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Abstract
Beamforming enhances sound components coming from a
direction specified by a steering vector. Some beamforming
methods use the time-frequency masks for the steering vector
estimation. Better masks lead to better beamforming results.
Meanwhile, the beamforming results carry cross-channel
information which make the mask estimation easier. Therefore,
the beamforming and the mask estimation can boost each other,
and can be treated as a “chicken-and-egg” problem. In this
work, we embed the beamforming and the mask estimation into
a deep stacking network architecture as the speech separation
front-end. Together with the state-of-the-art speech recognition
back-end, the proposed method obtains 11.00% and 6.00%
WER for the real test data in the 4th CHiME Challenge 2
channels and 6 channels tracks.

1. Background
This paper introduces the speech separation and recognition
system designed for the 4th CHiME Challenge [1] 2 channels
and 6 channels tracks.

From the review of the last CHiME Challenge, we find
that the success is mostly relative to the time-varying minimum
variance distortionless response (MVDR) beamforming [2].

A beamformer enhances the sound components coming
from a direction which specified by a steering vector. The
accurate steering vector estimation is the key to effective
beamforming. Recently, a beamforming method was proposed
that uses the time-frequency masks to estimate the steering
vector [3], where the masks represent the probabilities
of background noise dominating the corresponding time-
frequency points. In this method, the accurate mask estimation
is the key to effective steering vector estimation. Better mask
estimations lead to better steering vector estimations and
better beamforming results. Mask estimation is helpful for
the beamforming. Beamforming is also helpful for the mask
estimation. The beamforming results are built from multi-
channel microphone array, so that they contain cross-channel
information which is useful for the mask estimation of a certain
single channel.

Because the beamforming and the mask estimation can
boost each other, they can be treated as a “chicken-and-egg”
problem. In [4], the authors proposed using the deep stacking
network (DSN) architecture to solve the “chicken-and-egg”
problem. In DSN, each basic module is used to process a
“chicken-and-egg” step. DSN stacks these basic processing
modules to build forward deep architectures. With the
increasing of the number of stacked modules, the system’s
performance is improving. We consider the mask estimation
and beamforming as a “chicken-and-egg” step, process them
with a basic module, and embed them into a DSN to form the
speech separation front-end. Specifically, we first obtain the

estimated masks from a basic module. Then these estimated
masks are used to perform the beamforming. Next these
beamforming results are used to obtain new estimated masks
by another basic module. Then these new estimated masks are
used for beamforming, estimating new masks, and so on.

2. Contributions
2.1. Mask Estimation

Before getting any beamforming results, we need a initial mask
estimation. We use deep neural network (DNN) as a basic
module to estimate the ideal ratio mask (IRM):

IRM =

√
|STFT {speech}|2

|STFT {speech}|2 + |STFT {noise}|2
(1)

where |STFT {speech}| and |STFT {noise}| is the short time
Fourier transform (STFT) features of the premixed speech
and noise. We obtain the STFT features by applying 320-
point Fourier transform on each hamming window frame which
length of 20-ms and shift with 10-ms, and using the absolute
value of the first 161-D Fourier coefficients.

The DNN contains three 1024-node ReLU hidden layers,
and the output transform is sigmoid. The inputs of the DNN
is the STFT features of the mixtures. Before feeding into
the DNN, the STFT features are compressed by a cubic root
operation. The input features also contain a context window of
previous 2 and subsequent 2 frames. Therefore, the input is a
161× 5 = 805 dimensional vector.

The DNN is trained with all of the simulated training data
with early stop controlled by a 10% left out develop set.

2.2. Beamforming

After obtaining the estimated mask, we get the beamforming
results using the the time-frequency mask based MVDR
beamforming method [3], where the masks represent
the probabilities of background noise dominating the
corresponding time-frequency points. We obtain this mask
base on the estimated IRM:

mask = 1−max{IRM1, . . . , IRMN} (2)

where IRMi is estimated IRM in channel i. N is number of
channels. For 2 channels track, N = 2, and for 6 channels
track, N ≤ 5, where we drop the backward channel 2, and
remove failed channels with the scripts offered by the official
baseline.

2.3. Mask Estimation with Beamforming

After getting the beamforming results, we can use them to
improve the mask estimation. In this step we use another DNN



basic module to estimate the IRM. The DNN’s structure is
same as the one in Sect. 2.1 except the inputs. The inputs
of the DNN contain three parts: the estimated IRM from the
last DNN module, the STFT features of the mixtures, and
the STFT features of the corresponding beamforming results.
These beamforming results may contribute to the improvement
of the mask estimation. Before feeding into the DNN, all of
the STFT features are compressed by a cubic root operation.
All of the STFT features are extended with its previous and
subsequent 1 frames as context. Therefore, the input is a
161 + 161× 3 + 161× 3 = 1127 dimensional vector.

We use the same DNN for the 2 channels and 6 channels
tracks. The beamforming results used for training are generated
as follows. We first divide the simulated training utterances
randomly into two sets whose size are almost the same. One
part for the 6 channels track, and another for the 2 channels
track. In the one for 2 channels track, we further pick 2 channels
randomly for each utterance, and remove others. Then the
beamforming results are generated from these two sets.

The DNN is trained with all of the simulated training data
with early stop controlled by a 10% left out develop set.

2.4. Combining Mask Estimation and Beamforming

We perform the mask estimation and beamforming alternantly
and iteratively by embedding them into a DSN, where we stack
basic modules one by one, and as illustrated in Fig. 1. We first
obtain the initial estimated IRM by the module described in Sec.
2.1. Then we get the beamforming results as described in Sec.
2.2. Next the beamforming results are used for updating the
estimated IRM by the module described in Sec. 2.3. Then these
updated estimated masks are used for beamforming, estimating
new masks, and so on.
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Figure 1: Schematic diagram of the proposed system.

2.5. ASR Back-end

We can further improve the performance of ASR systems by
increasing the amount of training data, so that we use scripts
offered by the official baseline to train a new ASR back-end
with all of the 6 channels training data.

3. Experimental evaluation
In the official baseline, four types of ASR back-ends are
involved, which are GMM-based (denoted as “GMM”),
DNN-based (denoted as “DNN”), DNN-based with a larger

language model (denoted as “5kng”) and DNN-based with
RNN-based language model (denoted as “RNNML”). We
report the results using all of these four ASR back-ends,
and compare the proposed system with the official baseline
front-end “BeamformIt” system. The proposed front-end is
named as “model-N”, where N indicates the number of the
stacked modules. The average WER of all systems with the
baseline ASR back-end and with the new ASR back-end in
Tab. 1 and Tab. 3. And the detail WER of the best system are
given for each noisy environment in Tab. 2 and Tab. 4.

Compared the Tab. 3 with Tab. 1, we can see that the
new ASR back-end can generate better ASR results than the
baseline ASR back-end. From Tab. 1, compared with the 6
channel the model-1 system with RNNML ASR back-end and
the one reported in [3], the WER in the real test data is 7.44
and 8.86, respectively. It indicates that the DNN is powerful
than the complex Gaussian mixture model (CGMM) used in
[3] for mask estimation. And compared among the proposed
system with different numbers of the stacked modules, we find
the performance of the system is improving with the increasing
of the number of stacked modules. In addition, the single
channel signal and the corresponding beamforming result are
often mismatch in the time axis. The experimental results show
that the mask estimation can benefit from the beamforming
results although the inputs do not match strictly.

4. Conclusion
Because mask estimation and beamforming can boost each
others, we treat them as a “chicken-and-egg” problem,
and iterate them alternatingly in a DSN. The experimental
results show that the proposed method can improve the ASR
performance in noisy environment, and the performance of
the system is improving with the increasing of the number of
stacked modules. The proposed method obtains a comparable
performance without any advanced language model or
speaker adaptation which are the primary weapons of other
participators.

5. Acknowledgments
This research was supported in part by the China national nature
science foundation (No. 61365006, No. 61263037).

6. References
[1] E. Vincent, S. Watanabe, A. A. Nugraha, J. Barker, and R. Marxer,

“An analysis of environment, microphone and data simulation
mismatches in robust speech recognition,” Computer Speech and
Language, to appear.

[2] J. Barker, R. Marxer, E. Vincent, and S. Watanabe, “The third
CHiME speech separation and recognition challenge: Dataset,
task and baselines,” in 2015 IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU), Dec 2015, pp. 504–511.

[3] T. Higuchi, N. Ito, T. Yoshioka, and T. Nakatani, “Robust MVDR
beamforming using time-frequency masks for online/offline ASR
in noise,” in IEEE International Conference on Acoustics, Speech
and Signal Processing, 2016, pp. 5210–5214.

[4] X. Zhang, H. Zhang, S. Nie, G. Gao, and W. Liu, “A pairwise
algorithm using the deep stacking network for speech separation
and pitch estimation,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 24, no. 6, pp. 1066–1078, June
2016.



Table 1: Average WER (%) for the tested systems with baseline ASR
back-end.

Track System Dev Test
real simu real simu

2ch

GMM

BeamformIt 16.23 19.14 29.05 27.56
model-1 14.53 16.25 24.49 19.50
model-2 14.47 15.97 23.84 19.10
model-3 14.61 15.83 24.47 19.73

DNN

BeamformIt 10.90 12.36 20.44 19.03
model-1 9.29 10.03 17.39 12.86
model-2 9.08 9.89 16.58 12.91
model-3 9.04 9.91 16.80 12.72

5kng

BeamformIt 9.63 10.72 18.08 16.88
model-1 7.77 8.65 15.07 10.68
model-2 7.71 8.53 14.27 10.62
model-3 7.74 8.63 14.38 10.71

RNNML

BeamformIt 8.23 9.49 16.58 15.34
model-1 6.74 7.66 13.54 9.46
model-2 6.57 7.57 12.92 9.55
model-3 6.57 7.57 12.75 9.37

6ch

GMM

BeamformIt 13.04 14.30 21.83 21.29
model-1 9.64 10.10 15.08 11.81
model-2 9.55 10.12 14.53 11.99
model-3 9.48 10.17 14.48 11.87

DNN

BeamformIt 8.14 9.07 15.04 14.19
model-1 6.25 5.96 10.22 7.62
model-2 6.10 6.08 10.07 7.87
model-3 6.01 6.20 10.10 8.02

5kng

BeamformIt 6.85 7.74 13.18 12.33
model-1 4.91 5.09 8.69 6.17
model-2 4.82 5.07 8.52 6.29
model-3 4.91 5.03 8.47 6.60

RNNML

BeamformIt 5.75 6.77 11.47 10.91
model-1 4.12 4.20 7.44 5.44
model-2 3.99 4.41 7.17 5.32
model-3 4.03 4.42 7.15 5.58

Table 2: WER (%) per environment for the best system with baseline
ASR back-end.

Track Envir. Dev Test
real simu real simu

2ch

BUS 8.17 6.06 20.15 7.08
CAF 6.30 10.16 12.07 10.38
PED 4.60 6.39 9.38 9.54
STR 7.20 7.67 9.39 10.46

6ch

BUS 5.21 3.89 11.57 4.54
CAF 3.55 5.06 5.42 5.36
PED 3.38 3.91 5.64 5.32
STR 4.00 4.84 5.96 7.10

Table 3: Average WER (%) for the tested systems with new ASR back-
end.

Track System Dev Test
real simu real simu

2ch

GMM

BeamformIt 15.21 16.86 26.23 25.80
model-1 13.17 14.76 22.06 18.14
model-2 12.92 14.46 21.43 17.78
model-3 12.94 14.45 21.50 17.78

DNN

BeamformIt 9.52 10.58 17.59 16.94
model-1 7.99 8.37 14.79 11.02
model-2 7.79 8.36 14.32 10.84
model-3 7.83 8.26 14.51 11.09

5kng

BeamformIt 7.97 8.95 15.31 14.57
model-1 6.65 6.99 12.86 9.17
model-2 6.47 7.09 12.37 8.95
model-3 6.37 7.13 12.36 8.89

RNNML

BeamformIt 7.01 8.02 13.70 13.28
model-1 5.58 6.25 11.47 7.99
model-2 5.48 6.26 11.02 7.80
model-3 5.56 6.32 11.00 7.80

6ch

GMM

BeamformIt 12.25 12.97 19.99 19.53
model-1 9.13 9.42 14.13 10.91
model-2 9.01 9.51 13.47 11.33
model-3 8.97 9.52 13.62 11.29

DNN

BeamformIt 7.30 8.27 13.08 12.79
model-1 5.53 5.30 8.90 6.76
model-2 5.45 5.21 8.65 7.17
model-3 5.44 5.27 8.66 7.09

5kng

BeamformIt 6.04 6.71 11.23 10.95
model-1 4.44 4.17 7.38 5.24
model-2 4.25 4.28 7.08 5.39
model-3 4.28 4.33 6.92 5.59

RNNML

BeamformIt 5.07 6.08 9.88 9.47
model-1 3.74 3.56 6.23 4.40
model-2 3.62 3.65 6.05 4.58
model-3 3.62 3.66 6.00 4.83

Table 4: WER (%) per environment for the best system with new ASR
back-end..

Track Envir. Dev Test
real simu real simu

2ch

BUS 7.11 5.31 17.22 5.85
CAF 5.34 8.48 10.14 9.19
PED 4.07 5.13 8.05 7.92
STR 5.71 6.37 8.61 8.24

6ch

BUS 4.59 3.32 9.46 3.88
CAF 3.08 4.23 4.15 4.87
PED 3.11 3.17 4.93 4.74
STR 3.70 3.92 5.47 5.81


