achieved by MMSE+sVAD.
On the other hand, the results in terms of SAR show that the
proposed systems tend to introduce more artifacts into the en-
hanced signal. Only FSB+sVAD yields higher SAR than Beam-
formIt. The worst SAR yields MMSE+sVAD, which is the com-
promise for the high SDR and SIR.

5.2. CHiME4

Now we present the speech recognition results achieved by 10
systems. Each proposed ASR system is denoted byA(B) where
A denotes the front-end system, e.g., MMSE:sVAD, and B de-
notes the acoustic model used within the baseline ASR system,
which is either ”Base” (original model) or ”Adapt” (the model
adapted to the front-end). The case when the CHiME4 data are
sent directly to the baseline ASR without any processing is de-
noted as ”Unprocessed”.

The resulting absolute Word Error Rates (WER) are shown
in Table 1. Detailed results of FSB:sVAD(Base) and of the base-
lines for different noisy environments are presented in Table 2.

Comparing the proposed front-end systems, those using the
FSB beamformer yield superior results compared to those with
MMSE. The difference in simulated sets is about 2-3% WER.
In case of the real-worlds recordings, the difference is up to 9%.

The choice of the VAD does not appear to have much influ-
ence on the final WER, especially in the combination with FSB.
Considering the MMSE beamforming, the dVAD improves the
WER compared to sVAD by 0-6%.

The adaptation of the acoustic models appears to be benefi-
cial for the systems with MMSE, where it improves the perfor-
mance by 0-2%. On the other hand, the re-training did not bring
any significant improvement for the FSB technique.

Table 1: Absolute WER (%) averaged over four environments
for the 6-channel track. The best achieved results are written in
bold.

System Dev Test
real simu real simu

Unprocessed (Base) 9.83 8.86 19.90 10.79
BeamformIt (Base) 5.77 6.76 11.52 10.91

MMSE:sVAD (Base) 10.91 9.31 22.39 9.72
MMSE:sVAD (Adapt) 10.56 9.21 20.61 9.11
MMSE:dVAD (Base) 7.78 9.84 16.27 9.68

MMSE:dVAD (Adapt) 7.89 9.28 16.09 9.40
FSB:sVAD (Base) 7.26 7.23 13.48 7.70

FSB:sVAD (Adapt) 7.23 7.68 13.46 7.95
FSB:dVAD (Base) 7.09 8.00 13.48 7.85
FSB:dVAD (Adapt) 7.43 8.24 14.40 8.16

6. Conclusions
From the results of our experiments we conclude that, among
the proposed systems, FSB:sVAD(Base) appears to be the most
effective for CHiME4. It achieves WER between 7%-13%,
which improves the WER achieved on unprocessed data by
about 1.5%-6.5%. The system is computationally simple, be-
cause the FSB does not use the matrix pseudo-inversion in (9),
and the sVAD performs the computationally save per-frame de-



Table 2: Absolute WER (%) per environment. The best achieve-
ments are written in bold.

(a) FSB:sVAD (Base)

Envir. Dev Test
real simu real simu

BUS 10.27 6.21 22.21 5.68
CAF 6.55 9.73 12.59 8.91
PED 4.57 5.52 10.71 6.85
STR 7.54 7.46 8.40 9.34

(b) BeamformIt (Base)

Envir. Dev Test
real simu real simu

BUS 7.43 5.97 16.88 7.66
CAF 5.77 8.13 10.20 11.52
PED 3.73 5.47 9.87 10.35
STR 6.15 7.45 9.13 14.12

(c) Unprocessed (Base)

Envir. Dev Test
real simu real simu

BUS 16.06 10.07 33.17 9.58
CAF 8.44 10.59 19.22 11.95
PED 5.44 6.34 14.63 9.64
STR 9.38 8.44 12.61 11.97

tection. The method achieves the best WER over the compared
systems in the simulated test set.

For the other sets, in particular in the real-world sets, the
best WER was achieved with BeamformIt. The experiment of
Section 5.1 has demonstrated on typical simulated recordings
that BeamformIt achieves lower SDR as well as lower SAR
compared to FSB:sVAD. While the simulated recordings are
sufficiently linear and do not contain microphones failures, the
real-world recordings of CHiME4 do. We therefore attribute
the better WER achieved by BeamformIt in real-world sets to
its robustness against nonlinear effects rather than to its ability
to enhance the target signal.

The improvement of the proposed methods in terms of the
robustness against microphone failures and other nonlinearities
is the subject of our future progress.
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