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Abstract
We present a system for the 4th CHiME challenge which sig-
nificantly increases the performance for all three tracks with re-
spect to the provided baseline system. The front-end uses a bi-
directional Long Short-Term Memory (BLSTM)-based neural
network to estimate signal statistics. These then steer a Gener-
alized Eigenvalue beamformer. The back-end consists of a 22
layer deep Wide Residual Network and two extra BLSTM lay-
ers. Working on a whole utterance instead of frames allows us
to refine Batch-Normalization. We also train our own BLSTM-
based language model. Adding a discriminative speaker adap-
tation leads to further gains. The final system achieves a word
error rate on the six channel real test data of 3.48%. For the two
channel track we achieve 5.96% and for the one channel track
9.34%. This is the best reported performance on the challenge
achieved by a single system, i.e., a configuration, which does
not combine multiple systems. At the same time, our system is
independent of the microphone configuration. We can thus use
the same components for all three tracks.

1. Introduction
Automatic speech recognition has become part of everyday life,
not the least because current systems start to achieve remark-
able results even in adversarial environments with severe noise
conditions. These advances can mainly be attributed to stronger
back-ends relying on Deep Neural Networks (DNNs) and by the
processing of multiple input channels which can provide spatial
selectivity to extract the signal of interest.

Indeed, today’s powerful mobile devices are often equipped
with multiple microphones, and thus multi-channel signal pro-
cessing has become a more and more relevant approach to
counterfeit more severe signal impairments due to noise or re-
verberation. The majority of multi-channel speech enhance-
ment systems now consists of some kind of frequency domain
beamforming approach. These beamforming systems tradition-
ally relied on model based masking of time frequency (tf) bins
[1, 2, 3, 4, 5, 6, 7] but more recently, more data driven and dis-
criminatively trained masking approaches have been proposed
[8].

Still, the dispute whether more emphasis should be put on
a stronger front-end or just a deeper back-end remains. The
latter has been pushed to an extreme, where the multi-channel
waveforms or their short time Fourier representations are di-
rectly input to the DNN for acoustic modeling. It is then left to
the network training to learn that fusion of the channels from the
data, which is most effective for ASR performance [9, 10, 11].

We argue that the front-end should be as unobstrusive to the

signal as possible. The danger of adding processing artifacts
is worse than limited noise reduction and therefore we recom-
mend to only use (masking based) linear beamforming. This
still leverages all information contained in correlations between
the individual channels and therefore leave all non-linear fea-
ture extraction to a deeper and more advanced back-end. Con-
sequently, we employ an explicit acoustic beamforming compo-
nent, thus taking advantage of recent progress in this field, e.g.,
by avoiding an explicit speaker localization component and by
giving up the assumption of an anechoic environment. Still, we
value the power of DNNs by using them for mask estimation:
The beamforming coefficients, are estimated from signal statis-
tics, more precisely, from the power spectral density matrices
of the target speech and of the distortions. These statistics are
obtained from spectral masks, which indicate for each tf bin,
whether it is dominated by speech or by noise. And it is this
mask estimation which is carried out by means of a DNN.

Nevertheless, a strong back-end is essential for good ASR
performance. We employ a Wide Residual Network (WRN)
with 22 layers for acoustic modeling. While this network archi-
tecture has been used successfully on image recognition tasks
[12], it is adapted and used here for the first time for ASR.

The paper is organized as follows. In Sec. 2.1 we give
an overview of our front-end design while the back-end is de-
scribed in Sec. 2.2. The following section (3) shortly describes
the database. Detailed experimental results are presented in
Sec. 4. At the end we draw conclusions.

2. System Overview
2.1. Front-end

We use the Generalized Eigenvalue (GEV) beamformer which
maximizes the signal-to-noise ratio (SNR) of the beamformer
output in each frequency bin separately, leading to the beam-
former coefficients [13]:

FGEV(f) = argmax
F(f)

F(f)HΦXX(f)F(f)

F(f)HΦNN(f)F(f)
. (1)

Here, ΦXX(f) is the target and ΦNN(f) the noise Cross-
Power Spectral Density (PSD) matrix for the f -th frequency
band. Please note that this does not require any assumptions
(e.g., assuming an anechoic environment) regarding the nature
of the Acoustic Transfer Function (ATF) from the speech source
to the sensors or regarding the spatial correlation of the noise.

The maximization of the coefficient given in Eq. (1) is
achieved by solving a generalized eigenvalue problem:

ΦXXF = λΦNNF, (2)



where the eigenvector corresponding to the largest eigenvalue is
the solution to Eq. (1).

This equation, however, does not impose a constraint on
the norm of F, and since each frequency is considered indepen-
dently, this can introduce arbitrary speech distortions.

We handle these distortions by applying the following sin-
gle channel post filter to the GEV output signal [13]:

gBAN(f) =

√
FGEV(f)HΦNN(f)ΦNN(f)FGEV(f)/D

FGEV(f)HΦNN(f)FGEV(f)
,

(3)

where D is the number of microphones. This filter performs a
so-called Blind Analytic Normalization (BAN) to obtain a dis-
tortionless response in the direction of the speaker: The over-
all ATF from the target source to the post filter output should
have unit gain for every frequency bin. If this were achieved
perfectly, speech distortions would be removed and one would
eventually arrive at the Minimum Variance Distortionless Re-
sponse (MVDR) beamformer [14, 15].

Another option is to normalize each beamforming vector to
unit length. This leaves some distortions in the target signal but
those can be handled by the acoustic model if the same kind of
distortions occur both in training and test. Indeed, we found out
that this matched training scenario even leads to slightly better
results, compared to a training on the beamformer output signal
after applying BAN. Here, however, we choose to use BAN be-
cause we want to train the acoustic model on all channels, and
not only on the single beamformer output signal. Then BAN
is necessary to reduce the mismatch between the six channels
used for training and the beamformer output, which is used for
recognition. The benefit of the six times larger training set size
more than compensated for the slight loss due to using BAN.

To solve Eq. 2, signal statistics, namely the PSD matrices,
are required. We estimate these using a mask based approach.
Given non-overlapping masks, MX for the target signal and
MN for the distortion, we estimate the PSD matrix by calcu-
lating the weighted sum of outer products of the microphone
signals [16]:

Φνν(f) =

T∑
t=1

Mν(t, f)Y(t, f)Y(t, f)H, (4)

where ν ∈ {X,N} and Y(t, f) is the vector of microphone
signals at time frame t and frequency bin f .

To obtain an estimation of these masks given our observed
signals, we utilize a neural network. Tbl. 1 details its config-
uration. The network operates on each channel independently
yielding D masks for the target and D for the distortions. For
each source the masks are condensed into a single mask by me-
dian pooling. We opted for this pooling operation because it
makes the mask estimation more robust against channel failures
compared to computing the average of the masks.

We do not force the values of the estimated masks to be one
or zero. Rather, we restrict them to be in the range between one
and zero using a Sigmoid non-linearity activation function for
both estimates, i.e. we work with soft-masks.

We employ ADAM [17] for training. A fixed learning-rate
of 0.001 and full backpropagation through time [18] is used.
Additionally, if the norm of a gradient for this network is greater
than one, we divide the gradient by its norm [19].

To achieve a better generalization, we use Dropout [20] for
the input-hidden connection of the bi-directional Long Short-
Term Memory (BLSTM) units [21] and for the input of the Rec-
tified Linear Unit (ReLU) layers [20]. The dropout rate is fixed

Table 1: Network configuration for mask estimation

Units Type Non-Linearity pdropout

L1 256 BLSTM Tanh 0.5

L2 513 FF ReLU 0.5

L3 513 FF ReLU 0.5

L4 1026 FF Sigmoid 0.0

at p = 0.5 for every layer during the whole training. We do
not use dropout for the last layer. Additionally we modified the
SNR randomly in a range of 0 dB to −7 dB. We use the de-
velopment data for cross-validation, stopping the training when
the loss does not decrease anymore after 5 epochs of patience.

We apply Batch-Normalization (BN) [22] for each layer.
Statistics for the BN are summarized along the time frame di-
mension. In contrast to the method proposed in [22], we do not
use the population estimates obtained from the training or de-
velopment data for the mean and variance at test time. Rather,
we use the statistics of each utterance for each channel individ-
ually also for the test data.

The ideal binary masks used as training targets are defined
as:

IBMN(t, f) =

{
1, ||X(t,f)||

||N(t,f)|| < 10thN(f),

0, else,
(5)

and

IBMX(t, f) =

{
1, ||X(t,f)||

||N(t,f)|| > 10thX(f),

0, else,
(6)

respectively.
The two thresholds thX and thN are not identical. Their

values range from−5 to 10 depending on the frequency and are
hand-tuned. They are chosen such that a decision in favor of
speech/noise is only taken if the instantaneous SNR is high/low
enough to ensure a low false acceptance rate. The network is
trained on all utterances and all channels using the binary cross-
entropy cost.

2.2. Back-end

2.2.1. Network configuration

For the back-end network we combine a slightly modified de-
sign of a WRN [12] with BLSTM layers. This configuration is
motivated by the fact that each layer type has its own distinct
advantages which complement each other in a unified archi-
tecture [23] and by recent findings about Convolutional Neu-
ral Networks (CNNs) by the image community [12, 24, 25]. An
overview of the structure, which we call Wide Residual BLSTM
Network (WRBN), is given in Fig. 3 while Fig. 2 and Fig. 1 de-
tail the building blocks.

The first part of the network is composed of a WRN.
The WRN consists of three residual building blocks which
again consist of smaller building blocks (BlockA and BlockB).
The difference between BlockA and BlockB is rather small.
BlockA can reduce the frequency resolution by having a stride
≥ 1 and it increases the number of channels. Due to this change
of the size of the tensor, a direct residual connection to the
output of the block is not possible. BlockA therefore has an



ResBlock(S,C,N)

BlockA(S,C)
1

BlockB(S,C)
2

BlockB(S,C)
N

BlockB(S,C)
3

Figure 1: Detailed view of a ResBlock. A ResBlock is parameterized by its striding S, the number of output channelsC and the number
of inner blocks N . Accordingly, BlockB is repeated N − 1 times.

BatchNorm ELU Conv(3, S) BatchNorm ELU Dropout Conv(3, 1)

Conv(1, S)
Only for BlockA

Only for BlockB

BlockA(S,C) or BlockB(S,C)

Figure 2: Detailed view of the building blocks BlockA or BlockB. The batch normalization collects statistics along the frequency
band axis and along the time frame axis. A convolution block Conv(A,S) is parameterized by the filter size A×A, the zero padding
(A− 1)/2 in both directions and the consecutive striding S.
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ResBlock(1, 80, 3)

ResBlock(2, 160, 3)
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BatchNorm
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T×B×1024

T×B×1024
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Figure 3: Overview of the back-end structure. The annotations
in gray indicate the dimension of the tensors where B is the
mini-batch size and T is the number of frames of the largest
utterance within the batch. The building blocks are explained
in Fig. 1 and Fig. 2. The convolution and the diagonally striped
batch normalization is defined as in in Fig. 2. The horizontally
striped batch normalization just collects statistics along the time
frame axis.

additional convolution operation with filter size 1 × 1 which
acts as the residual connection but also changes the size accord-
ingly. Other than that, the two blocks are identical. A Batch-
Normalization [22] normalizes the output of the preceding con-
volution and an Exponential Linear Unit (ELU) non-linearity
[26] is applied afterwards. Before the last convolution of a block
we use Dropout [20] with p = 0.5.

After the residual blocks, we get 320, each with a dimen-
sion of 10×T where T describes the number of frames and the
first dimension can be interpreted as frequency bands. These
are then weighted and combined for each channel with learn-
able weights resulting in a feature dimension of 320 per frame.
These frames are used as the input for two consecutive BLSTM
layers with 512 units for each direction. The output of the direc-
tions is merged by a sum after the first BLSTM layer and by a
concatenation after the second BLSTM layer. To prevent over-
fitting we use Dropout on the input of each layer. Additionally
we also use Dropout for the hidden-hidden transitions. Instead
of sampling the dropout masks individually per frame, however,
we sample the mask once per sequence with p = 0.5 [27]. This
sampling strategy avoids losing temporal information as a result
of Dropout.

The last part of the network consists of two feed-forward
layers with Batch-Normalization and an ELU non-linearity. The
final output are the posterior probabilities for the 2042 context-
dependent states for each frame.

2.2.2. Training

We first extract the alignments with the baseline back-end and
our front-end using all six channels (Kaldi+GEV). We then train
our network with a cross-entropy criterion and Adam [17] with
α = 10−4 on the unprocessed training data from all six mi-
crophones. We use 80 dimensional mean-normalized log-mel
filterbank features as input. Their delta and delta-delta fea-
tures are used for two additional input channels. We do not
train the network on a window of n frames with truncated back-
propagation. Instead, we train it on a whole utterance with full
backpropagation through time. We see two main advantages
in this strategy. First, the CNN and especially the BLSTM is



able to exploit the full temporal context and we can avoid zero-
padding within the utterance. Second, we can make efficient
use of Batch-Normalization as described in the following.

2.2.3. Batch-Normalization

Batch-Normalization was first proposed in the context of im-
age recognition and has been shown to improve convergence
as well as generalization [22]. However, a drawback of this
approach is that it relies on statistics accumulated on training
and/or development data at test time. Calculating the statistics
during test would lead to a dependency on the mini-batch con-
stellation since the statistics are aggregated over the batch di-
mension. Here, we treat the batch dimension as an independent
dimension. We can then calculate the statistics also at test time
without losing determinism. This is possible because using the
whole utterance we can get a reliable estimate of the statistics
without including other utterances. Thus each utterance is nor-
malized separately. For the tensors within the WRN we calcu-
late the statistics over the height (frequency) and width (time)
for each channel separately. For the other tensors we calculate
the statistics over time and normalize the feature dimension.

2.2.4. Adaptation

For (speaker) adaptation, we train an additional layer consist-
ing of a 80× 80 weight matrix for each speaker and each track
[28]. That layer with tied weights is applied to all three feature
channels equally. Although CNNs can provide some transla-
tion invariance, we found that the additional transformation of
the input features improves performance. It helps to reduce the
mismatch between the unprocessed data at training time and
the beamformed data at test time. We opted for the single layer
since preliminary results got worse when we adapted the whole
network or parts of it. Training is done by first decoding the
utterances with our best speaker-independent model to get an
alignment for each utterance for each track. We then prepend
the layer to the network and train it with backpropagation for 5
epochs and α = 10−5.

2.2.5. Language model

The baseline system features three different language mod-
els. First, the search graphs are created using a standard 3-
gram model provided by the WSJ database [29]. The graph is
then rescored with a 5-gram Kneser-Ney [30] language model
trained on the provided training data. Finally, the scores are in-
terpolated (rescored) with a recurrent neural network language
model [31]. Here, we aim to replace the latter by a stronger one.
To this aim, we employ a two layer Long Short-Term Memory
(LSTM) language model with 650 hidden units each – similar
to the example provided by [32].

Instead of training on an endless word stream (initial state
of next batch is end state of current batch), we found that train-
ing on complete sentences from the provided language model
training data in a random mini-batch improved cross validation
scores slightly (6% relative word error rate (WER) improve-
ment compared to an endless stream).

Again we use Adam [17] with the parameters proposed in
the aforementioned paper for optimization for 39 epochs. The
main benefit of using Adam besides a slightly improved WER
was the fact, that a learning rate did not have to be tuned manu-
ally.

We experimented with ZoneOut [33] as a regularization
technique for recurrent neural networks but ended up using reg-

ular dropout in the vertical connections only.

Global gradient clipping with a maximum value of 5 is
used. All weight matrices and bias vectors, including the em-
bedding matrix, are initialized with random weights sampled
from a uniform distribution in [−0.1, 0.1].

We experiment with restricted training sets limiting the
maximum number of unknown symbols during training. This
yielded reduced cross validation perplexities. Nevertheless, we
finally selected a model trained on unrestricted training data,
since this resulted in the lowest development test WERs.

Although, the training objective for the language model was
perplexity, it turned out to beneficial to select the final language
model based on the actual WER on the development set.

3. Database
The dataset from the fourth CHiME challenge [34] features
three different tracks with real and simulated audio data of
prompts taken from the 5k WSJ0-Corpus [29] with 4 different
types of real-world background noise. The noise as well as the
real utterances were recorded in a pedestrian, in a cafe, on the
street and in a bus. The recording device was a tablet with six
microphones mounted on its frame. The tracks were differenti-
ated by the number of microphones used at test time. All were
used in the six channel track, while in the two and one channel
track the microphones were sampled randomly.

4. Experimental evaluation
Tbl. 2 gives an overview of all experiments and their results.

Concentrating on the effect of the front-end first, we can
conclude that for the two channel track using our front-end
(Kaldi+GEV) instead of the baseline front-end (Baseline) gives
noticeable improvements in terms of WER. For the six channel
track, just exchanging the front-end even decreases the WER by
about 50%, clearly showing the effectiveness of our approach.
Nevertheless, there is still a big gap between the six channel
and the two channel track. While this shows that our front-end
is able to leverage additional microphones, it also shows that
there is still room for improvements.

The advances in acoustic modelling are best visible for the
one channel track. Compared to the Baseline, our proposed
acoustic model achieves significantly lower WERs. Especially
when comparing the results on the development and the test
data, we can see that the gap is much smaller for our model,
indicating its ability to generalize to different noise conditions.
Looking at the six channel track we can conclude that the gap
between the baseline model and our model gets smaller as the
quality of the input signal improves (Basline vs. WRBN+BFIT
and Kaldi+GEV vs. WRBN+GEV). This tendency is also visi-
ble for the two channel track.

For all tracks, we are able to further improve the results
employing different methods presented in Sec. 2.2. The biggest
gain here can be attributed to Batch-Normalization at test time.

Detailed results for the best system for each track are shown
in Tbl. 3. Here, the results are splitted according to the four dif-
ferent environments. We can see that the more microphones
we use, the less sensitive the result is to a specific environment.
Especially for the one channel track the bus environment per-
forms worse with the street environment having nearly half of
the WER for the real test set.



Table 2: Average WER (%) for the tested systems. Bold re-
sults correspond to the officially submitted results. The individ-
ual abbreviations mean: ”Kaldi”: baseline backend, ”WRBN”:
our WRBN (Section 2.2.1), ”+BN”: with Batch-Normalization
(Sec. 2.2.3), ”+SA”: with additional linear speaker adapta-
tion layer (Sec. 2.2.4) ”+NTLM”: with own language model
(Sec. 2.2.5), ”+GEV”: with GEV beamformer (Sec. 2.1),
”+BFIT”: with baseline front-end beamformer

Track System
Dev Test

real simu real simu

1ch

Baseline 11.57 12.98 23.70 20.84
WRBN 6.64 9.09 11.8 13.78

+BN 5.69 7.53 10.4 12.67
+SA 5.5 7.18 9.88 11.68
+NTLM 5.19 6.69 9.34 11.11

2ch

Baseline 8.23 9.50 16.58 15.33
Kaldi+GEV 6.93 8.03 13.76 9.9
WRBN+GEV 4.67 5.38 7.65 6.53

+BN 4 4.76 6.96 6.22
+SA 3.8 4.45 6.44 5.38
+NTLM 3.54 4.05 5.96 5.16

6ch

Baseline 5.76 6.77 11.51 10.90
Kaldi+GEV 3.7 3.72 5.66 4.34
WRBN+BFIT 4.43 5.27 7.33 7.85
WRBN+GEV 3.16 3.2 4.52 3.41

+BN 3.06 2.99 4.07 3.51
+SA 2.84 2.75 3.85 3.11
+NTLM 2.73 2.34 3.48 2.76

5. Conclusions

Comparing the presented system with the baseline system, two
components can be identified which provided significant im-
provements (on the order of 20% – 50%): first the neural net-
work supported GEV beamformer turned out to be more effec-
tive than the baseline BeamformIt! [35] beamformer, and, sec-
ond, the WRBN acoustic model significantly improved over the
standard DNN backend. Further, the proposed batch normaliza-
tion per utterance, the additional linear layer at the WRBN input
for speaker adaptation, and the LSTM language model delivered
additional improvements (each on the order of 5% – 10%). It
is further worth mentioning that, up to the speaker adaptation,
this is a single-pass recognition system. The described setup
can be considered light-weight, as it is a single system and not
a combination of multiple systems. While it achieved the best
reported single-system results on the CHiME-4 challenge, even
better error rates can be achieved by a system combination, as
can be seen, e.g., in a companion paper [36].
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Table 3: WER (%) per environment for the best system.

Track Env
Dev Test

real simu real simu

1ch

BUS 6.82 5.41 13.22 8.07
CAF 5.28 9.29 9.45 13.17
PED 3.7 5.21 7.75 10.22
STR 4.96 6.86 6.93 12.98

2ch

BUS 4.23 3.2 7.85 3.88
CAF 3.61 5.4 5.79 5.85
PED 2.86 3.67 4.97 5.21
STR 3.44 3.92 5.23 5.7

6ch

BUS 2.92 2.14 3.76 2.71
CAF 2.65 2.63 3.25 2.88
PED 2.67 2.14 3.33 2.97
STR 2.67 2.45 3.57 2.48

7. References
[1] H. Sawada, S. Araki, and S. Makino, “Underdetermined Convo-

lutive Blind Source Separation via Frequency Bin-wise Cluster-
ing and Permutation Alignment,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 19, no. 3, pp. 516–527,
2011.

[2] N. Ito, S. Araki, T. Yoshioka, and T. Nakatani, “Relaxed Disjoint-
ness Based Clustering for Joint Blind Source Separation and Dere-
verberation,” in Acoustic Signal Enhancement (IWAENC), 2014
14th International Workshop on, Sept 2014, pp. 268–272.

[3] D. H. T. Vu and R. Haeb-Umbach, “Blind Speech Separation
Employing Directional Statistics in an Expectation Maximiza-
tion Framework,” in Acoustics Speech and Signal Processing
(ICASSP), 2010 IEEE International Conference on, March 2010,
pp. 241–244.

[4] N. Ito, S. Araki, and T. Nakatani, “Permutation-free Convolu-
tive Blind Source Separation via Full-band Clustering based on
Frequency-independent Source Presence Priors,” in Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE Interna-
tional Conference on, May 2013, pp. 3238–3242.

[5] T. Yoshioka, N. Ito, M. Delcroix, A. Ogawa, K. Kinoshita, M. Fu-
jimoto, C. Yu, W. J. Fabian, M. Espi, T. Higuchi, S. Araki, and
T. Nakatani, “The NTT CHiME-3 system: Advances in speech
enhancement and recognition for mobile multi-microphone de-
vices,” in 2015 IEEE Workshop on Automatic Speech Recognition
and Understanding (ASRU), Dec 2015, pp. 436–443.

[6] S. Araki and T. Nakatani, “Hybrid Approach for Multichannel
Source Separation Combining Time-frequency Mask with Multi-
channel Wiener Filter,” in 2011 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), May 2011,
pp. 225–228.

[7] S. Araki, M. Okada, T. Higuchi, A. Ogawa, and T. Nakatani, “Spa-
tial Correlation Model based Observation Vector Clustering and
MVDR Beamforming for Meeting Recognition,” in 2016 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), March 2016, pp. 385–389.

[8] J. Heymann, L. Drude, A. Chinaev, and R. Haeb-Umbach,
“BLSTM supported GEV beamformer front-end for the 3RD
CHiME challenge,” in 2015 IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU), Dec 2015, pp. 444–451.

[9] Y. Hoshen, R. J. Weiss, and K. W. Wilson, “Speech Acous-
tic Modeling from Raw Multichannel Waveforms,” in Acoustics,
Speech and Signal Processing (ICASSP), 2015 IEEE Interna-
tional Conference on, April 2015, pp. 4624–4628.



[10] T. N. Sainath, R. J. Weiss, K. W. Wilson, A. Narayanan, M. Bac-
chiani, and A. Senior, “Speaker Location and Microphone Spac-
ing Invariant Acoustic Modeling from Raw Multichannel Wave-
forms,” in 2015 IEEE Workshop on Automatic Speech Recognition
and Understanding (ASRU), Dec 2015, pp. 30–36.

[11] T. N. Sainath, R. J. Weiss, K. W. Wilson, A. Narayanan, and
M. Bacchiani, “Factored Spatial and Spectral Multichannel Raw
Waveform CLDNNs,” in Acoustics, Speech and Signal Processing
(ICASSP), 2016 IEEE International Conference on, 2016.

[12] S. Zagoruyko and N. Komodakis, “Wide Residual Networks,”
CoRR, vol. abs/1605.07146, 2016. [Online]. Available: http:
//arxiv.org/abs/1605.07146

[13] E. Warsitz and R. Haeb-Umbach, “Blind Acoustic Beamforming
Based on Generalized Eigenvalue Decomposition,” IEEE Trans-
actions on Audio, Speech, and Language Processing, vol. 15,
no. 5, pp. 1529–1539, July 2007.

[14] B. D. Van Veen and K. M. Buckley, “Beamforming Techniques
for Spatial Filtering,” Digital Signal Processing Handbook, 1997.

[15] U. K. Simmer, J. Bitzer, and C. Marro, “Post-filtering Tech-
niques,” in Microphone Arrays. Springer, 2001, pp. 39–60.

[16] M. Souden, S. Araki, K. Kinoshita, T. Nakatani, and H. Sawada,
“A Multichannel MMSE-Based Framework for Speech Source
Separation and Noise Reduction,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 21, no. 9, pp. 1913–1928,
Sept 2013.

[17] D. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[18] P. J. Werbos, “Backpropagation through time: what it does and
how to do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–
1560, Oct 1990.

[19] R. Pascanu, T. Mikolov, and Y. Bengio, “Understanding the
Exploding Gradient Problem,” CoRR, vol. abs/1211.5063, 2012.
[Online]. Available: http://arxiv.org/abs/1211.5063

[20] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting,” Journal of Machine Learning
Research, vol. 15, pp. 1929–1958, 2014. [Online]. Available:
http://jmlr.org/papers/v15/srivastava14a.html

[21] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent Neural
Network Regularization,” CoRR, vol. abs/1409.2329, 2014.
[Online]. Available: http://arxiv.org/abs/1409.2329

[22] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift,”
CoRR, vol. abs/1502.03167, 2015. [Online]. Available: http:
//arxiv.org/abs/1502.03167

[23] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolutional,
Long Short-Term Memory, fully connected Deep Neural Net-
works,” in Acoustics, Speech and Signal Processing (ICASSP),
2015 IEEE International Conference on, April 2015, pp. 4580–
4584.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” CoRR, vol. abs/1512.03385, 2015. [Online].
Available: http://arxiv.org/abs/1512.03385

[25] ——, “Identity Mappings in Deep Residual Networks,” CoRR,
vol. abs/1603.05027, 2016. [Online]. Available: http://arxiv.org/
abs/1603.05027

[26] D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and
Accurate Deep Network Learning by Exponential Linear Units
(ELUs),” CoRR, vol. abs/1511.07289, 2015. [Online]. Available:
http://arxiv.org/abs/1511.07289

[27] S. Semeniuta, A. Severyn, and E. Barth, “Recurrent Dropout
without Memory Loss,” CoRR, vol. abs/1603.05118, 2016.
[Online]. Available: http://arxiv.org/abs/1603.05118

[28] V. Abrash, H. Franco, A. Sankar, and M. Cohen, “Connectionist
Speaker Normalization and Adaptation,” in in Eurospeech. Cite-
seer, 1995.

[29] J. Garofalo et al., “CSR-I (WSJ0) complete,” Linguistic Data
Consortium, Philadelphia, 2007.

[30] R. Kneser and H. Ney, “Improved Backing-off for M-gram Lan-
guage Modeling,” in Acoustics, Speech, and Signal Processing,
1995. ICASSP-95., 1995 International Conference on, vol. 1, May
1995, pp. 181–184 vol.1.

[31] T. Mikolov, S. Kombrink, A. Deoras, L. Burget, and
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