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The MELCO/MERL System Combination Approach
for the Fourth CHiME Challenge

Yuuki Tachioka1, Shinji Watanabe2, Takaaki Hori2

1Information Technology R&D Center, Mitsubishi Electric Corporation
2Mitsubishi Electric Research Laboratories

Tachioka.Yuki@eb.MitsubishiElectric.co.jp, watanabe@merl.com, thori@merl.com

Abstract

This paper describes our approach for all three tracks of the
fourth CHiME challenge. Front-end process prepared two
speech enhancements. Back-end process extracted three types
of different features and after decoding, it used neural network
based rescoring. Finally, the hypotheses of the multiple sys-
tems were combined and the word error rate of our best system
became less than half of that of the state-of-the-art baseline.

1. Background
The 4th CHiME challenge provides three tracks: 1ch, 2ch, and
6ch track [1]. We entered all three tracks. For all tracks, state-
of-the-art baseline scripts were prepared. They employed dis-
criminatively trained deep neural network (DNN) acoustic mod-
els and recurrent neural network (RNN) based rescoring with
advanced speech enhancement. There are four different envi-
ronments in the tasks and for these kinds of tasks, system com-
bination was effective. To realize more effective combination,
we prepared multiple systems with different speech enhance-
ment and different feature extractions. This paper separately
confirmed the effectiveness of our approach in terms of the word
error rate (WER).

2. Front-end process
For single-channel track, sparse non-negative matrix factor-
ization (NMF) [2] was used to suppress noise. To reduce
distortions, enhanced speech was mixed with original noisy
speech. For multi-channel track, in addition to the provided
beamformer (BeamformIt), minimum variance distortionless
response (MVDR) beamformer with precise steering vector es-
timation [3] was employed.

3. Back-end process
In addition to the provided 13-dimensional MFCC+∆ + ∆∆
with feature-space maximum likelihood linear regression (fM-

Table 1: System description for Table 2. All systems used DNN
acoustic model.

{m,p,f}-{s,m}-{n,s,b,m}-{u,a,a2}+{r,l}
{m,p,f} MFCC / PLP / fbank
{s,m} Single / multi-channel data training

{n,s,b,m} Noisy / sparse NMF / BeamformIt / MVDR
{u,a,a2} Unadapted / adapted / adapted-2 DNN

{r,l} RNN / LSTM-LM rescoring

Table 2: Average WER [%] for the tested systems. For 1ch,
“baseline1” was “m-s-n-u” and “baseline2” was “m-s-n-u+r”.
For 2ch and 6ch, “baseline1” was “m-s-b-u” and “baseline2”
was “m-s-b-u+r”. “best” combined asterisk-marked systems.

Track System
Dev Test

real simu real simu

1ch

baseline1 14.67 15.67 27.69 24.15
baseline2 11.69 15.43 23.71 20.95
m-m-n-u 12.67 13.55 22.17 20.29

m-m-n-u+l* 7.76 8.92 15.66 15.12
p-m-n-u+l* 7.74 9.23 16.03 15.31
f-m-n-u+l* 5.60 7.60 11.76 12.75
f-m-n-a+l* 5.58 7.70 11.85 12.72
m-m-s-u+l* 7.78 8.86 15.49 15.08
p-m-s-u+l* 7.60 9.33 15.47 15.61
f-m-s-u+l* 5.56 7.30 11.64 12.76
f-m-s-a+l* 5.41 7.48 11.64 12.90

best 5.15 7.15 11.13 12.15

2ch

baseline1 10.90 12.36 20.44 19.03
baseline2 9.63 10.72 18.08 16.88
m-m-b-u 9.90 10.60 16.89 16.27

m-m-b-u+l* 5.59 6.33 11.43 10.55
p-m-b-u+l* 5.51 6.48 11.71 10.77
f-m-b-u+l* 4.19 5.23 8.38 9.10
f-m-b-a+l* 3.96 5.15 8.23 8.49

m-m-m-u+l* 5.34 6.09 11.21 11.55
p-m-m-u+l* 5.03 6.40 11.11 11.61
f-m-m-u+l* 3.96 5.23 8.45 9.62
f-m-m-a+l* 3.80 5.06 7.99 9.10

best 3.50 4.63 7.28 8.03

6ch

baseline1 8.14 9.07 15.04 14.20
baseline2 5.75 6.77 11.47 10.91
m-m-b-u 7.69 8.23 12.57 12.66

m-m-b-u+r 4.99 5.72 9.22 8.96
m-m-b-u+l* 3.94 4.49 7.77 7.51
p-m-b-u+l* 3.90 4.62 7.64 7.71
f-m-b-u+r 4.18 4.95 7.20 7.47
f-m-b-u+l* 3.10 3.63 5.94 6.28
f-m-b-a+l* 3.05 3.60 5.71 5.94
m-m-m-u+r 4.45 4.19 7.45 7.51
m-m-m-u+l* 3.47 3.06 6.42 6.39
p-m-m-u+l* 3.43 2.99 6.36 6.23
f-m-m-u+r 3.72 3.66 6.11 6.67
f-m-m-u+l* 2.75 2.61 5.19 5.72
f-m-m-a+l* 2.60 2.53 5.06 5.01
f-m-m-a2+l* 2.47 2.45 4.75 4.39

best 2.30 2.32 4.31 4.18
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Figure 1: Schematic diagram of the proposed ASR systems.

Table 3: WER [%] per environment for the best system.

Track Envir.
Dev Test

real simu real simu

1ch

BUS 7.15 6.24 18.00 8.55
CAF 5.19 9.81 11.73 13.93
PED 3.05 4.97 7.81 11.71
STR 5.19 7.57 6.99 14.40

2ch

BUS 4.54 3.92 11.42 5.08
CAF 3.63 6.28 7.08 9.41
PED 2.21 3.38 5.59 8.33
STR 3.63 4.96 5.04 9.28

6ch

BUS 3.07 2.01 5.16 2.95
CAF 2.40 2.99 3.90 4.63
PED 1.64 1.76 4.00 4.18
STR 2.11 2.51 4.17 4.97

LLR) transformation, we employed 13-dimensional PLP+∆+
∆∆ with fMLLR transformation and 40-dimensional filter-
bank (fbank) feature+∆ + ∆∆ with maximum likelihood
linear transformation (MLLT) and fMLLR transformation [4].
Features in the consecutive 11 frames were input to the DNN.

In addition to the feature-space adaptation, model-space
adaptation of DNN [5] was also used where the second layer
of DNN was switched for each speaker. To train DNN acous-
tic models, multi-channel (6ch) data were all used whereas
baseline only used single-channel data. These modification in-
creased the training data size [3]. All training data were noisy
without any speech enhancement, i.e., noisy data training.

After decoding, we used long short-term memory (LSTM)-
language model (LM) rescoring [6] instead of the baseline
recurrent neural network (RNN)-LM. Figure 1 shows the
schematics of the proposed method. In each track, there were
two types of speech enhancement. For each enhancement, three
different features were used; and for fbank feature, model-space
speaker adaptation was performed. In total, hypotheses of eight
systems are combined by using lattice combination.

4. Experimental evaluation
Table 2 shows the WERs of the challenge. Descriptions of the
system ID is shown in Table 1. Comparison of baseline1 and
“m-m-n-u” shows the effectiveness of multi-channel data train-
ing, which was especially effective for 1ch track and improved
the WERs by around 2–5%. Comparison of baseline1 and base-
line2 and that of “m-m-n-u” and “m-m-n-u+l” show the effec-
tiveness of LSTM-LM rescoring, which improved WER more
than RNN-LM rescoring. The performances of MFCC and PLP
features were almost equivalent but fbank feature significantly
improved the WERs. DNN model adaptation was also effective.
MVDR beamformer shows its effectiveness for the 6ch track
more than 2ch track, compared with the baseline beamformer.
Combining multiple systems additionally improved WERs by
around 0.3–0.6%. WERs of the best system were less than half
of those of “baseline2” except one case (Test and simu in the
1ch track).

Table 3 shows the WER of the best system per environment
in Table 2. Increasing the number of microphones was effective
for all conditions. In real data, “BUS” was the most difficult
task.

5. Conclusion
This paper showed our approach for the fourth CHiME chal-
lenge. Multi-channel data training, fbank feature, and LSTM-
LM based rescoring were the most effective. System combina-
tion gave additional improvements for all conditions.
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Abstract
This paper explores the combination of the emerging long
short-term memory (LSTM) and the well established linear
filtering techniques, parametric multi-channel Wiener filter-
ing (PMWF) as well as single-channel minimum variance
distortionless response (MVDR), for robust front-end signal
processing in a speech recognition system. LSTM is employed
for the estimation of speech and noise statistics, which are then
used to compute the filter coefficients. PMWF is utilized in
a novel way that the residual noise power remains constant
along the frequency axis, while single-channel MVDR exploits
inter-frame correlation coefficient vector, taking advantage
of LSTM network based mask prediction, for linear filter
estimation. With the baseline recognition system, our proposed
methods reach a final word error rates (WER) of 5.69% on the
6ch real evaluation set of CHiME-4 challenge.

Keywords: CHiME 2016 Challenge, Supervised Time-
frequency Masking, Parametric Multichannel Wiener Filtering,
Single-channel MVDR

1. Introduction
The technique of neural network has greatly promoted speech
recognition in everyday environments. It also quickly expands
its scope to the signal processing area. Articles apply deep neu-
ral network (DNN) for spectral mask estimation [1] or predict-
ing the clean spectrum [2]. Both tasks report promising results.
However, most neural network based approaches only deal with
problems in the signal channel case.

While multi-channel algorithms are more capable of ex-
tracting the desired source and suppressing undesired com-
ponents at the same time, microphone arrays are becoming
commonplace in modern human-machine interaction systems.
The well established minimum variance distortionless response
(MVDR) and multi-channel Wiener filter (MWF), which have
solid theoretical foundations, arose new interests.

MVDR filter is also proposed for single-microphone noise
reduction [3]. This filter takes the speech correlations of consec-
utive time frames into account. Under the assumption that noise
spectrum is known previously, the MVDR filter could achieve
promising performance in terms of speech distortion which is a
key factor that affects speech recognition accuracy rate.

For the task of robust speech recognition of CHiME-4 [4],
one practical front-end signal processing solution is the combi-
nation of the above two techniques [5][6]. DNN deals well with
the noisy data and makes no extra assumptions as in conven-
tional methods. Meanwhile, the multi-channel algorithms and
single-channel MVDR provide optimized solutions.

Specifically, long short-term memory (LSTM) is employed
for the estimation of speech and noise masks as originally sug-
gested in [6][7]. With short-time Fourier transform performed

in 1024 points, the network input is of 513 nodes. We have the
following one bi-directional LSTM layer of 256 nodes and two
feed-forward layers of 513 nodes. The training targets are ideal
binary masks of both speech and noise, which are calculated
by weighting the local signal-to-noise ratio (SNR) and the local
threshold (LC)

M =

{
1, SNR > LC
0, else

(1)

The Adam optimization algorithm [8] is used for tuning the net-
work. Dropout and batch normalization techniques are also em-
ployed for improving the generalization performance.

In the testing phase, the predicted masksM′c (c = speech
and noise) are used to calculate the power spectral density
(PSD) matrixes that are needed by our proposed PMWF and
MVDR.

Φcc =
∑
M′c yyH (2)

where y is the observation vector and superscript H denotes
Hermitian transpose.

2. Parametric multi-channel Wiener filter
In the 2ch and 6ch tasks, the multi-channel processing problem
is formulated in the frequency domain. With an array of M
microphones, we have

Yp(jω) = Xp(jω) +Np(jω), p = 1, 2, ..., P (3)

In order to extract the desired source X(jω) from the noisy
observations, we apply an optimal filter h(jω)

X(jω) = hH(jω)y(jω) (4)

where y(jω) = [Y1(jω)...Yp(jω)...YP (jω)]T .
The solution of PMWF [9][10] is known as

h(jω) =
Φ−1

nn(jω)Φxx(jω)

µ+ λ(ω)
uref (5)

where Φnn,Φxx are respectively the noise and speech PSD
matrixes which can be derived by (2), uref is one zero vec-
tor except for the index of reference channel being one (The
first channel was used as reference in CHiME-4). λ(ω) =
tr{Φ−1

nn(jω)Φxx(jω)}, µ is the hyper-parameter that controls
the tradeoff between speech distortion and noise reduction.
With a higher value, we get more noise reduction at the expense
of more distortion.

In speech recognition applications, it is still unclear how the
speech distortion and noise reduction factors will influence the
final recognition performance. Here, we propose a novel param-
eter control strategy that proves quite effective. Particularly, the
residual noise power (RNP) in the filter output is constrained to
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be constant along the frequency axis. From Eq.(5), the output
RNP is

hH(jω)Φnn(jω)h(jω) =
φxrefxrefλ(ω)

[µ+ λ(ω)]2
(6)

We denoted the desired RNP as rnn. Hence, we have

µ(ω) =
√
φxrefxref (ω)λ(ω)/rnn − λ(ω) (7)

It should be noted that the value of rnn only scales the output
rather than changes the spectral shape of speech. It is set to 1.0.
By regulating the RNP, a bin-wise controller µ(ω) is derived.
The reason why rnn is constant across frequencies is that the
spectrums of filtered signals would be preferred flat, avoiding
transient changes between adjacent bins.

3. Single-channel MVDR
In the 1ch task, the single-channel problem is formulated as fol-
lows in the frequency domain. The complex spectral noisy ob-
servation Y (k,m) is thus given by

Y (k,m) = X(k,m) +N(k,m) (8)

where k is the frequency bin number and m is the frame index.
The estimate of the clean speech spectral component X(k,m)
is obtained by applying an FIR filter

X̂(k,m) = hH(k,m)y(k,m) (9)

where L is the order of the filter (set 20), and

h(k,m) = [H(k,m, 0)...H(k,m,L− 1)]T (10)

y(k,m) = [Y (k,m)...Y (k,m− L+ 1)]T (11)

By introducing the speech inter-frame correlation (IFC) co-
efficient vector γx(k,m), which is defined by (The operator
E[·] denotes the expectation),

γx(k,m) =
E[x(k,m)X (k,m))]

E[‖X(k,m)‖2]
(12)

Therefore, from [3] the single-channel MVDR filter is

hmvdr(k,m) =
Φy
−1(k,m)γ∗x(k,m)

γT
x (k,m)Φy

−1(k,m)γ∗x(k,m)
(13)

Φy(k,m) = λyΦy(k,m)+(1−λy)y(k,m)yH(k,m) (14)

where λy is the forgetting factor(set 0.95). Also, to calculate
Φy
−1(k,m), the regularization is used,

Φy
−1(k,m) = {Φy(k,m) +

δ · tr[‖Φy(k,m)‖]
L

IL×L}−1

(15)
where δ > 0 is the regularization parameter (set 0.04).

Specifically, IFC γx(k,m) can be estimated as follows,

γx(k,m) =
ΦY (k,m)

ΦY (k,m)− ΦN (k,m)
γy(k,m)

− ΦN (k,m)

ΦY (k,m)− ΦN (k,m)
γn(k,m) (16)

ΦY (k,m) and ΦN (k,m) represent the second-order statistics
of observed signal Y (k,m) and noise N(k,m), respectively.

Input: Noisy Spectrum

Output: Speech/Noise Masks

Single-channel

MVDR

T-F 

Masks

Single-channel

Post-filter

Enhanced 

Speech

ASR

Noisy 

Speech

Figure 1: Diagram for the 1ch recognition task.

We use the speech soft maskM′c to get the estimated noise
component N̂(k,m) as follows,

N̂(k,m) = (1−max(ε, 1−max(
√
M′c, ε)))Y (k,m) (17)

where ε is an extremely small number to avoid sudden changes
between frames.

Following the single-channel MVDR filtering, a stationary
noise reduction algorithm [11][12] is applied to the filtered sig-
nal as a post-filter shown in Fig.1.

4. Experimental evaluation
4.1. 2ch and 6ch results

For all the recognition tasks, we always apply matched training.
In the case of 2ch track, we randomly select two channels from
all six channels to compose the training set. The channels se-
lected for development and evaluation are kept unmodified. In
the back-end (2ch and 6ch tasks), only one modification is made
to the standard scripts. We make use of the fact that we have all
six channels data available. Besides the enhanced data, we also
use all six channel real and one channel simulated recordings in
the training stage.

In the front-end, LSTM is trained with all the six chan-
nel simulated data [7]. The mask estimation is actually single-
channel based, so we get separate outputs for each channel. For
2ch and 6ch tasks, the masks are then taken median between
specific channels for robustness to outliers.

The results of 2ch and 6ch tasks using sequence training
and RNN language model rescoring are given in Table 1, 2. The
WERs of real test data in the 2ch and 6ch tasks are 9.64% and
5.69%, respectively.

4.2. 1ch results

In the 1ch task, we use 6 channels’ data for matched training.
The results are given by Table 3. A relative 15.59% WER de-
crease on real test data using GMM acoustic model is achieved
compared to the official baseline, in which both training and
testing data are noisy signals. Single-channel MVDR and post-
filtering achieve the best performance since MVDR could fil-
ter the non-stationary noise without speech distortion, mean-
while, post-filtering is good at suppressing the stationary noise.
Single-channel MVDR and post-filtering benefit each other.
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Table 1: Average WER (%) for the multi-channel tested sys-
tems.

Track System Dev Test
real simu real simu

Baseline 8.23 9.50 16.58 15.33

2ch
GMM 12.95 16.06 21.08 20.53

DNN+sMBR 8.34 9.54 12.16 13.27
DNN+RNNLM 5.58 7.18 9.64 8.77

Baseline 5.76 6.77 11.51 10.90

6ch
GMM 9.25 9.24 12.70 10.49

DNN+sMBR 5.43 5.19 8.25 6.51
DNN+RNNLM 3.65 3.71 5.69 4.38

Table 2: WER (%) per environment for the current multi-
channel best system.

Track Envir. Dev Test
real simu real simu

2ch

BUS 6.73 5.68 12.82 6.16
CAF 5.97 10.10 10.59 10.29
PED 4.34 6.03 8.56 9.15
STR 5.26 6.92 6.57 9.47

6ch

BUS 4.81 3.33 7.35 3.46
CAF 3.20 4.69 5.27 4.76
PED 2.99 3.07 5.66 4.28
STR 3.58 3.75 4.50 5.01

Besides GMM acoustic model, results of DNN acoustic
model are also given in Table 4. The best results of test set
are achieved using single-channel MVDR or single-channel
MVDR + postfiltering, however, the best results of development
set are achieved using unprocessed data. This phenomenon is
different from the consistent improvements using GMM acous-
tic model. It is still expected to achieve a better tradeoff between
noise reduction and distortion.

5. Conclusion
The main contributions of the submitted systems were two
proposed front-end processing methods, which were multi-
channel and single-channel noise reductions for specific recog-
nition tasks, respectively. With a fine-tuning parametric multi-
channel Wiener filter, WERs on 2ch and 6ch Real Test sets of
CHiME-4 were reduced to 9.64% and 5.69%. Meanwhile, su-
pervised time-frequency masking based single-channel MVDR
filter with a post-filter performed well in the 1ch task. The
results showed that WER of Real Test set decreased much on
GMM acoustic model but slightly on DNN model. Experimen-
tal results also showed that enlarging the training data could
bring benefits for CHiME-4 tasks.
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Abstract
In this paper, we describe our lightweight system designed for
CHiME-4. For multi-channel processing, we experiment with a
bundle of beamforming methods, including minimum variance
distortionless response (MVDR), parameterized multi-channel
wiener filter (PMWF), generalized sidelobe canceller (GSC),
spectral mask estimation (ME), and compare these techniques
with the same back-end. Combining MVDR’s distortionless
and reliable estimation of the steering vector by ME is found to
be most effective. We propose to applying histogram equaliza-
tion (HEQ) to compensate for the residual noise in the MVDR
beamformed speech. We apply the recently introduced trans-
dimensional random field (TRF) language model and confirm
its superiority in rescoring. In combination these techniques are
surprisingly effective in the CHiME-4 task, achieving 6.55%
word error rate (WER) for the real evaluation data while keep-
ing low system complexity. Applying multi-channel training
further reduces the WER to 5.81%.

1. Background
The performance of automatic speech recognition (ASR) has
been significantly improved in recent years. However, robust
ASR in everyday environments remains a challenge. Research
efforts can be roughly decomposed into developing more pow-
erful front-ends (e.g. microphone array signal processing, fea-
ture enhancement) and back-ends (e.g. acoustic modeling, lan-
guage modeling).

For front-ends, some widely used beamforming techniques
are minimum variance distortionless response (MVDR) [1], pa-
rameterized multi-channel wiener filter (PMWF) [2], general-
ized sidelobe canceller (GSC) [3], and weighted delay and sum
(WDAS) [4]. Beamforming filters could be designed based on
different criteria, representing different trade-offs between dis-
tortion and noise reduction. For example, MVDR minimizes the
output energy subject to no distortion in the desired direction.
It is known that the effectiveness of beamformers heavily relies
on the estimation of the spatial correlation matrix, the steering
vector or time delays, which are usually difficult to estimate
in practice. Researchers have explored to estimate the spatial
correlation matrix using time-frequency masks, which are ob-
tained either by complex Gaussian mixture models (GMMs) [5]
or advanced neural networks [6]. For back-ends, neural net-
work based acoustic models have become the state-of-the-art in
speech recognition [7]. Neural network based language models
(LMs) have also begun to surpass the classic n-gram LMs [8,9].

The CHiME-4 challenge [10] revisits the CHiME-3 da-
ta [11], i.e., WSJ0 corpus sentences spoken by talkers situated
in challenging noisy environments recorded via a 6-microphone

This work is supported by NSFC grant 61473168.

tablet device. The aim is to provide a new benchmark task for
evaluating and promoting far-field speech recognition in every-
day environments.

The CHiME-3 baseline uses MVDR beamformer with di-
agonal loading [12] as the front-end. The back-end is based
on the Kaldi toolkit [13] and consists of a GMM-HMM us-
ing fMLLR transformed features to provide senone state align-
ment and a DNN using fbank features. The DNN is trained
using sequence discriminative training with state-level mimi-
mum Bayes risk (sMBR) criterion. After CHiME-3, an upgrad-
ed Kaldi-based baseline script was made available for CHiME-
4 task, which further incorporates multichannel enhancement
using WDAS based BeamformIt [4], fMLLR features for the
DNN stage, interpolated 5-gram LM and RNN LM for rescor-
ing. The CHiME-4 baseline produces an average WER of
11.57% for the real evaluation data (obtained by our own run).

This paper presents the THU-SPMI system designed for
CHiME-4. For time constraint, we only submit results for 6-
channel track, although the techniques developed in this sub-
mission could be applied to 1-channel track and 2-channel track.

2. Contributions
The goal of this study is to create a lightweight advanced sys-
tem for far-field multi-channel speech recognition, which can
achieve a good trade-off between system complexity and sys-
tem performance, and is practically useful. To this end, we do
not rely on feature fusion (e.g. extracting multiple types of fea-
tures) or hypothesis fusion (e.g. training multiple systems and
doing ROVER), though these are provably beneficial. We are
selective to integrate front-end and back-end techniques and s-
tay simple. Specifically, we identify the following three key
techniques which enable us to significantly improve over the
baseline while keeping low system complexity.

1) For multi-channel processing, after experiments with a
bundle of beamforming methods, the MVDR beamformer with
the steering vector being estimated by time-frequency masks,
as proposed in [5], is found to be most effective. Our contri-
bution is extensive comparisons between various beamformers
with the same back-end.

2) Note that the MVDR beamformer reduces the noise un-
der the distortionless constraint of any signal from the source
direction. There are few artifacts in the beamformed speech,
but there still exists considerable residual noise. We propose to
apply histogram equalization (HEQ) technique for feature nor-
malization, which is originally studied for single-channel fea-
ture enhancement [14]. WERs are found to be significantly re-
duced by using HEQ after the MVDR beamformer, which is an
important empirical finding from this study.

3) Recently, we have shown in previous work [15, 16] with
open source code [17] that a new trans-dimensional random

Proc. of the 4th Intl. Workshop on Speech Processing in Everyday Environments (CHiME 2016), San Francisco, CA, USA, Sep. 13, 2016

7



Table 1: Average WER (%) for the CHiME-4 baseline system
obtained by our own run.

Track System Dev Test
real simu real simu

6ch
GMM 12.90 14.35 21.55 21.09

DNN sMBR 8.12 9.37 14.84 14.38
KN5+RNN 5.89 6.97 11.57 10.66

field (TRF) LM achieves superior performance. In the CHiME-
4 task, we confirm that interpolated TRF and LSTM performs
better than using LSTM alone, and produces significantly better
rescoring performance than interploted 5-gram-KN and RNN
provided in the CHiME-4 baseline. This represents an advance
of the state-of-the-art of language model rescoring.

3. Experimental evaluation
3.1. System overview

Basically, the proposed system follows the pipeline of the
CHiME-4 baseline, and is strengthened with the three tech-
niques which are highlighted before and will be introduced and
evaluated in the following. Table 1 shows the WER result-
s for the baseline, which are obtained by our own run. Start-
ing from the baseline, we incrementally investigate the relative
contribution of each technique from front-end to back-end, and
show that in combination they are surprisingly effective for the
CHiME-4 task, ultimately achieving 6.55% WER for the real e-
valuation data. Applying multi-channel training further reduces
the WER to 5.81%, which was conducted after the CHiME-4
submission.

3.2. Beamforming

We experiment with a bundle of beamforming methods, which
will be briefly introduced below. The experimental results are
shown in Table 2, with the same back-end.

3.2.1. Signal model

In the time domain, most beamforming methods assume the fol-
lowing signal model:

xi(t) = s(t) ∗ hi(t) + ni(t) (1)

where xi(t) is the i-th microphone signal, s(t) is the source
signal, hi(t) is the impulse response from the source to the i-th
microphone, and ni(t) is the additive noise.

In frequency domain, we have

X(t, ω) = S(t, ω)d(ω) + N(t, ω) = G(t, ω) + N(t, ω) (2)

where S(t, ω), X(t, ω), N(t, ω) are the STFT coefficients of
the desired source signal, the microphone signal vector and the
noise signal vector respectively. d denotes the steering vector.
For convenience, we omit t and ω in the following description.

3.2.2. Weighted delay and sum (WDAS)

WDAS simply aligns different channels in time and sums them
together as follows:

y(t) =
∑

i

wixi(t − τi) (3)

where τi is the time delay from the source to the i-th mico-
phone, wi is the weight. The CHiME-4 baseline Beamfor-
mIt [4] is based on WDAS, where time delays are estimated

by use of generalized cross correlation with phase transform
(GCC-PHAT) [18] and two-step Viterbi postprocessing.

3.2.3. Minimum variance distortionless response (MVDR)

MVDR is designed to minimize the output energy subject to no
distortion in the desired direction:

min
W

E||WHX||2 s.t.WHd = 1 (4)

which has the well-known closed-form solution

W =
Φ−1

NNd

dHΦ−1
NNd

(5)

where ΦNN is the noise correlation matrix, H denotes conju-
gate transposition.

The performance of MVDR relies heavily on the estimation
of the noise correlation matrix ΦNN and the steering vector d.
The steering vector could be estimated by time delays τi, d =
[e−jωτ1 , e−jωτ2 , ...], as did in the CHiME-3 baseline. A recent
method studied in [5], denoted as MVDR-EV, is to obtain the
steering vector from the principal eigenvector of the estimated
spatial corelation matrix of clean signal ΦGG = ΦXX−ΦNN,
and use complex GMM based spectral mask estimation (ME)
method to esimate ΦNN.

Allowing the desired direction gain to be the reference com-
ponent of d, we obtain MVDR with relative transfer function
(MVDR-RTF) [2]. Assuming the first channel to be the refer-
ence channel, MVDR-RTF can be expressed as

min
W

E||WHX||2 s.t.WHd = d1 (6)

where d1 is the first component of d. The solution is

W =
Φ−1

NNΦGG

tr(Φ−1
NNΦGG)

u1 (7)

where u1 is vector [1, 0, 0, ..., 0].

3.2.4. Generalized sidelobe canceller (GSC)

Generalized sidelobe canceller is composed of three parts: a
fixed beamformer, a block matrix and a noise canceller. The
fixed beamfomer and the block matrix are normally fixed filters.
Using b and z to represent the output of the fixed beamformer
and block matrix respectively, GSC aims at finding the filter
minimizing the output of the noise canceller,

min
R

||b − RHz||2 (8)

where R is the noise canceller filter and is normally implement-
ed by an adaptive filter.

3.2.5. Parameterized multi-channel Wiener filter (PMWF)

PMWF explicitly expresses the trade-off between noise reduc-
tion and distortion. The PMWF filter is defined by

min
W

E(||WHX − G1||2 + β||WHN||2) (9)

where G1 is the first element of G, assuming the first micro-
phone to be the reference microphone, and β is the parameter.
The first term E(||WHX − G1||2 represents distortion and the
second term E||WHN||2 represents noise reduction. The so-
lution is

W = (ΦXX + βΦNN)−1ΦGGu1 (10)
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Table 2: Average WER (%) of different beamformers with the
CHiME-4 baseline back-end but without RNN.

Track System Dev Test
real simu real simu

6ch

WDAS 8.19 9.40 15.59 15.61
MVDR 14.31 5.97 25.89 6.99

GSC 10.99 15.77 19.79 24.17
GSC+WDAS 9.46 11.73 16.61 19.00

PMWF 10.82 9.90 19.58 14.18
ME+direct 8.75 6.98 15.05 7.74

ME+PMWF 8.87 6.51 15.52 7.33
ME+MVDR-EV 8.04 6.07 13.59 7.32
ME+MVDR-RTF 11.07 6.90 18.99 8.53

3.2.6. Results and Discussions

In Table 2, WDAS denotes the BeamformIt in the CHiME-4
baseline [4]; MVDR denotes the one released at CHiME-3 [11];
GSC is a standard one with a fixed beamformer and a simple
fixed block matrix. GSC+WDAS means using WDAS to rel-
pace the beamformer block of GSC. When applying MVDR,
MVDR-RTF and PMWF, noise correlation matrix is estimated
using a limited context immediately before the utterance as in
the CHiME-3 baseline. After complex GMM based mask esti-
mation (ME), we apply the estimated masks directly to separate
the source (”ME+direct”) or to estimate the spatial correlation
matrices which are fed to different beamformers (the last three
rows in Table 2). We use all 6 channels with energy based mi-
crophone failure detection, except in the case of running WDAS
where we do not use channel 2.

Several points can be drawn from Table 2. (1) CHiME-3
baseline MVDR performs best on the simulated data but worst
on the real data. Presumably this is because that the steering
vector estimation in the CHiME-3 baseline MVDR is similiar
to the generation of the simulated data and is not matched to the
real data. The CHiME-4 baseline WDAS (BeamformIt) per-
forms well. (2) Different beamforming methods pursue trade-
off between reducing noise and avoiding source distortion from
different perspectives. MVDR-RTF and PMWF contain distor-
tion even if with perfect estimation of spatial correlation matrix.
The MVDR-EV beamformer is attractive since it explicitly en-
forces distortionless in the desired source direction. (3) The
MVDR-EV beamformer relies on the estimation of the spatial
correlation matrices of clean and noise signals, which in turn are
used to estimate the steering vector d and the beamformer co-
efficients W. Complex GMM based spectral mask estimation
is found to be superior for this purpose. (4) Replacing the fixed
beamformer for GSC is not able to improve the performance of
GSC. The block matrix and noise canceller may play a more
important role than the fixed beamformer for GSC.

In summary, among those beamforming techniques show in
Table 2, ME works well for its ability to reduce noise; WDAS
(BeamformIt) performs well for its robustness; ME+MVDR-
EV is found to be most effective, which combines MVDR’s dis-
tortionless and reliable estimate of the steering vector by ME.
Noise reduction, distortionless and robustness should be con-
sidered together when designing a beamformer.

The Table 2 results are obtained by training back-end G-
MMs and DNNs over the enhanced speech. Results in all later
Tables (starting from Table 3) are obtained by 1) using cross-
correlation based mic failure detection, 2) training back-end
acoustic models over only channel 5 but testing over the en-
hanced speech from ME+MVDR-EV.

Table 3: Average WER (%) for the ME+MVDR-EV enhanced
speech with the CHiME-4 baseline back-end.

Track System Dev Test
real simu real simu

6ch
GMM 10.89 10.45 16.42 12.10

DNN sMBR 7.20 6.44 11.10 8.02
KN5+RNN 5.16 4.70 8.21 5.79

Figure 1: HEQ feature enhancement flow chart in testing.

3.3. Microphone failure detection

For the 6-ch speech recognition, there exists microphone fail-
ure, which hurts the recognition performance. Energy based
microphone failure detection does not work well, so we propose
to use segmental cross-correlation to detect microphone failure.

Microphone failure is mainly caused by microphones not
working or touched by the speaker, thus there may have small or
large energies. Considering that cross-correlation is influenced
by speech magnitudes, we first normalize the 6-ch signals to
have equal energies for each channel. Then we calculate the
summed segmental maximum cross-correlation:

corr[i, m] =
∑

j,j ̸=i

max
n

corr[i, j, m, n] (11)

where corr[i, j, m, n] denotes the cross-correlation between the
m-th segment from ch-i and the m-th segment from ch-j with
n-point shift. The corr[i, m] is further scaled by the median as
follows:

scorr[i, m] =
corr[i, m]

median
i

corr[i, m]
(12)

When scorr[i, m] is smaller than the threshold α, the ch-i’s m-
th segment is considered as a failure segment. If one channel
contains more than β failure segments, this channel is thrown
away. In our experiments, a segment is of 128ms duration, α is
set to be 0.6 and β is set to be 2.

3.4. Histogram equalization (HEQ)

The baseline acoustic features are 13-order MFCCs. HEQ is
to warp each component of the cepstral vector over a specified
time interval to match the standard Gaussian. While HEQ is
applied in sentence level in [14], HEQ over sliding 3-second
windows performs better in our experiments. After HEQ, other
feature transformations are applied as in the CHiME-4 baseline.
In training, HEQ is applied to the MFCCs of channel 51. In
testing, HEQ is applied to the enhanced speech, as shown in the
flow chart in Figure 1.

It is worthwhile to compare the well-known CMVN and the
HEQ. While both are for feature normalization, HEQ is poten-
tially more effective to compensate for additive noise due to the
nonlinear nature of the distortion caused by additive noise in the
cepstral domain. Comparing Table 3 and 4, it is clear to see the
benefit of applying HEQ to compensate for the residual noise in
the MVDR beamformed speech, espeically for the real data.

1In multi-channel training, HEQ is applied to all six channels.
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Table 4: Average WER (%) for the stack-HEQ features with the
CHiME-4 baseline back-end.

Track System Dev Test
real simu real simu

6ch
GMM 10.39 10.37 13.53 12.01

DNN sMBR 6.73 6.12 9.95 8.19
KN5+RNN 4.64 4.22 7.15 5.51
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Figure 2: Effect of HEQ over the second component of MFCC
feature vectors.

For illustration purpose, Figure 2 plots the second compo-
nent of the MFCC feature vectors and the corresponding HEQ
features for utterance 011 011C0201 PED in real training set.
Three channels (ch 1, ch 5 and ch 6) are plot separately.

HEQ reduces variations in noisy signals but may lose de-
tails. We stack two types of fMLLR features with and without
HEQ as the input of the DNN for information fusion (called
stack-HEQ).

3.5. Trans-dimensional random field (TRF) LM

In addition to the 5-gram LM and RNN LM provided in the
baseline, a TRF LM is trained on the official training corpus
with 200 word classes and the features ”w+c+ws+cs+wsh+csh”
[15]. “w”/“c” denotes the word/class n-gram up to order 4 and
“ws”/“cs” denotes the word/class skipping n-gram up to order
4. “wsh”/“csh” denotes the higher-order long-skipping features.
The definition of feature types is shown in Table 1 of [15].

Here is a brief introduction to TRF LMs. Denote by xl =
(x1, . . . , xl) a sentence (i.e., word sequence) of length l rang-
ing from 1 to m. Each element of xl corresponds to a single
word. D denotes the whole training corpus and Dl denotes the
collection of length l in the training corpus. nl denotes the size
of Dl and n =

∑m

l=1
nl.

As defined in [15], a trans-dimensional random field model
represents the joint probability of the pair (l, xl) as

p(l, xl; λ) =
nl/n

Zl(λ)
eλT f(xl), (13)

where nl/n is the empirical probability of length l. f(xl) =
(f1(x

l), . . . fd(xl))T is the feature vector, which is usually de-
fined to be position-independent and length-independent, e.g.
the n-grams. d is the dimension of the feature vector f(x).
λ is the corresponding parameter vector of f(xl). Zl(λ) =∑

xl eλT f(xl) is the normalization constant of length l. By

Table 5: Average WER (%) for different language models.

Track System Dev Test
real simu real simu

6ch

KN5 5.57 5.11 8.25 6.42
RNN 5.24 4.82 7.92 5.91
TRF 5.09 4.56 7.92 6.04

LSTM 5.35 4.20 7.08 5.28
KN5+RNN 4.64 4.22 7.15 5.51

KN5+LSTM 4.68 3.74 6.79 5.15
TRF+RNN 4.48 4.06 6.96 5.26

TRF+LSTM 4.58 3.78 6.55 4.95

Table 6: WER (%) comparison w/o multi-channel training (en-
hanced speech with HEQ and TRF+LSTM back-end).

Track System Dev Test
real simu real simu

6ch trained on only ch 5 4.58 3.78 6.55 4.95
multi-channel 4.32 3.47 5.81 4.41

making explicit the role of length in model definition, it is clear
that the model is a mixture of random fields on sentences of
different lengths (namely on subspaces of different dimension-
s), and hence will be called a trans-dimensional random field
(TRF).

In the joint SA training algorithm [15], another form of
mixture distribution is defined as follows:

p(l, xl; λ, ζ) =
nl/n

Z1(λ)eζl
eλT f(xl) (14)

where ζ = {ζ1, . . . , ζm} with ζ1 = 0 and ζl is the hypoth-
esized value of the log ratio of Zl(λ) with respect to Z1(λ),
namely log Zl(λ)

Z1(λ)
. Z1(λ) is chosen as the reference value and

can be calculated exactly. An important observation is that if
and only if ζ were equal to the true log ratios, then the marginal
probability of length l under distribution equals to nl/n. This
property is then used to construct the augmented SA algorithm,
which jointly estimates the model parameters λ and normaliza-
tion constants ζ.

TRF LMs have the potential to integrate a richer set of fea-
tures, and as shown in [15], outperform the traditional 4-gram
LM significantly with the relative WER reduction 9.1%. More-
over TRF LMs also achieve slightly better WER results than
RNN LMs, but with much faster speed in computing sentence
probabilities.

In this experiment, the RNN LM is trained using the
CHiME-4 baseline script with 300 hidden units. The LSTM
LM is trained using the open source toolkit provided by [19]
with 2 hidden layers and 500 hidden units of each layer. 10 e-
poch iterations are performed before early stop and no dropout
is used. Following the challenge instructions, we tune the LM
weight and interpolation weight over the whole development
set including all noisy environments and data types. The exper-
iment scripts can be found in [17]. As shown in Table 5, TRF
alone performs as good as RNN; TRF+RNN further reduces the
WER from KN5+RNN; TRF+LSTM performs even better.

3.6. Multi-channel training

After the CHiME-4 submission, we perform multi-channel
training as a straightforward way to expose the acoustic model
to larger training data, as did in [20], and obtain further signifi-
cant improvement, as shown in Table 6.
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Figure 3: WERs on the real evaluation data, showing the rela-
tive contribution of each technique.

Table 7: Average WER (%) for the CHiME-4 baseline front-end
(BeamformIt) with our submitted back-end (stack-HEQ).

Track System Dev Test
real simu real simu

6ch

GMM 12.56 14.37 18.82 19.84
DNN sMBR 7.75 8.74 13.84 13.57
KN5+RNN 5.46 6.29 10.35 9.97
TRF+LSTM 5.23 5.66 9.36 9.16

Table 8: WER (%) per environment for the submitted system
w/o TRF LM.

Track Envir. Dev Test
real simu real simu

6ch without TRF
(KN5+RNN)

BUS 5.80 4.13 10.36 4.09
CAF 3.78 4.90 6.13 5.12
PED 3.85 3.63 5.08 5.60
STR 5.12 4.22 7.04 7.23

6ch with TRF
(TRF+LSTM)

BUS 5.68 4.56 9.67 4.74
CAF 3.98 4.06 5.60 4.22
PED 3.78 3.14 4.17 4.65
STR 4.90 3.36 6.76 6.18

4. Summary
In this paper, we build a lightweight advanced system for
CHiME-4 far-field multi-channel speech recognition challenge,
with three key techniques. After experiments with a bundle of
beamforming methods, the MVDR beamformer with the steer-
ing vector being estimated by time-frequency masks is found
to be most effective. HEQ is successfully applied to compen-
sate for the residual noise in the MVDR beamformed speech.
Interpolated TRF+LSTM LMs perform significantly better than
the baseline KN5+RNN LMs and are also superior to the state-
of-the-art interpolated KN5+LSTM LMs in language model
rescoring. In combination these techniques are surprisingly ef-
fective, achieving 6.55% WER for the real evaluation data while
keeping low system complexity. Applying multi-channel train-
ing further reduces the WER to 5.81%.

Figure 3 shows how the system performance is incremen-
tally improved over the CHiME-4 baseline with the introduced
techniques from front-end to back-end. Following the chal-
lenge instructions, Table 7 shows the results of the CHiME-4
baseline front-end (BeamformIt) with our submitted back-end
(stack-HEQ, TRF LM, without multi-channel training); Table 8
shows the WER per environment for our submitted system.
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M. C. Benı́tez, and A. J. Rubio, “Histogram equalization of speech
representation for robust speech recognition,” IEEE Transactions
on Speech and Audio Processing, vol. 13, no. 3, pp. 355–366,
2005.

[15] B. Wang, Z. Ou, and Z. Tan, “Trans-dimensional random fields
for language modeling,” in Annual Meeting of the Association for
Computational Linguistics (ACL), 2015.

[16] B. Wang, Z. Ou, Y. He, and A. Kawamura, “Model interpolation
with trans-dimensional random field language models for speech
recognition,” arXiv preprint arXiv:1603.09170, 2016.

[17] “https://github.com/wbengine/spmilm.”

[18] M. S. Brandstein and H. F. Silverman, “A robust method for
speech signal time-delay estimation in reverberant rooms,” in
IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 1997.

[19] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural net-
work regularization,” arXiv preprint arXiv:1409.2329, 2014.

[20] T. Yoshioka, N. Ito, M. Delcroix, A. Ogawa, K. Kinoshita, M. Fu-
jimoto, C. Yu, W. J. Fabian, M. Espi, T. Higuchi et al., “The ntt
chime-3 system: Advances in speech enhancement and recogni-
tion for mobile multi-microphone devices,” in IEEE Workshop on
Automatic Speech Recognition and Understanding (ASRU), 2015.

Proc. of the 4th Intl. Workshop on Speech Processing in Everyday Environments (CHiME 2016), San Francisco, CA, USA, Sep. 13, 2016

11



Wide Residual BLSTM Network with Discriminative Speaker Adaptation
for Robust Speech Recognition

Jahn Heymann, Lukas Drude, Reinhold Haeb-Umbach

Paderborn University
Department of Communications Engineering

Paderborn, Germany
{heymann, drude, haeb}@nt.uni-paderborn.de

Abstract
We present a system for the 4th CHiME challenge which sig-
nificantly increases the performance for all three tracks with re-
spect to the provided baseline system. The front-end uses a bi-
directional Long Short-Term Memory (BLSTM)-based neural
network to estimate signal statistics. These then steer a Gener-
alized Eigenvalue beamformer. The back-end consists of a 22
layer deep Wide Residual Network and two extra BLSTM lay-
ers. Working on a whole utterance instead of frames allows us
to refine Batch-Normalization. We also train our own BLSTM-
based language model. Adding a discriminative speaker adap-
tation leads to further gains. The final system achieves a word
error rate on the six channel real test data of 3.48%. For the two
channel track we achieve 5.96% and for the one channel track
9.34%. This is the best reported performance on the challenge
achieved by a single system, i.e., a configuration, which does
not combine multiple systems. At the same time, our system is
independent of the microphone configuration. We can thus use
the same components for all three tracks.

1. Introduction
Automatic speech recognition has become part of everyday life,
not the least because current systems start to achieve remark-
able results even in adversarial environments with severe noise
conditions. These advances can mainly be attributed to stronger
back-ends relying on Deep Neural Networks (DNNs) and by the
processing of multiple input channels which can provide spatial
selectivity to extract the signal of interest.

Indeed, today’s powerful mobile devices are often equipped
with multiple microphones, and thus multi-channel signal pro-
cessing has become a more and more relevant approach to
counterfeit more severe signal impairments due to noise or re-
verberation. The majority of multi-channel speech enhance-
ment systems now consists of some kind of frequency domain
beamforming approach. These beamforming systems tradition-
ally relied on model based masking of time frequency (tf) bins
[1, 2, 3, 4, 5, 6, 7] but more recently, more data driven and dis-
criminatively trained masking approaches have been proposed
[8].

Still, the dispute whether more emphasis should be put on
a stronger front-end or just a deeper back-end remains. The
latter has been pushed to an extreme, where the multi-channel
waveforms or their short time Fourier representations are di-
rectly input to the DNN for acoustic modeling. It is then left to
the network training to learn that fusion of the channels from the
data, which is most effective for ASR performance [9, 10, 11].

We argue that the front-end should be as unobstrusive to the

signal as possible. The danger of adding processing artifacts
is worse than limited noise reduction and therefore we recom-
mend to only use (masking based) linear beamforming. This
still leverages all information contained in correlations between
the individual channels and therefore leave all non-linear fea-
ture extraction to a deeper and more advanced back-end. Con-
sequently, we employ an explicit acoustic beamforming compo-
nent, thus taking advantage of recent progress in this field, e.g.,
by avoiding an explicit speaker localization component and by
giving up the assumption of an anechoic environment. Still, we
value the power of DNNs by using them for mask estimation:
The beamforming coefficients, are estimated from signal statis-
tics, more precisely, from the power spectral density matrices
of the target speech and of the distortions. These statistics are
obtained from spectral masks, which indicate for each tf bin,
whether it is dominated by speech or by noise. And it is this
mask estimation which is carried out by means of a DNN.

Nevertheless, a strong back-end is essential for good ASR
performance. We employ a Wide Residual Network (WRN)
with 22 layers for acoustic modeling. While this network archi-
tecture has been used successfully on image recognition tasks
[12], it is adapted and used here for the first time for ASR.

The paper is organized as follows. In Sec. 2.1 we give
an overview of our front-end design while the back-end is de-
scribed in Sec. 2.2. The following section (3) shortly describes
the database. Detailed experimental results are presented in
Sec. 4. At the end we draw conclusions.

2. System Overview
2.1. Front-end

We use the Generalized Eigenvalue (GEV) beamformer which
maximizes the signal-to-noise ratio (SNR) of the beamformer
output in each frequency bin separately, leading to the beam-
former coefficients [13]:

FGEV(f) = argmax
F(f)

F(f)HΦXX(f)F(f)

F(f)HΦNN(f)F(f)
. (1)

Here, ΦXX(f) is the target and ΦNN(f) the noise Cross-
Power Spectral Density (PSD) matrix for the f -th frequency
band. Please note that this does not require any assumptions
(e.g., assuming an anechoic environment) regarding the nature
of the Acoustic Transfer Function (ATF) from the speech source
to the sensors or regarding the spatial correlation of the noise.

The maximization of the coefficient given in Eq. (1) is
achieved by solving a generalized eigenvalue problem:

ΦXXF = λΦNNF, (2)
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where the eigenvector corresponding to the largest eigenvalue is
the solution to Eq. (1).

This equation, however, does not impose a constraint on
the norm of F, and since each frequency is considered indepen-
dently, this can introduce arbitrary speech distortions.

We handle these distortions by applying the following sin-
gle channel post filter to the GEV output signal [13]:

gBAN(f) =

√
FGEV(f)HΦNN(f)ΦNN(f)FGEV(f)/D

FGEV(f)HΦNN(f)FGEV(f)
,

(3)

where D is the number of microphones. This filter performs a
so-called Blind Analytic Normalization (BAN) to obtain a dis-
tortionless response in the direction of the speaker: The over-
all ATF from the target source to the post filter output should
have unit gain for every frequency bin. If this were achieved
perfectly, speech distortions would be removed and one would
eventually arrive at the Minimum Variance Distortionless Re-
sponse (MVDR) beamformer [14, 15].

Another option is to normalize each beamforming vector to
unit length. This leaves some distortions in the target signal but
those can be handled by the acoustic model if the same kind of
distortions occur both in training and test. Indeed, we found out
that this matched training scenario even leads to slightly better
results, compared to a training on the beamformer output signal
after applying BAN. Here, however, we choose to use BAN be-
cause we want to train the acoustic model on all channels, and
not only on the single beamformer output signal. Then BAN
is necessary to reduce the mismatch between the six channels
used for training and the beamformer output, which is used for
recognition. The benefit of the six times larger training set size
more than compensated for the slight loss due to using BAN.

To solve Eq. 2, signal statistics, namely the PSD matrices,
are required. We estimate these using a mask based approach.
Given non-overlapping masks, MX for the target signal and
MN for the distortion, we estimate the PSD matrix by calcu-
lating the weighted sum of outer products of the microphone
signals [16]:

Φνν(f) =

T∑

t=1

Mν(t, f)Y(t, f)Y(t, f)H, (4)

where ν ∈ {X,N} and Y(t, f) is the vector of microphone
signals at time frame t and frequency bin f .

To obtain an estimation of these masks given our observed
signals, we utilize a neural network. Tbl. 1 details its config-
uration. The network operates on each channel independently
yielding D masks for the target and D for the distortions. For
each source the masks are condensed into a single mask by me-
dian pooling. We opted for this pooling operation because it
makes the mask estimation more robust against channel failures
compared to computing the average of the masks.

We do not force the values of the estimated masks to be one
or zero. Rather, we restrict them to be in the range between one
and zero using a Sigmoid non-linearity activation function for
both estimates, i.e. we work with soft-masks.

We employ ADAM [17] for training. A fixed learning-rate
of 0.001 and full backpropagation through time [18] is used.
Additionally, if the norm of a gradient for this network is greater
than one, we divide the gradient by its norm [19].

To achieve a better generalization, we use Dropout [20] for
the input-hidden connection of the bi-directional Long Short-
Term Memory (BLSTM) units [21] and for the input of the Rec-
tified Linear Unit (ReLU) layers [20]. The dropout rate is fixed

Table 1: Network configuration for mask estimation

Units Type Non-Linearity pdropout

L1 256 BLSTM Tanh 0.5

L2 513 FF ReLU 0.5

L3 513 FF ReLU 0.5

L4 1026 FF Sigmoid 0.0

at p = 0.5 for every layer during the whole training. We do
not use dropout for the last layer. Additionally we modified the
SNR randomly in a range of 0 dB to −7 dB. We use the de-
velopment data for cross-validation, stopping the training when
the loss does not decrease anymore after 5 epochs of patience.

We apply Batch-Normalization (BN) [22] for each layer.
Statistics for the BN are summarized along the time frame di-
mension. In contrast to the method proposed in [22], we do not
use the population estimates obtained from the training or de-
velopment data for the mean and variance at test time. Rather,
we use the statistics of each utterance for each channel individ-
ually also for the test data.

The ideal binary masks used as training targets are defined
as:

IBMN(t, f) =

{
1, ||X(t,f)||

||N(t,f)|| < 10thN(f),

0, else,
(5)

and

IBMX(t, f) =

{
1, ||X(t,f)||

||N(t,f)|| > 10thX(f),

0, else,
(6)

respectively.
The two thresholds thX and thN are not identical. Their

values range from−5 to 10 depending on the frequency and are
hand-tuned. They are chosen such that a decision in favor of
speech/noise is only taken if the instantaneous SNR is high/low
enough to ensure a low false acceptance rate. The network is
trained on all utterances and all channels using the binary cross-
entropy cost.

2.2. Back-end

2.2.1. Network configuration

For the back-end network we combine a slightly modified de-
sign of a WRN [12] with BLSTM layers. This configuration is
motivated by the fact that each layer type has its own distinct
advantages which complement each other in a unified archi-
tecture [23] and by recent findings about Convolutional Neu-
ral Networks (CNNs) by the image community [12, 24, 25]. An
overview of the structure, which we call Wide Residual BLSTM
Network (WRBN), is given in Fig. 3 while Fig. 2 and Fig. 1 de-
tail the building blocks.

The first part of the network is composed of a WRN.
The WRN consists of three residual building blocks which
again consist of smaller building blocks (BlockA and BlockB).
The difference between BlockA and BlockB is rather small.
BlockA can reduce the frequency resolution by having a stride
≥ 1 and it increases the number of channels. Due to this change
of the size of the tensor, a direct residual connection to the
output of the block is not possible. BlockA therefore has an
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ResBlock(S,C,N)

BlockA(S,C)
1

BlockB(S,C)
2

BlockB(S,C)
N

BlockB(S,C)
3

Figure 1: Detailed view of a ResBlock. A ResBlock is parameterized by its striding S, the number of output channelsC and the number
of inner blocks N . Accordingly, BlockB is repeated N − 1 times.

BatchNorm ELU Conv(3, S) BatchNorm ELU Dropout Conv(3, 1)

Conv(1, S)
Only for BlockA

Only for BlockB

BlockA(S,C) or BlockB(S,C)

Figure 2: Detailed view of the building blocks BlockA or BlockB. The batch normalization collects statistics along the frequency
band axis and along the time frame axis. A convolution block Conv(A,S) is parameterized by the filter size A×A, the zero padding
(A− 1)/2 in both directions and the consecutive striding S.

Conv(3, S)

ResBlock(1, 80, 3)

ResBlock(2, 160, 3)

ResBlock(2, 320, 3)

BatchNorm

ELU + Linear

BLSTM

BLSTM

Dropout

Linear

BatchNorm

ELU + Linear

B×3×80×T

B×16×40×T

B×80×40×T

B×160×20×T

B×320×10×T

B×320×10×T

T×B×320

T×B×512

T×B×1024

T×B×1024

T×B×1024

T×B×1024

T×B×2048

Figure 3: Overview of the back-end structure. The annotations
in gray indicate the dimension of the tensors where B is the
mini-batch size and T is the number of frames of the largest
utterance within the batch. The building blocks are explained
in Fig. 1 and Fig. 2. The convolution and the diagonally striped
batch normalization is defined as in in Fig. 2. The horizontally
striped batch normalization just collects statistics along the time
frame axis.

additional convolution operation with filter size 1 × 1 which
acts as the residual connection but also changes the size accord-
ingly. Other than that, the two blocks are identical. A Batch-
Normalization [22] normalizes the output of the preceding con-
volution and an Exponential Linear Unit (ELU) non-linearity
[26] is applied afterwards. Before the last convolution of a block
we use Dropout [20] with p = 0.5.

After the residual blocks, we get 320, each with a dimen-
sion of 10×T where T describes the number of frames and the
first dimension can be interpreted as frequency bands. These
are then weighted and combined for each channel with learn-
able weights resulting in a feature dimension of 320 per frame.
These frames are used as the input for two consecutive BLSTM
layers with 512 units for each direction. The output of the direc-
tions is merged by a sum after the first BLSTM layer and by a
concatenation after the second BLSTM layer. To prevent over-
fitting we use Dropout on the input of each layer. Additionally
we also use Dropout for the hidden-hidden transitions. Instead
of sampling the dropout masks individually per frame, however,
we sample the mask once per sequence with p = 0.5 [27]. This
sampling strategy avoids losing temporal information as a result
of Dropout.

The last part of the network consists of two feed-forward
layers with Batch-Normalization and an ELU non-linearity. The
final output are the posterior probabilities for the 2042 context-
dependent states for each frame.

2.2.2. Training

We first extract the alignments with the baseline back-end and
our front-end using all six channels (Kaldi+GEV). We then train
our network with a cross-entropy criterion and Adam [17] with
α = 10−4 on the unprocessed training data from all six mi-
crophones. We use 80 dimensional mean-normalized log-mel
filterbank features as input. Their delta and delta-delta fea-
tures are used for two additional input channels. We do not
train the network on a window of n frames with truncated back-
propagation. Instead, we train it on a whole utterance with full
backpropagation through time. We see two main advantages
in this strategy. First, the CNN and especially the BLSTM is
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able to exploit the full temporal context and we can avoid zero-
padding within the utterance. Second, we can make efficient
use of Batch-Normalization as described in the following.

2.2.3. Batch-Normalization

Batch-Normalization was first proposed in the context of im-
age recognition and has been shown to improve convergence
as well as generalization [22]. However, a drawback of this
approach is that it relies on statistics accumulated on training
and/or development data at test time. Calculating the statistics
during test would lead to a dependency on the mini-batch con-
stellation since the statistics are aggregated over the batch di-
mension. Here, we treat the batch dimension as an independent
dimension. We can then calculate the statistics also at test time
without losing determinism. This is possible because using the
whole utterance we can get a reliable estimate of the statistics
without including other utterances. Thus each utterance is nor-
malized separately. For the tensors within the WRN we calcu-
late the statistics over the height (frequency) and width (time)
for each channel separately. For the other tensors we calculate
the statistics over time and normalize the feature dimension.

2.2.4. Adaptation

For (speaker) adaptation, we train an additional layer consist-
ing of a 80× 80 weight matrix for each speaker and each track
[28]. That layer with tied weights is applied to all three feature
channels equally. Although CNNs can provide some transla-
tion invariance, we found that the additional transformation of
the input features improves performance. It helps to reduce the
mismatch between the unprocessed data at training time and
the beamformed data at test time. We opted for the single layer
since preliminary results got worse when we adapted the whole
network or parts of it. Training is done by first decoding the
utterances with our best speaker-independent model to get an
alignment for each utterance for each track. We then prepend
the layer to the network and train it with backpropagation for 5
epochs and α = 10−5.

2.2.5. Language model

The baseline system features three different language mod-
els. First, the search graphs are created using a standard 3-
gram model provided by the WSJ database [29]. The graph is
then rescored with a 5-gram Kneser-Ney [30] language model
trained on the provided training data. Finally, the scores are in-
terpolated (rescored) with a recurrent neural network language
model [31]. Here, we aim to replace the latter by a stronger one.
To this aim, we employ a two layer Long Short-Term Memory
(LSTM) language model with 650 hidden units each – similar
to the example provided by [32].

Instead of training on an endless word stream (initial state
of next batch is end state of current batch), we found that train-
ing on complete sentences from the provided language model
training data in a random mini-batch improved cross validation
scores slightly (6% relative word error rate (WER) improve-
ment compared to an endless stream).

Again we use Adam [17] with the parameters proposed in
the aforementioned paper for optimization for 39 epochs. The
main benefit of using Adam besides a slightly improved WER
was the fact, that a learning rate did not have to be tuned manu-
ally.

We experimented with ZoneOut [33] as a regularization
technique for recurrent neural networks but ended up using reg-

ular dropout in the vertical connections only.

Global gradient clipping with a maximum value of 5 is
used. All weight matrices and bias vectors, including the em-
bedding matrix, are initialized with random weights sampled
from a uniform distribution in [−0.1, 0.1].

We experiment with restricted training sets limiting the
maximum number of unknown symbols during training. This
yielded reduced cross validation perplexities. Nevertheless, we
finally selected a model trained on unrestricted training data,
since this resulted in the lowest development test WERs.

Although, the training objective for the language model was
perplexity, it turned out to beneficial to select the final language
model based on the actual WER on the development set.

3. Database
The dataset from the fourth CHiME challenge [34] features
three different tracks with real and simulated audio data of
prompts taken from the 5k WSJ0-Corpus [29] with 4 different
types of real-world background noise. The noise as well as the
real utterances were recorded in a pedestrian, in a cafe, on the
street and in a bus. The recording device was a tablet with six
microphones mounted on its frame. The tracks were differenti-
ated by the number of microphones used at test time. All were
used in the six channel track, while in the two and one channel
track the microphones were sampled randomly.

4. Experimental evaluation
Tbl. 2 gives an overview of all experiments and their results.

Concentrating on the effect of the front-end first, we can
conclude that for the two channel track using our front-end
(Kaldi+GEV) instead of the baseline front-end (Baseline) gives
noticeable improvements in terms of WER. For the six channel
track, just exchanging the front-end even decreases the WER by
about 50%, clearly showing the effectiveness of our approach.
Nevertheless, there is still a big gap between the six channel
and the two channel track. While this shows that our front-end
is able to leverage additional microphones, it also shows that
there is still room for improvements.

The advances in acoustic modelling are best visible for the
one channel track. Compared to the Baseline, our proposed
acoustic model achieves significantly lower WERs. Especially
when comparing the results on the development and the test
data, we can see that the gap is much smaller for our model,
indicating its ability to generalize to different noise conditions.
Looking at the six channel track we can conclude that the gap
between the baseline model and our model gets smaller as the
quality of the input signal improves (Basline vs. WRBN+BFIT
and Kaldi+GEV vs. WRBN+GEV). This tendency is also visi-
ble for the two channel track.

For all tracks, we are able to further improve the results
employing different methods presented in Sec. 2.2. The biggest
gain here can be attributed to Batch-Normalization at test time.

Detailed results for the best system for each track are shown
in Tbl. 3. Here, the results are splitted according to the four dif-
ferent environments. We can see that the more microphones
we use, the less sensitive the result is to a specific environment.
Especially for the one channel track the bus environment per-
forms worse with the street environment having nearly half of
the WER for the real test set.
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Table 2: Average WER (%) for the tested systems. Bold re-
sults correspond to the officially submitted results. The individ-
ual abbreviations mean: ”Kaldi”: baseline backend, ”WRBN”:
our WRBN (Section 2.2.1), ”+BN”: with Batch-Normalization
(Sec. 2.2.3), ”+SA”: with additional linear speaker adapta-
tion layer (Sec. 2.2.4) ”+NTLM”: with own language model
(Sec. 2.2.5), ”+GEV”: with GEV beamformer (Sec. 2.1),
”+BFIT”: with baseline front-end beamformer

Track System
Dev Test

real simu real simu

1ch

Baseline 11.57 12.98 23.70 20.84
WRBN 6.64 9.09 11.8 13.78

+BN 5.69 7.53 10.4 12.67
+SA 5.5 7.18 9.88 11.68
+NTLM 5.19 6.69 9.34 11.11

2ch

Baseline 8.23 9.50 16.58 15.33
Kaldi+GEV 6.93 8.03 13.76 9.9
WRBN+GEV 4.67 5.38 7.65 6.53

+BN 4 4.76 6.96 6.22
+SA 3.8 4.45 6.44 5.38
+NTLM 3.54 4.05 5.96 5.16

6ch

Baseline 5.76 6.77 11.51 10.90
Kaldi+GEV 3.7 3.72 5.66 4.34
WRBN+BFIT 4.43 5.27 7.33 7.85
WRBN+GEV 3.16 3.2 4.52 3.41

+BN 3.06 2.99 4.07 3.51
+SA 2.84 2.75 3.85 3.11
+NTLM 2.73 2.34 3.48 2.76

5. Conclusions

Comparing the presented system with the baseline system, two
components can be identified which provided significant im-
provements (on the order of 20% – 50%): first the neural net-
work supported GEV beamformer turned out to be more effec-
tive than the baseline BeamformIt! [35] beamformer, and, sec-
ond, the WRBN acoustic model significantly improved over the
standard DNN backend. Further, the proposed batch normaliza-
tion per utterance, the additional linear layer at the WRBN input
for speaker adaptation, and the LSTM language model delivered
additional improvements (each on the order of 5% – 10%). It
is further worth mentioning that, up to the speaker adaptation,
this is a single-pass recognition system. The described setup
can be considered light-weight, as it is a single system and not
a combination of multiple systems. While it achieved the best
reported single-system results on the CHiME-4 challenge, even
better error rates can be achieved by a system combination, as
can be seen, e.g., in a companion paper [36].
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Table 3: WER (%) per environment for the best system.

Track Env
Dev Test

real simu real simu

1ch

BUS 6.82 5.41 13.22 8.07
CAF 5.28 9.29 9.45 13.17
PED 3.7 5.21 7.75 10.22
STR 4.96 6.86 6.93 12.98

2ch

BUS 4.23 3.2 7.85 3.88
CAF 3.61 5.4 5.79 5.85
PED 2.86 3.67 4.97 5.21
STR 3.44 3.92 5.23 5.7

6ch

BUS 2.92 2.14 3.76 2.71
CAF 2.65 2.63 3.25 2.88
PED 2.67 2.14 3.33 2.97
STR 2.67 2.45 3.57 2.48
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Abstract
Robust automatic speech recognition in adverse environments
is a challenging task. We address the 4th CHiME challenge [1]
multi-channel tracks by proposing a deep eigenvector beam-
former as front-end. To train the acoustic models, we pro-
pose to supplement the beamformed data by the noisy audio
streams of the individual microphones provided in the real set.
Furthermore, we perform data augmentation by modulating the
amplitude and time-scale of the audio. Our proposed system
achieves a word error rate of 4.22% on the real development
and 8.98% on the real evaluation data for 6-channels and 6.45%
and 13.69% for 2-channels, respectively.

1. Background
This report describes our proposed ASR system for the 6- and
2-channel task of the 4th CHiME challenge. The proposed mod-
ifications of the baseline system are:
• As multi-channel front-end we employ an optimal multi-

channel Wiener filter, which consists of an eigenvec-
tor GSC beamformer and a single-channel postfilter.
Both components depend on a speech presence proba-
bility mask, which we learn using a deep neural network
(DNN).

• In addition to the beamformed signals we use noisy
multi-channel real data to train the acoustic model of the
ASR, i.e. we perform multi-channel training.

• We perform data augmentation by modulating the signal
amplitude (volume perturbation) and time-scale modifi-
cations (speed perturbation).

• We perform sequential language model rescoring using
(gated) RNNs.

• We combine multiple systems with a lattice-based ap-
proach which uses minimum Bayes risk decoding.

A detailed introduction of the individual components and rele-
vant literature are provided in the next section.

2. Robust Multi-Channel ASR System
Figure 1 shows the block diagram of the proposed multi-
channel ASR system including the data augmentation and
multi-channel training of the recognizer. Each processing step
is detailed in the following sections.

This work was supported by the LEAD project, the Austrian Sci-
ence Fund (FWF) under the project number P25244-N15 and P27803-
N15 and the K-Project ASD. Furthermore, we acknowledge NVIDIA
for providing GPU computing resources.

Deep Eigenvector
Beamformer Perturbation

Feature
Extraction

ASR

Rescoring

2ch/6ch
real+simu real+simu

WER

2ch/6ch, real

Figure 1: System overview.

2.1. Deep Eigenvector Beamformer

As multi-channel speech enhancement front-end we employ
a deep eigenvector beamformer, which consists of a general-
ized sidelobe canceller (GSC) beamformer [2–6], followed by
a single-channel postfilter. The GSC consists of a steering vec-
tor F , a blocking matrix B, and an adaptive interference can-
celler, such that: W = F −BHAIC . The GSC block diagram
is given in Figure 2. The steering vector F has to model the
acoustic transfer functions (ATFs) from the speaker to the mi-
crophones [7]. Usually this is done by a direction of arrival
(DOA) estimation. However, this method does not include the
complex propagation paths present in the CHiME4 data. There-
fore we use the dominant eigenvector of the speech PSD matrix
Φ̂SS as steering vector F , such that the beamformer is directed
towards the speech source in signal subspace. This allows the
beamformer to account for early echoes and reverberation of
the speaker signal [7–9]. Hence, we refer to this beamformer as
eigenvector GSC (EV-GSC).

Using the steering vector F , the blocking matrix is given as
B = I − FFH . The adaptive interference canceller HAIC is
learned using an adaptive NLMS filter [10]. The single-channel
postfilter consists of a real-valued gain mask G = ξ

1+ξ
, which

is obtained from the SNR ξ at the beamformer output. It is
given as ξ = WHΦ̂SSW

WHΦ̂NNW
. The SNR depends on both the

speech and noise PSD matrices, which are estimated using
a time and frequency dependent speech presence probability
pSPP .

We use a DNN to learn pSPP from the dominant eigenvec-
tor of the PSD matrix of the noisy inputs. As we are operat-
ing in the frequency domain, each frequency bin k is assigned
to a kernel as shown in Figure 3. The feature vector xk for
each kernel consists of the cosine distance between the eigen-
vectors of 5 consecutive frames. This introduces some context-
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Figure 2: GSC beamformer

sensitivity into our model. The DNN of each kernel uses a
hybrid model with a generative and a discriminative compo-
nent [11]. The generative component consists of two autoen-
coder layers, which perform unsupervised clustering of the in-
put data xk. The autoencoder kernels operate independently for
each frequency bin. We used 20 neurons in the first layer, and
10 neurons in the second layer. The discriminative component
consists of a regression layer which fuses the activations of all
autoencoder kernels, in order to exploit information which is
distributed across the frequency. The regression layer predicts
the K output labels pSPP (xk)). Figure 3 illustrates the kernel-
ized DNN used in our system.

For more details on the EV-GSC beamformer and the ker-
nelized DNN, we refer the reader to [12]. We use the same
architecture for the 2ch and 6ch track, as the training data is the
same for both tracks.

Figure 3: Kernelized DNN to estimate the speech presence
probability pSPP

2.2. ASR

The ASR system employs a hybrid DNN architecture which is
implemented with the Kaldi toolkit [13]. We do not only use the
beamformed data for training but add the noisy channels of the
real data (except for channel 2 which faces backwards). With
this multi-channel training (MC) we can both compensate for
the small amount of training data and make the acoustic model
less sensitive to noise that might be left over in the evaluation
data. In the evaluation stage we still use only the beamformed
signals.

The GMM system uses 13 MFCCs and their deltas and
delta-deltas. The DNN uses 40 fMLLR features extracted from
this GMM system. For the DNN the data is augmented with
speed-perturbed copies of the original data. Additionally, the
data is volume-perturbed for greater robustness (pert). The
DNN is then generatively pre-trained using restricted Boltz-

mann machines. The DNN has 6 hidden layers and is trained
with a state-level minimum Bayes risk (sMBR) criterion. The
results which have been obtained in this way are then rescored
with a Kneser-Ney smoothed 5-gram model (5-gram), a re-
current neural network language model (RNNLM) and a gated
RNNLM (GRNNLM). The two RNNLMs consist of a single
hidden layer with 300 and 500 neural units, respectively.

We perform system combination by first combining the lat-
tices of the system with perturbed training data (pert), the sys-
tem with multi-channel training (MC) and the system that uses
both (MC + pert). We then decode the resulting lattices with an
sMBR criterion.

3. Experimental Evaluation
Table 1 shows the results of our systems for the 6-channel and
2-channel tasks of the 4th CHiME challenge. For each data set
the best score for a single system and for system combination
is in boldface. Due to time constraints we report only those
results for the 2-channel task which uses the system architecture
that we have found to be optimal for the 6-channel task (SC).
Therefore the following comparison focuses on the 6-channel
task.

On average over the test sets, our proposed EV-GSC beam-
former of S2 performs 2% WER better than the baseline Beam-
formIt beamformer of S1, i.e. 7.95% WER vs. 9.98% WER
for the RNNLM-rescored DNN. However, this performance im-
provement is the least pronounced for the real evaluation data.
Data augmentation through speed perturbation and volume per-
turbation (pert) of S3 results in an improvement of .74% WER
on average, i.e. 7.20% WER vs. 7.95% WER. Multi-channel
(MC) training of S4 leads to an improvement of 0.80% WER on
average, i.e. 7.15% WER vs. 7.95% WER. Both multi-channel
training and amplitude and time-scale perturbation (MC+pert)
of S5 results in an improvement of 1.19% WER on average,
i.e. 6.75% WER vs. 7.95% WER. Further rescoring with the
gated RNNLM leads to a small improvement of 0.04% WER.
The best results for 6-channels are achieved by a combination
of systems S3, S4, and S5 as S6. In particular, we obtain a
WER of 8.98% and 7.02% on the real and simulated test set,
respectively.

Table 2 shows the individual results for each environment
of our best system for the 6- and 2-channel track. For both
systems, performance on the real evaluation data set is consid-
erably worse for BUS than for any other environment.
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Table 1: Average WER (%) for the tested systems.
Track System Dev Test

Tag ASR Data BF real simu real simu

2ch
SA GMM – EV-GSC 14.16 15.13 26.33 24.12
SB GMM MC EV-GSC 13.41 15.36 23.46 23.49
SC DNN

M
C

+
pe

rt

E
V

-G
SC

9.38 11.33 17.92 18.10
+sMBR 9.24 10.91 17.16 17.46
+5-gram 7.63 9.60 15.29 15.81

+RNNLM 6.66 8.54 14.02 14.46
+GRNNLM 6.45 8.29 13.69 14.33

6ch
S1

GMM
–

be
am

fo
rm

it 12.78 14.87 23.13 23.06
DNN 9.41 10.43 17.26 17.14

+sMBR 8.33 9.21 15.72 15.88
+5-gram 6.91 7.96 13.75 13.63

+RNNLM 5.99 7.16 12.21 12.42
+GRNNLM 6.03 7.21 12.07 12.50

S2

GMM

–

E
V

-G
SC

11.21 11.92 23.41 16.13
DNN 8.32 8.32 17.36 11.75

+sMBR 7.37 7.52 15.55 10.83
+5-gram 6.01 6.14 14.05 9.35

+RNNLM 5.14 5.48 12.60 8.56
+GRNNLM 5.16 5.51 12.64 8.35

S3

DNN

pe
rt

E
V

-G
SC

7.82 7.96 16.13 11.01
+sMBR 6.83 6.86 14.34 10.16
+5-gram 5.66 5.76 12.78 8.70

+RNNLM 4.71 5.13 11.53 7.44
+GRNNLM 4.74 5.05 11.45 7.34

S4

GMM

M
C

E
V

-G
SC

11.05 11.77 19.65 15.93
DNN 8.15 7.94 14.38 11.37

+sMBR 7.30 7.49 13.38 10.56
+5-gram 5.82 6.17 11.55 9.51

+RNNLM 4.96 5.27 10.23 8.14
+GRNNLM 4.86 5.29 10.08 8.06

S5

DNN

M
C

+
pe

rt

E
V

-G
SC

7.65 8.03 13.53 10.89
+sMBR 6.81 7.24 12.50 10.01
+5-gram 5.53 6.08 10.94 8.57

+RNNLM 4.65 5.35 9.63 7.38
+GRNNLM 4.66 5.28 9.54 7.38

S6 combination EV-GSC 4.22 4.73 8.98 7.02

Table 2: WER (%) per environment for the best system.
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Abstract
This paper describes the ASR system submitted by FBK
to the CHiME-4 challenge for the single channel track.
The proposed solution employs multiple subsystems,
whose DNNs are trained with different training crite-
ria and strategies (i.e. diverse training material, with
and without batch normalization). A “self” adaptation
of acoustic models is applied to each subsystem, rely-
ing on a blind estimate of the accuracy of automatic tran-
scriptions. This adaptation, performed in a batch fashion
over the entire evaluation set, significantly improves the
performance of each subsystem. The final output is ob-
tained by combining the multiple transcriptions through
ROVER, which provides a further improvement, reduc-
ing the average WER on the evaluation set from 22.3% to
16.5%.

1. Introduction
In a number of application scenarios (e.g., home au-
tomation, smart cars, robots), performance of automatic
speech recognition (ASR) is heavily affected by noises
of various types, competing speakers and reverberation
effects. The CHiME challenges [1, 2, 3, 4] represent an
excellent framework to evaluate signal enhancement and
noise-robust acoustic models for ASR in such realistic
conditions. Built upon the previous CHiME-3 challenge,
the CHiME-4 dataset comprises utterances recorded by
a 6-channel tablet-based microphone array. The recogni-
tion task is the automatic transcription of read sentences
from the Wall Street Journal (WSJ) corpus, acquired in
four noisy conditions; [4] illustrates training, develop-
ment and evaluation data sets released for the competi-
tion. The results in [3] proved the effectiveness of signal
enhancement approaches combined with the use of hy-
brid acoustic models based on deep neural networks hid-
den Markov models (DNN-HMMs) [5, 6, 7, 8].

In this submission we consider the 1ch-track of the
challenge, focusing specifically on deep learning tech-
niques and building upon our previous submission for
the CHiME-3 challenge [9], where an effective two-pass
strategy was explored. In that work the DNNs employed
to recognize each input stream (beamformed or single
channels) were re-trained using the corresponding auto-
matic transcription generated with the baseline acoustic

models. A MAP selection procedure, at sentence level,
produced the improved final transcriptions.

For the current 1ch-track CHiME-4 challenge, only a
single channel is available in the decoding pass and the
multiple hypotheses generated for a final ROVER combi-
nation are derived from systems exploiting not only dif-
ferent training material, as done in [9], but also introduc-
ing a variety of DNN architectures. Secondly, we im-
prove the model adaptation stage, replacing the standard
retraining on the whole adaptation set with a more so-
phisticated solution, which enhances the adaptation with
effective instance weighing and selection criteria. Fi-
nally, the combination of the hypotheses provided by
the sub-systems is based on our previous work on driv-
ing ROVER with segment-based ASR quality estima-
tion [10].

The paper presents in Section 2 the approach and the
main features of the proposed system while Section 3 de-
scribes the steps of the processing pipeline and Section 4
reports the corresponding WER results. Section 5 con-
cludes the work, presenting possible future directions.

2. Main characteristics
The main features explored in our current submission are
the introduction of diverse DNN architectures in order to
be able to rank, select and combine multiple hypotheses
after an effective DNN adaptation stage; Figure 1 shows
the blocks detailed in Section3.

In particular, we explored the use of batch-
normalized DNNs. Training DNNs is indeed complicated
by the fact that the distribution of each layer’s inputs
changes during training, as the parameters of the previ-
ous layers change. This problem, known as internal co-
variate shift, slows down the training of deep neural net-
works. Batch normalization [11] addresses this issue by
normalizing the mean and the variance of each layer for
each training mini-batch, and back-propagating through
the normalization step. It has been long known that the
network training converges faster if its inputs are properly
normalized [12] and, in such a way, batch normalization
extends the normalization to all the layers of the archi-
tecture. However, since a per-layer normalization may
impair the model capacity, a trainable scaling parameter
γ and a trainable shifting parameter β are introduced in
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Figure 1: The architecture of the proposed CHiME-4
automatic transcription system, characterized by a four-
steps pipeline.

each layer to restore the representational power of the
network. The above-mentioned systems, implemented
with Theano [13], are coupled with the Kaldi toolkit [14]
to form a context-dependent DNN-HMM speech recog-
nizer.

Another technique explored in this work is DNN
adaptation. The usual way to adapt a DNN trained on
a large set of data, given a much smaller set of adaptation
data, is to retrain the DNN over the adaptation set, which
could lead to overfitting the model on the adaptation data.
A solution to prevent these detrimental effects is to adopt
a conservative learning procedure by adding a regulariza-
tion component to the loss function. The adaptation tech-
nique proposed here is based on a Kullback-Leibler di-
vergence (KLD) regularization [15]. KLD regularization
can be implemented through cross-entropy minimization
between a new target probability distribution and the cur-
rent probability distribution. Moreover, this regulariza-
tion binds directly the DNN output probabilities rather
than the model parameters; as a consequence, the method
can be easily implemented with any software tool based
on back-propagation, without introducing any modifica-
tion.

In addition, we evolved our previous system by ex-
ploiting a recently developed automatic quality estimator
(QE), which is able to provide (sentence by sentence) a
confidence score related to the expected word error rate
(WER%). Automatic assessment methods can be used
to select audio data for unsupervised training [16], ac-
tive learning of acoustic models [17, 18], combination of
multiple transcription hypotheses into a single and more
accurate one [19]. The proposed technique, which has
shown promising in both ASR and machine translation
applications [20, 10], contributed to this submission in
two ways. First, we used the confidence scores to auto-
matically select the best subset of utterance for the un-
supervised adaptation step. Secondly, we exploit such a
confidence score to rank multiple hypothesis prior to a
standard system combination based on ROVER, as done
in our previous submission.

3. System implementation

The architecture of our proposed system, depicted in
Fig.1, is based on four steps: generation of preliminary
transcriptions using the models trained on the noisy chan-
nels; quality estimation of the resulting hypotheses and
selection of suitable adaptation sentences according to
WER predictions; DNN adaptation using KLD regular-
ization; systems combination through ROVER.

3.1. Step 1: multiple DNN-based speech recognizers

With the final purpose of improving system diversity, dif-
ferent DNNs have been considered. All the DNNs use
the standard 40 fMLLR features used in the CHiME-4
baseline recipe [4]. Such features are then gathered into a
context windows of 11 consecutive frames prior to feed-
ing a feed-forward DNN. A Stochastic Gradient Descend
(SGD) algorithm is used as DNN optimizer.

A first system (dnn0) based on the CHiME-4 base-
line has been trained using one single channel (CH5), as
originally proposed. A second DNN (dnn1), is trained
following again the baseline recipe but exploiting all the
six channels available in the training-set (CH1-CH6).

In addition, a set of batch-normalized DNNs are
trained (dnn2-4). For these systems (due to time
and computational restrictions) the standard training-set
(based on channel 5 only) was used. The adopted batch-
normalized DNNs are based on Rectified Linear Units
(ReLU) and employ drop-out (with a drop-out rate of
ρ = 0.2). Moreover, to further improve the system per-
formance, the labels for DNN training are derived by
a forced-alignment over the close-talking signals. Such
an approach has been studied in [21]. The first batch-
normalized DNN (dnn2) is based on six hidden layers
composed of 2048 neurons. A second batch-normalized
DNN (dnn3) is trained with the same architecture, but ex-
ploiting features derived by an automatic classification of
the environment. More specifically, a DNN is trained us-
ing the environmental labels in the training set and the
posterior probabilities generated by such a network are
concatenated with the standard fMLLR features. The
last batch-normalized DNN (dnn4), inspired by our re-
cent work on joint training [22], concatenates a speech
enhancement and a speech recognition deep neural net-
work, whose parameters are jointly updated as if they
were within a single bigger network. More precisely, in
the joint training framework we perform a forward pass,
compute the loss functions at the output of each DNN
(mean-squared error for speech enhancement and cross-
entropy for speech recognition), compute the correspond-
ing gradients, and back-propagate them though.

Particular attention should be devoted to the initial-
ization of the γ parameter. Contrary to [11], where it
was initialized to unit variance (γ = 1), in this work we
have observed better performance and convergence prop-
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erties with a smaller variance initialization (γ = 0.1). A
similar outcome was found in [23, 24], where fewer van-
ishing gradient problems are empirically observed with
small values of γ in the case of recurrent neural networks.

3.2. Step 2: Quality Estimation

The transcriptions generated by each hybrid DNN-
HMMs systems are processed by a system that automati-
cally estimates the WERs of each sentence. The approach
makes use of a supervised regression method that effec-
tively exploits a combination of “glass-box” and “black-
box” features [20, 10]. Glass-box features, similar to
confidence scores, refer to the one extracted when the
ASR features such as lattice and confidence scores are
available, and capture information inherent to the inner
workings of the ASR system that produced the transcrip-
tions. The black-box ones, instead, are extracted by look-
ing only at the signal and the transcription. On one side,
they try to capture the difficulty of transcribing the signal
while, on the other side, they try to capture the plausibil-
ity of the output transcriptions. In both cases, the infor-
mation used is independent of knowledge about the ASR
system, making the approach of [20] ASR QE applicable
to a wide range of scenarios in which the only elements
available for quality prediction are the signal and the tran-
scription. The extensive experiments in different testing
conditions discussed in [20, 10] indicate that regression
models based on Extremely Randomized Trees (XRT)
[25] can achieve competitive performance, being able to
outperform strong baselines and to approximate the true
WER scores computed against reference transcripts. For
the experiments reported here we trained two different
XRT based regressor on the CHiME-4 development sets:
dt05 simu and dt05 real, and used the resulting models
on the related evaluation sets.

3.3. Step 3: DNN unsupervised adaptation

The WER predictions of the sentences in each evalua-
tion set are hence used to build adaptation sets containing
sentences of mid-high quality. In particular, for these ex-
periments we selected all the sentences with a predicted
WER below 20%. The selected material is used to per-
form “self” DNNs adaptation (i.e. we are using, as adap-
tation sets, selected subsets of the test data.

The KLD regularization introduced for the adaptation
step is implemented through cross-entropy minimization
between a new target probability distribution and the cur-
rent probability distribution. The new target distribution
is obtained as a linear interpolation of the original dis-
tribution and the distribution computed via forced align-
ment with the adaptation data:

P [si|ot] = (1−α)p̂[si|ot] +α
∗
p[si|ot] 0 ≤ α ≤ 1 (1)

Note that, in Eq. 1, α = 0 is equivalent to a “pure”

Table 1: Average WER (%) for the each systems and the
final combination

Track System
Dev Test

real simu real simu

1ch
sys0 10.42 12.54 20.09 18.17
sys1 9.02 10.98 17.21 16.52
sys2 9.64 11.48 18.44 17.40
sys3 9.65 11.52 18.26 16.99
sys4 10.02 12.92 18.62 18.23
comb 9.02 9.51 16.87 16.09

retraining of the DNN over the adaptation data, while
α = 1 means that the output probability distribution of
the adapted DNN is forced to follow that of the origi-
nal DNN . What one can expect is that the optimal value
of α is close to 0 when the size of the adaptation set is
large and the transcriptions of the adaptation sentences
are not affected by errors (i.e. in supervised conditions).
Conversely, when the size of the adaptation set is small
and/or its transcription can be affected by errors (i.e. in
the case of unsupervised adaptation), α should increase.

DNNs are adapted to the acoustic conditions of each
evaluation set: we adapt a different DNN for each one of
the two sets: dt05 and et05. The automatic supervision
of each adaptation set is given by the ASR hypotheses
generated in the first decoding pass of Figure 1.

A final decoding step is then carried out using the
adapted DNNs, followed by the LM rescoring pass in-
cluded in the CHiME-4 baseline (based on a linear com-
bination of 5-gram LM and RNNLM).

3.4. Step 4: hypotheses combination

A common way to combine multiple ASR hypotheses
is through ROVER [CITE]. However, the behaviour of
ROVER strongly depends on the order of the hypothe-
ses[CITE], and the overall performance could substan-
tially improve if the ARS transcription are ranked accord-
ing to they accuracy [10]. Therefore, the ASR transcrip-
tions, obtained after the unsupervised DNN adaptation,
are automatically ranked at sentence level using the QE
system described in [10]. We train an automatic rank-
ing system for each development data sets (dt05 simu and
dt05 real), and used it to rank the sentence hypotheses of
the evaluation sets: et05 simu and et05 real.

4. Experimental evaluation
4.1. Submitted system

Table 1 reports the results obtained with each subsystems
and with their final combination. The systems labeled as
“sys0-4” refer to five DNNs (dnn0-4) after the unsuper-
vised adaptation. The system “comb” represents the final
ROVER combination.

We can observe that, as expected, the best single sys-
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Table 2: WER (%) per environment for the submitted sys-
tem

Track Envir.
Dev Test

real simu real simu

1ch

BUS 12.41 8.01 24.57 12.01
CAF 8.70 12.12 18.36 18.36
PED 6.23 7.30 13.60 15.57
STR 8.73 10.59 10.96 18.23

tem is sys1, since it is trained with all the available chan-
nels. However, the performance obtained with batch-
normalized DNNs (sys2-sys4) are rather competitive with
sys1, even if such systems are training with a single chan-
nel only. However, the comparison between sys0 (no
batch-norm) and sys2 (with batch norm) confirms the sig-
nificant benefits obtained with such a technique. Results
also reveals that the addition of the environmental fea-
tures seems to give only minor benefits (compare sys2
and sys3). We also found that, differently to what we
experimented in [22], the joint training systems (sys3)
performs slightly worse than a single DNN case. The
last row of Table 1 reports the results obtained by com-
bining all the considered systems. The performance ob-
tained with the latter system for each noise conditions is
reported in Table 2.

4.2. Updated system

The importance of the quality of automatic transcriptions
for the adaptation pass suggested us to introduce a mod-
ification in the system architecture, i.e. to make use of
an additional combination stage after the initial decod-
ing step; indeed, it is possible to automatically rank [10]
also the hypotheses generated in the pass-1 and select the
”best” one as supervision for all the systems in pass-3.
Table 3 shows the results obtained with this new adap-
tation strategy, represented in Figure 2. An additional
gain is achieved, indicating that the improved transcrip-
tion obtained exploiting the diversity of multiple systems
produces better adapted DNN models.
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Figure 2: The updated pass-2: a unique QE-based super-
vision is derived for all the DNN systems.

Table 3: Average WER (%) for the updated system in
which the pass-2 produces a single supervision for all the
DNN systems.

Track System
Dev Test

real simu real simu
1ch comb (new) 8.45 10.56 16.17 15.20

5. Discussion and conclusions
In this work we have proposed a refinement of the system
previously submitted to the CHiME-3 challenge [9]. The
two-pass decoding combined with automatic data selec-
tion for DNN adaptation benefited from previous expe-
rience on quality estimation of ASR hypotheses in the
framework of ASR system combination [10].

To perform data selection we applied ASR quality es-
timation, using automatic WER prediction as a criterion
to isolate subsets of the adaptation data featuring vari-
able quality. As a result, ASR QE-based data selection,
in combination with KLD-based DNN adaptation, pro-
vides a significant advantage. Instead, the diversity of the
hypotheses generated by DNNs trained on different chan-
nels or with different procedure (batch-normalization)
is quite limited and the final combination step provides
small improvements with respect to the single systems.

Overall, the experimental results confirm the effec-
tiveness of the proposed approach that, using the pro-
vided training set and the baseline language models, al-
lows to improve from 22.3% to 16.5% WER (average on
the evaluation set).

Finally, note that the regularization coefficient α in
Eq. 1 can be made dependent on the quality of each test
sentence (e.g., by predicting the corresponding WER or
by implementing a specific training phase for estimating
sentence dependent αk, being k the identifier of the kth

test utterance) allowing to implement a soft scheme for
DNN adaptation: this approach has given promising re-
sults on the recognition of a data set of children speech
[26].

A planned direction for further investigations is the
introduction of more effective types of neural network
architectures (Convolutional Neural Networks or Long-
Short Term Memory Recurrent Neural Networks [27]),
both for improving the overall performance of the related
ASR systems and for augmenting the diversity of the hy-
potheses. In this way both the quality of the supervision
and the efficacy of hypotheses combination are expected
to increase.
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A. Courville, “Recurrent batch normalization,” arXiv
preprint arXiv:1603.09025, 2016.

[24] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio, “A
network of deep neural networks for distant speech recog-
nition,” in submitted to ICASSP 2016.

[25] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely Ran-
domized Trees,” Machine Learning, vol. 63, no. 1, pp. 3–
42, 2006.

[26] M. Matassoni, D. Falavigna, and D. Giuliani, “Cross
and Self Adaptation of DNN for Recognition of Children
Speech,” in Proc. of SLT, San Diego (CA), Usa, December
2016.

[27] H. Sak, A. W. Senior, and F. Beaufays, “Long short-term
memory based recurrent neural network architectures for
large vocabulary speech recognition,” Interspeech, 2014.

Proc. of the 4th Intl. Workshop on Speech Processing in Everyday Environments (CHiME 2016), San Francisco, CA, USA, Sep. 13, 2016

25



A Study of Learning Based Beamforming Methods for Speech Recognition

Xiong Xiao1, Chenglin Xu1, Zhaofeng Zhang2, Shengkui Zhao3, Sining Sun4, Shinji Watanabe5
Longbiao Wang6, Lei Xie4, Douglas L. Jones3, Eng Siong Chng1, Haizhou Li7,1

1Nanyang Technological University (NTU), Singapore, 2Nagaoka University of Technology, Japan,
3Advanced Digital Sciences Center, Singapore, 4Northwestern Polytechnical University, China,

5Mitsubishi Electric Research Laboratories, USA, 6Tianjin University, China,
7National University of Singapore, Singapore.

{xiaoxiong, xuchenglin}@ntu.edu.sg, s147002@stn.nagaokaut.ac.jp, shengkui.zhao@adsc.com.sg

Abstract
This paper presents a comparative study of three learning based
beamforming methods that are specifically designed for robust
speech recognition. The three methods are 1) neural network
that predicts beamforming weights from generalized cross cor-
relation (GCC) features; 2) neural network that predicts time-
frequency (TF) mask which is used to estimate MVDR (min-
imum variance distortionless response) beamforming weights;
3) maximum likelihood estimation of beamforming weights to
fit enhanced features to clean trained Gaussian mixture model.
All three methods operate in frequency domain. They are
evaluated on the CHiME-4 benchmarking speech recognition
task and compared with traditional delay-and-sum and MVDR
beamforming methods on the same speech recognition task.
Discussions and future research directions are presented.

1. Introduction
Beamforming is an important approach to improve the perfor-
mance of automatic speech recognition (ASR) in far field sce-
narios.. Traditional beamforming methods enhance the speech
signals to improve signal level criteria, e.g. the signal-to-noise
ratio (SNR) of output signal. As these criteria are not directly
related to the ASR’s performance measure, tradiitonal methods
are usually not optimized for the ASR task.

Recently, several learning based beamforming methods are
proposed for the ASR task. By learning based methods, we
mean these methods learn from a large amount of training data
(single or multi-channel), and apply the learned knowledge at
run time to estimate parameters for ASR, e.g. beamforming
weights. In one approach [1–3], multi-channel raw waveforms
are fed into the neural network acoustic model directly. A tem-
poral convolution layer at the bottom of the network is used to
approximate the filter-and-sum beamforming operation. After
training, the temporal convolution layer learnes a fixed bank of
spatial and temporal filters, each with specific looking direc-
tions. We call this approach the spatial filter learning approach.
In another approach, beamforming filter weights are predicted
by neural networks that are jointly optimized with the acous-
tic model networks. Deep neural network (DNN) is used to
predict beamforming weights in frequency domain from gen-
eralized cross correlation (GCC) features [4] or spatial covari-
ance matrix (SCM) features [5]. In [6], long short-term memory
(LSTM) networks are used to predict the beamforming weights
in the time domain directly which has less number of free pa-
rameters than the frequency domain. We call this appraoch the
spatial filter prediction approach. While the filter learning ap-

proach learns a fixed set of spatial filters, the filter prediction ap-
proach predicts spatial filters dynamically from the input data.
In another approach, neural networks are used to predict time-
frequency (TF) mask that specifies whether a TF bin is dom-
inated by speech or noise. The TF mask is used to help esti-
mating the speech and noise SCMs required by beamforming
methods, such as the minimum variance distortionless response
(MVDR) [7, 8] and generalized eigenvalue (GEV) [9, 10] beam-
formers. The mask predicting network can be trained by using
ideal masks as target [11–13] or by minimizing the ASR cost
function [14]. The filter learning, filter predicting, and mask
predicting approaches are called discriminative approach in this
paper, as the models are trained to minimize the ASR error.

Besides discriminative methods, there is also learning based
beamforming methods based on generative modeling of speech
features. In [15, 17], a method called LIMABEAM estimates
time or frequency domain filter-and-sum weights to maximize
the likelihood of the enhanced feature vectors on clean trained
HMM/GMM acoustic model. In the unsupervised implemen-
tation, multi-pass decoding is required, where the first pass de-
coding provides the hypothesized text used to obtain HMM state
alignment. Beamforming weights can be estimated iteratively
to maximize the likelihood of the enhanced features given the
state alignment. It is reported that LIMABEAM outperforms
delay-and sum beamforming in several ASR tasks.

Although several learning based methods have been pro-
posed in the past, they are usually implemented by different re-
searchers and evaluated on different ASR tasks. As a result, it is
difficult to compare their performance. In this paper, we attempt
to study three learning based beamforming methods compara-
tively, with the implementation in the same toolkit, i.e. Signal-
Graph [25], and evaluation in the same task, i.e. the CHiME-4
speech recognition task [16]. The three methods include a max-
imum likelihood (ML) beamforming (a variant of LIMABEAM
[15]), the spatial filter weight predicting network [4], and the
mask predicting network [14].

2. Learning Based Beamforming Methods
2.1. Spatial Filter Weight Predicting Network

The system diagram of the spatial filter weight predicting net-
work [4] is shown in Fig. 1. On the bottom left of the figure,
a network is used to predict the beamforming weights in fre-
quency domain. The weights are then applied on the multi-
channel inputs to generate enhanced speech, from which fea-
tures are extracted for acoustic modeling.
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Figure 1: Discriminative beamforming weight prediction.

The weight prediction network and the acoustic model net-
work are jointly optimized using the ASR cost function. The
weight predicting network is initialized by learning from a
delay-and-sum filter on simulated data. Specifically, if the true
time difference of arrival (TDOA) of the different channels are
known, which is the case for simulated data, we can use the
ideal delay-and-sum filter weights as the target for the weight
predicting network to learn. The network predicts the real and
imaginary of the ideal weights independently. Mean square er-
ror (MSE) between the ideal weights and predicted weights is
used as the cost function in initialization. After the initializa-
tion, the weight predicting network is jointly refined with the
acoustic model using back propagation and ASR cost.

The details of the weight predicting network is illustrated
in Fig. 2. From the waveforms, we extract feature vectors from
GCC function between two channels [18] for every 0.2s long
frame with 0.1s shift. The GCC feature vectors encode the
phase information of channels and the features extracted from
all channel pairs are concatenated to form a single feature vec-
tor for each frame. For the CHiME-4 data [16], the dimen-
sionality of the GCC feature vector is 27 for each channel pair.
This is because the maximum TDOA is less than 13 samples for
the array geometry used in CHiME-4 and 16kHz sampling rate.
The bottom right of Fig. 2 shows example GCC features. As
different direction of arrival (DOA) angles have different GCC
patterns, the GCC features contain information for DNN to de-
termine spatial direction of the source and also TDOA [19]. In
this work, a DNN is used to map the GCC features to the beam-
forming weights in frequency domain. For stable estimation of
weights, we take the mean of predicted weight vectors of all
frames for each sentence.

While the array geometry is assumed to be fixed in [4], in
the two channel track of the CHiME-4 benchmarking task, the
geometry of the array depends on the distance bewteen the two
microphones randomly selected from a 6-microphone array. We
will test whether one single weight predicting network is able
to cover several array geometries.

2.2. Time Frequency Mask Predicting Network

The TF mask predicting network is illustrated in Fig. 3. The
log power spectra of input signals are mean normalized on an
utterance basis and used as features for mask prediction. The
mask prediction is carried out for each channel independently,
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Figure 2: Details of weight predicting network. The size of the
GCC feature matrix (bottom right) depends on the number of
unique channel pairs.

but shares the same LSTM mask predictor. For each channel,
two TF masks are predicted by the LSTM network, one speech
mask that specifies whether a TF bin is speech dominated and
one noise mask. We call this splitted mask. We can also force
the speech and noise masks to sum to 1 for each TF bin. This
can be implemented by only predicting the speech mask and
obtain the noise mask by 1-speech mask.

The LSTM network contains one hidden layer, whose acti-
vation vector is projected to noise and speech mask vectors by
using two independent projection layers. The sigmoid activa-
tion function is used for projection layers to ensure that the pre-
dicted masks will have value between 0 and 1. For both noise
and speech masks, pooling is used to reduce the set of masks of
all channels to a single mask. Four types of pooling functions
are compared, including mean, median, min, and max. Note
that during training, we only uses one channel (the first chan-
nel) to predict the mask, and hence pooling is not necessary.
Only at testing, we may estimate the masks for all channels and
use pooling.

Given the mask, the MVDR beamforming weights can be
determined as follows [20],

w(f) =
Φ−1
nn(f)Φss(f)u

Tr[Φ−1
nn(f)Φyy(f)]

(1)

where u is a vector with the element for reference channel being
1 and all others being 0. Tr[·] denotes trace of a matrix. Φnn
and Φss are the noise and speech SCMs estimated as

Φss(f) =

∑T

t=1
m̂s
t (f)yt(f)yHt (f)∑T

t=1
m̂s
t (f)

(2)

Φnn(f) =

∑T

t=1
m̂n
t (f)yt(f)yHt (f)∑T

t=1
m̂n
t (f)

(3)

where m̂s
t and m̂n

t are the estimated mask values at frame t
and frequency f for speech and noise, respectively. yt(f) is the
observed signal in frequency domain.
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Figure 3: Details of mask predicting network and the estimating
of MVDR weights.

The LSTM mask predicting network is initialized by learn-
ing from ideal binary mask (IBM) of speech. For simulated
data, we can obtain the oracle local SNR for each TF bin. The
speech IBM is set to 1 if the local SNR is larger than 0dB and
vice versa. Then the LSTM network is trained to predict the
speech IBM from single channel log power spectrum by min-
imizing the mean square error (MSE) between the predicted
mask and the IBM. Once initialized, the network in Fig. 3 is
used to replace the weight predicting module in Fig. 1, and the
LSTM mask predictor is jointly refined with the acoustic model
to minimize ASR cost function. The noise projection layer’s
weights and bias can be initialized as the negative weights and
bias of the speech projection layer so the sum of noise and
speech masks sum to one for each TF bin. Note that, after joint
training, the noise and speech masks usually do not sum to 1.

2.3. Maximum Likelihood Spatial Filter Estimation

We also investigate a modified version of the LIMABEAM [15].
The beamforming parameters are estimated as follows:

ŴML = arg max
W

1

T
log p (O(W); Θ)

+
1

2
log
∣∣ΣO(W)

∣∣− α

2
|W−W0|2F (4)

where O(W) is the enhanced feature vectors and is a function of
the beamforming weights. Θ is the parameters of the acoustic
model and T is the number of frames in the test utterance. The
first term in (4) measures the likelihood of the enhanced features
evaluated on the acoustic model, which can be an HMM/GMM
or GMM. When the acoustic model represents clean features’
distribution, it is a reasonable assumption that the higher the
likelihood is, the higher the quality of the enhanced features
[15]. The second and third terms are added in this work to the
orginal LIMABEAM. The second term is the log determinant
of the covariance matrix of the enhanced features (also a func-
tion of weights) and it acounts for the nonlinear transformation
of the feature space [21, 22] due to the beamforming operation.
The third term is the Frobenius norm between the weight matrix
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Figure 4: System diagram of maximum likelihood based beam-
forming weight estimation.

and its initial values. This term is used to impose L2 norm reg-
ularization on the parameters to prevent overfitting. The modi-
fied LIMABEAM is called maximum likelihood beamforming
(MLBF) in this paper and illustrated in Fig. 4. The three terms
in (4) are represented as three cost function nodes in blue color.

Instead of using HMM/GMM as the acoustic model, we use
a single GMM to model the distribution of the clean MFCC fea-
tures. The advantage of using GMM is that there is no need to
perform one extra pass of decoding to obtain the HMM state
alignment. However, it is possible that performance will de-
grade compared with using HMM/GMM.

There are two ways to represent the frequency domain
beamforming weights. In the first way, we treat the real and
imaginary parts of the weights as free parameters, hence there
are 2IK free parameters, where I and K are the number of
channels and frequency bins, respectively. In the second way,
the weights are represented as follows

wi(f) = gi(f) exp(j2πf
τi
fs

) (5)

where wi(f) and gi(f) are the weight and gain for channel i at
frequency f , respectively. fs is the sampling frequency, τi

fs
is

the TDOA of channel i and assumed to be frequency indepen-
dent. The first channel is always selected as the reference chan-
nel and its TDOA is set to 0. Hence, there are totally I − 1 free
parameters from TDOA, and IK free parameters from gain.

3. Experiments
3.1. Settings

We evaluate the three learning based beamforming methods on
the 2-channel and 6-channel tracks of the CHiME-4 task [16].
The baseline DNN acoustic model is used, except that the fM-
LLR [23] features are replaced by 40D log Mel filterbank fea-
tures, due to the fact that fMLLR needs to be dynamically esti-
mated and makes it difficult to conduct joint training of beam-
forming networks and acoustic model. No pre-emphasis or
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DC removal is applied. Delta and acceleration features are ap-
pended and then 11 frames of feature vectors are concatenated
to form the input for the DNN acoustic model. Two types of
DNN acoustic model is used, one is trained from the fifth chan-
nel (called ch5 model, channel 5 is the single best channel in the
array), while the other is trained from all the 6 channels (called
chall model). The baseline trigram language model is used if
not otherwise specified. Speech recognition is performed using
the sequentially trained DNN acoustic model, i.e. the state-level
minimum Bayes risk (SMBR) model [24].

All the three learning based beamforming methods are im-
plemented in SignalGraph, a Matlab based toolkit for apply-
ing deep learning to signal processing [25]. The beamforming
weight predicting network uses either a 3 hidden layer DNN
or an 1 hidden layer LSTM, both using 1024 hidden nodes.
The input to the network is 27D (1 microphone pair) for 2-
channel case and 405D (15 microphone pairs) for 6-channel
case. The output dimension is 257x2x2=1028 for 2-channel
case and 257x2x6=3084 for 6-channel case, as 257 complex
numbers (512 FFT length) need to be predicted for each chan-
nel. The network is initilized on 71680 simulated sentences (10
times of the official simulated training data) generated by our-
selves using the provided simulation tool. After initilization, the
network is refined together with the ch5 acoustic model (trained
with cross entropy, or CE, criterion) by using the frame level CE
cost function. As we will use the SMBR model for decoding,
we fixed the acoustic model during joint training to prevent the
acoustic feature space from drifting too much from the one used
to train the SMBR model.

The mask predicting network is implemented by using a
one hidden layer LSTM containing 1024 memory cells. The
memory cells’ outputs are projected to noise and speech masks
by using two 1024 to 257 affine transorms in projection lay-
ers. The network is initialized on the 71680 simulated sentences
(same as the data used to initialize the weight predicting net-
work). After initialization, the network is jointly refined with
the ch5 acoustic model in the same way as the joint training of
weight predicting network.

The GMM used in the ML beamforming is trained from
the close talk version of the 1680 real training sentences. The
GMM uses 39D MFCC features and diagonal covariance ma-
trix, and contains either 512 or 1024 Gaussians. The beamform-
ing parameters are estimated iteratively using the expectation-
maximization (EM) algorithm [26]. At most 3 EM iterations
are used. At the E step of each EM iteration, the posteriors of
the Gaussians are re-estimated using the enhanced features. At
the M step, the beamforming parameters are re-estimated given
the updated Gaussian posteriors by using the L-BFGS algorithm
[27]. Due to the iterative nature of the EM algorithm, the real
time factor is usually 1-5 for the whole estimation process for
each sentence, which is much slower than the other two meth-
ods. When L2 regualization is used, it is used on all parameters
except for the TDOAs.

3.2. Results of Beamforming Weight Predicting Network

The performance of weight predicting network is shown in Ta-
ble 1. Row 2 and 3 show the results of MSE training in which
the neural networks learn from the ideal unweighted delay-and-
sum beamforming and simulated data. Comparing with the
weighted delay-and-sum implemented in BeamformIt [28] (row
1), the neural networks perform slightly worse in overall, and
LSTM performs slightly better than DNN. Row 4 and 5 show
the results of CE training in which the neural networks are re-

Table 1: Recognition word error rate (WER %) obtained by
weight predicting network on the CHiME-4 task. “DNN*”
and “LSTM*” refer to CE refined model only using 1680 real
recorded training sentences. The 5 channel case does not in-
clude the second channel. “DS” refers to BeamformIt.

Real Simu Real Simu Real Simu
1 DS - 14.8 12.6 13.6 14.2 17.2 18.2
2 DNN 15.8 13.8 13.5 16.5 17.2 18.5
3 LSTM 14.7 13.4 12.9 14.9 16.5 18.3
4 DNN 15.0 11.4 15.9 11.6 16.5 16.8
5 LSTM 14.6 11.5 14.7 11.6 16.8 17.3
6 DNN* 13.6 16.0
7 LSTM* 14.6 14.5

Row

-

Cost

MSE

CE

Model
2	channels

EvalEval
6	channels 5	channels

Eval

fined using the ASR cross entropy cost function on the official
training data. For the two channel case, moderate imporvement
is obtained by CE training over MSE training for DNN model
(17.2% versas 16.5% on real data), while the results of LSTM
model is mixed which could be due to overfitting.

For 6 channel case, CE training obtains significant improve-
ment overal MSE training on simulated data, but not on real
data. One possible reason is that the target signal’s gain is
not equal at different channels for real data. Sometimes, chan-
nels may even totally fail to receive signals. The neural net-
works takes GCC features as input where the gain information
is largely removed. Hence, the neural networks are unable to
predict the gains of channels properly. To investigate the issue,
we conducted two more experiments. First, we train the neu-
ral networks without using the second channel (5 channel case)
which is known to have poor signal quality for real data. This
leads to better performance of MSE trained models (row 2 and
3) on real data (as the bad channel is removed), but worse results
on simulated data (as a good channel is removed). This pattern
is also observed for the BeamformIt results (row 1). However,
the CE trained models still perform poorly on real data. Sec-
ond, we refine the neural networks only on 1680 real sentences
of the official training set (row 6 and 7 of the 6 channel case).
WER on real data is improved for DNN model, however, WER
on simulated data gets much worse for both models. This shows
that the CE training should use data similar to the eval data.

In summary, we found that the weight predicting framework
[4] do not consistently outperform BeamformIt on CHiME-4,
while it does outperform BeamformIt significantly on the AMI
corpus. We hypothesize that this is because the AMI is a far
field scenario and the gains of the channels are similar, while
CHiME-4 is a near field scenario where the gains of channels
could be very different. As the network only uses GCC as input,
it is not able to estimate the channel gains proporly.

3.3. Results of Mask Predicting Network

The performance obtained with mask predicting network and
MVDR beamforming is shown in Table 3 for 2 channel case
and Table 2 for 6 channel case. Let’s go through the 6 channel
case as the results of 2 channel case will be similar. A con-
ventional MVDR beamforming [29] with TDOA tracking, fre-
quency dependent channel gain estimation, and noise estima-
tion using 0.5s noises prior to the test utterance obtains a WER
of 12.0% on the real eval data (row 3). By comparison, the
MVDR using masks predicted by IBM-initialized LSTM pro-
duces a WER of 12.8% (row 4). By using ASR cost function to
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Table 2: Recognition word error rate (WER %) obtained by
mask predicting network on the CHiME-4 6-channel track.
“Split Mask” specifies whether we estimate speech and noise
masks separately. LM: “3” means trigram, “5” means 5-gram,
while “R” is RNN LM rescoring.

#ch for mask
ASR 

cost

Split 

Mask
Pooling #Pass LM Real Simu Real Simu

1 12.4 14.8 21.6 22.0
2 8.2 9.4 13.6 14.2

3 7.6 6.6 12.0 8.2

4 No 1 8.3 7.1 12.8 19.5

5 1 7.3 6.4 10.9 15.2

6 3 6.4 6.1 9.4 11.1

7 1 6.5 6.1 10.1 11.9

8 3 6.1 6.0 9.0 9.9

9 max 1 6.6 6.0 10.2 10.0

10 min 1 6.6 6.0 10.3 8.9

11 mean 1 6.4 5.9 9.8 9.2

12 1 6.2 6.0 9.5 8.9

13 3 6.1 5.9 8.9 9.6

14 3 5 4.8 4.9 7.4 7.9

15 3 R 4.1 4.3 6.3 6.9

Row

Settings Dev Eval

Delay-and-sum (BeamformIt)

Traditional MVDR

Yes

Yes

No

1-channel track

3

Estimate 

masks for all 

6 channels, 

then pool 

the masks

First channel

No

median

fine tune the LSTM mask predictor, the WER reduces to 10.9%
(row 5). The reason for poor performance on simulated eval
data is that the first channel of this data set has much lower SNR
than other channels and the network predicts the mask from the
first channel only. In overall, the results show the effectiveness
of using ASR cost function to fine tune mask predictor.

We investigated several approaches to further improve the
performance on mask based MVDR. The first is to use multi-
ple passes of mask estimation and beamforming. Specifically,
the mask estimation (using enhanced speech) and beamforming
can be performed alternately until converge. In row 6, apply-
ing the mask estimation and beamforming 3 times is found to
reduce WER further to 9.4% (3 passes) from 10.9% (1 pass).
The second approach we studied is the splitted mask, i.e. pre-
dicting the speech and noise masks independently. Comparing
row 7 to row 5, using splitted masks consistently outperforms
using unsplitted mask. Lastly, we investigated the use of mask
pooling. From row 9 onwards, the masks of all the 6 channels
are estimated and pooled. It is observed that median pooling
produces the best performance, which agrees with findings in
[11]. For the 2 channel case, no pooling is used. We investi-
gated the mask predicting using concatenation of two channels’
log power spectra. Comparing row 7 and 8 of Table 3, concate-
nated input outperforms the single channel input significantly.
By combining all the methods together, we obtain the best WER
on the real eval data in row 13 in Table 2, with a WER of 8.9%.
This represents a 3.1% absolute WER reduction compared to
conventional MVDR.

3.4. Results of Maximum Likelihood Weight Estimation

The performance of MLBF on the 6 channel track is shown
in Table 4. Row 1 shows that by only estimating 5 TDOAs
of channel 2-6 using the MLBF, a WER of 17.1% is obtained,
which is significantly lower than 1 channel case (21.6%) shown
in row 1 of Table 2. By only using TDOAs, the signals are
aligned and added together, similar to unweighted delay-and-
sum beamforming. If frequency dependent gains are also esti-
mated and L2 norm is tuned, the WER can be further reduced
to 16.1% (row 3). We also tried to use frequency independent

Table 3: Recognition word error rate (WER %) obtained by
mask predicting network on the CHiME-4 2-channel track.

#ch for mask
ASR 

cost

Split 

Mask
#Pass AM LM Real Simu Real Simu

1 10.9 12.4 20.4 19.0
2 11.9 13.1 20.8 20.2
3 10.1 11.7 17.2 18.2
7 First channel 1 9.8 10.4 16.6 17.0
8 ch 1&2 1 9.2 10.2 15.5 14.9
9 1 9.4 10.1 15.7 16.2

10 3 9.1 10.0 15.0 15.0
11 1 8.9 10.0 15.2 15.3
12 3 8.8 9.9 14.5 14.3
13 3 8.4 9.5 14.4 14.2
14 3 5 7.0 8.1 12.3 12.1
15 3 R 6.1 7.1 10.8 10.7

Row

Settings Dev Eval

chall

Not applicable for BeamformIt

No

No

Yes

Yes

3

First channel

ch5

Table 4: Recognition WER (%) obtained by MLBF on the
CHiME-4 6-channel track.

Parameters Init. #Gau. Real Simu

1 No 512 17.1 17.6
2 No 512 16.2 14.6
3 No 1024 16.1 14.5
4 No 1024 16.1 14.5
5 Row 4 1024 14.5 12.2

6 9.5 8.9
7 Row 6 1024 9.2 8.3

Real + Imag.
MVDR using mask prediction

-

Row

Settings Eval

Gain

TDOA + 

Gain

None

Freq. Dependent

Freq. Dependent

Freq. Independent

Freq. Dependent

gains (row 4), i.e. only uses one global gain for each channel,
the same WER of 16.1% WER is obtained. We improve the
frequency dependent gain estimation by using frequency inde-
pendent gains as the initial gains W0 in equation (4). The L2
regularization ensures that the frequency dependent gains are
not too far from the frequent independent gains. Results in row
5 show that this way of initialization and L2 regularization re-
duce the WER significantly to 14.5%.

We initialize the real and imaginary parts of the weights
with the weights generated by the mask based MVDR (shown
in row 6, also row 12 of Table 2). L2 regularization is applied
to prevent big deviations of the weights from the initial weights.
Results show that the WERs on both simulated and real data
are improved moderately. It is worth noting that there is a big
gap in performance between row 5 and 7. This could be due
to different parameterization of weights and/or the MLBF may
easily stuck in a local minimum of cost function.

3.5. Discussions and Future Works

In this paper, we conducted a comparative study of three learn-
ing based beamforming methods for far field speech recogni-
tion. We found that the MVDR beamformer using LSTM pre-
dicted time frequency masks perform the best, while the beam-
forming filter weight predicting network and MLBF also im-
prove the ASR performance significantly compared to the sin-
gle channel baseline. In terms of computational cost, the weight
predicting network is the most efficient, followed by mask pre-
dicting network. Both of these networks are faster than real
time. The MLBF is the slowest due to iterative weight opti-
mization at run time.

The better performance of MVDR formulation could be due
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to that the noise information is important in this task. While the
mask based MVDR explicitly makes use of noise estimation,
the weight predicting network does not use noise information
since only the phase-carrying GCC features are used as input.
Although the MLBF has access to the raw noisy data in fre-
quency domain, it does not find good weight solution similar
to the MVDR’s, possibly due to the local minimum problem of
EM algorithm. Hence, the future works could be done to add
noise information explicitly to these two types of methods. An-
other observation is that for near field scenario, it is important to
estimate the channel gains as shown in the results of MLBF. The
weight predicting network may be improved by explicitly pre-
dicting the gains and also use MVDR weights as the supervision
during initialization. The MLBF could be integrated with tra-
ditional methods. For example, besides maximizing likelihood,
one can also maximize the output SNR so more supervision in-
formation is used and better solution could be obtained.
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Abstract

This paper reports our system for the 1-channel track task in the
4th CHiME challenge (CHiME4). A bottle-neck in developing
neural network based systems is the tuning of meta-parameters.
We automate it by using Covariance Matrix Adaptation Evo-
lution Strategy (CMA-ES) so that high performance system is
obtained without relying on human experts. We run two evolu-
tion experiments for the DNN acoustic model used in the offi-
cial baseline system. One uses development set word error rate
(WER) after the cross-entropy (CE) based training as the ob-
jective function for the evolution, and the other uses the WER
after the sequential discriminative training. Additionally, we
run an evolution experiment for a Long Short-Term Memory
recurrent neural network based language model (LSTM-LM),
replacing the original recurrent neural network language model
(RNN-LM) used in the baseline system for N-best rescoring.
All of these evolution experiments resulted in reduced WERs.
To produce the final results, we augmented training data by
pooling speech data from all the 6 channels and imported the
optimized meta-parameter settings without modification. For
the real test data, reduced WER of 17.40% and 16.58% were
obtained compared to the baseline WER of 22.75% when the
RNN and LSTM-LMs were used, respectively.

1. Background
Neural network based techniques have shown great perfor-
mance in automatic speech recognition (ASR) tasks [1, 2]. To
use neural network, various meta-parameters must be specified
including model topology (e.g., the numbers of layers and hid-
den units), training configuration (e.g., the learning rate and the
maximum number of iterations) and system organization (e.g.,
the choice of features). Properly tuning these meta-parameters
is essential for building high performance systems. Usually,
the tuning is manually performed. However, it requires expert
knowledge and laborious effort. Thus there is a demand to au-
tomate the tuning process using computers.

We have previously investigated several automatic meta-
parameter optimization frameworks for neural network acous-
tic models [3, 4, 5]. In the experiments, covariance matrix
adaptation-evolution strategy (CMA-ES) [6, 7, 8] showed su-
perior performance than Genetic Algorithm (GA) and Bayesian
optimization [9, 10] giving better model with smaller or similar
number of system evaluations. Further, we have applied CMA-
ES to optimize neural network based language models and have
shown that it works well to improve system performance [11].
Here, we apply it to neural network based acoustic and language
models in the CHiME4 1-channel track task.

	LSTM-LM	
rescoring	GMM	 DNN	

CE	
DNN	
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5-gram	
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Figure 1: Recognition system used for evolution of DNN-AM
and LSTM-LM.
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Figure 2: Recognition system used with augmented acoustic
model training data.

2. Contributions
2.1. CMA-ES based tuning of neural networks

CMA-ES is a population based algorithm for black box opti-
mization that has demonstrated superior performance in several
benchmarking tasks. Similar to the GA, it encodes possible so-
lutions as genes. It assumes that the value of an objective func-
tion f(x) is available, while the functional form of f might be
too complex to perform analytical optimization. More specifi-
cally, CMA-ES estimates parameters θ of a Gaussian distribu-
tion for a gene x such that the distribution is concentrated in a
region with high values of f(x) as shown in Eq. (1).

x̂ ∼ N (x|θ̂) s.t. θ̂ = arg max
θ

Z

f(x)N (x|θ)dx

| {z }

,E[f(x)|θ]

.
(1)

The estimation of θ is based on an iterative method, where in
each iteration, a set of genes {x} is sampled from the Gaussian,
their performance f(x) is evaluated, and θ is updated based on
the results. In other words, while GA represents a distribution
of genes in a generation by the samples themselves, CMA-ES
uses a Gaussian distribution. In our case, a gene represents a set
of meta-parameters of a neural network to optimize.
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Table 1: WER after CE based DNN-AM training.

System Dev Test
real simu real simu

Baseline 16.45 17.81 29.67 26.20
Evolved 15.40 16.88 29.16 25.28

Table 2: WER after sequential DNN-AM training.

System Dev Test
real simu real simu

Baseline 14.90 15.70 27.24 24.34
Evolved 13.82 15.49 25.67 22.95

Table 3: WER after RNN/LSTM-LM based rescoring.

System Dev Test
real simu real simu

Baseline RNN-LM 11.60 12.92 22.75 21.07
+ Evolved DNN-AM 10.98 12.74 21.29 19.74
Evolved LSTM-LM 10.20 12.23 21.09 19.66
+ Evolved DNN-AM 10.00 11.45 20.54 18.85

2.2. LSTM based language model

Neural network based language models have shown to be very
effective for improving speech recognition performance [12].
In the CHiME4 baseline system [13], recurrent neural network
language model (RNN-LM) [14] is used for final rescoring.
The parameters of a RNN are trained using back-propagation
through time (BPTT) so that the context dependency is mod-
eled. However, RNNs cannot effectively use long context in-
formation due to the vanishing gradient problem [15]. To ad-
dress the problem, Long Short-Term Memory RNN that utilizes
LSTM blocks has been proposed [16]. A LSTM block has a
memory cell and three gates (input, forget and output) to con-
trol the value stored in the memory cell. By replacing the unit
in recurrent hidden layer of a RNN language model with the
LSTM block, a LSTM RNN language model (LSTM-LM) [17]
is obtained. We replace RNN-LM with LSTM-LM, which is
known to perform better in various tasks [18].

3. Experimental evaluation
3.1. Evolution using single channel training data

Using the single channel (channel 5) multicondition training
data, we ran two evolution experiments for the DNN acoustic
model (DNN-AM) used in the official baseline system based on
CMA-ES. One used development set WER after the CE based
training as the objective function for the evolution, and the other
used the WER after the sequential discriminative training based
on state-level Minimum Bayes Risk (sMBR) criterion. Addi-
tionally, we ran an evolution experiment for a LSTM-LM re-
placing the original RNN-LM using WER after N-best rescor-
ing as the objective for the evolution, where 100-best was gener-
ated from the decoding result using the 5-gram language model
with Kneser-Ney smoothing [19]. These three evolutions were
performed independently. Figure 1 shows where the evolutions
were performed in the recognition system structure.

For the DNN-AM, 11 meta-parameters were optimized,
which were the same as our previous work [5]. These included
the number of hidden layers, the number of units per a hidden
layer, the initial learning rate, and so on. The population size

Table 4: WER after RNN/LSTM-LM based rescoring. DNN-
AM was trained using the augmented training data.

System Dev Test
real simu real simu

RNN-LM 9.09 10.86 17.40 16.49
Initial LSTM-LM 9.02 10.82 17.52 16.62
Evolved LSTM-LM 8.06 10.15 16.58 15.67

Table 5: Detailed WERs after RNN-LM rescoring. DNN-AM
was trained using the augmented training data.

Env. Dev Test
real simu real simu

BUS 12.27 9.63 26.51 12.27
CAF 9.23 14.69 19.18 19.11
PED 5.58 8.30 13.62 16.51
STR 9.28 10.83 10.29 18.06
AVG. 9.09 10.86 17.40 16.49

(e.g. the number of sampled genes from the Gaussian at each
generation) was 36. The numbers of iterations (e.g. genera-
tions) were 6 and 4 for the two evolutions, respectively. Ta-
ble 1 shows the results when WER after CE based DNN-AM
training was used as the objective, and Table 2 shows the re-
sults when WER after the sequential training was used. In both
cases, lower WERs were obtained by the evolution based auto-
matic tuning. The sequential training gave some gain compared
to the CE based training, and evolution based optimization gave
further gain. The best performing DNN chosen by the develop-
ment set WER had 9 hidden layers and 2461 units per a layer.

For the LSTM-LM, 19 meta-parameters were optimized in-
cluding the vocabulary size, the number of layers, the number
of units per a layer, the initial learning rate and the dropout ra-
tio [20]. The maximum number of hidden layers were set to six
and they were used depending on the number of hidden layer.
The population size was 30 and the number of generations was
4. All LSTM-LMs were trained using the Chainer toolkit 1 [21].
The population sizes were decided based on our previous exper-
iments and available computer resources for this experiment.
Table 3 shows the results. By using LSTM-LM, lower WERs
were obtained than the baseline RNN-LM. When the DNN-AM
evolved by using the WER after the sequential training was
combined, further reduction in WERs was obtained. The vo-
cabulary size of the tuned LSTM-LM was 8112 and the number
of hidden layers was 2. The list of the meta-parameters and their
initial and optimized values are shown in appendix.

3.2. Single channel system with augmented training data

In the official single channel CHiME4 baseline system, only 5th
channel data is used for training. We augmented the training
data by 6 times by pooling speech data from all the 6 chan-
nels of the official data for further improvement. For the DNN-
AM and LSTM-LM, the previously optimized meta-parameters
by the evolutions using the original (1x) training data were im-
ported and used as it is. To save the time for experiment, part
of the CE based DNN training used the 1x data, and lattice re-
generation was performed at slightly different timing from the
baseline system as shown in Figure 2. The sequential train-
ing for DNN-AM was performed for 6 epochs. Table 4 shows

1http://chainer.org/
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Table 6: Detailed WERs after LSTM-LM rescoring. LSTM-
LM was trained importing the evolved meta-parameters. DNN-
AM was trained using the augmented training data.

Env. Dev Test
real simu real simu

BUS 10.93 9.22 26.00 11.39
CAF 8.29 13.86 18.58 18.77
PED 4.69 7.80 12.05 15.50
STR 8.32 9.73 9.68 17.02
AVG. 8.06 10.15 16.58 15.67

summary of WERs after the RNN-LM based rescoring and the
LSTM-LM based rescoring using the initial and the evolved
meta-parameters. As can be seen, the lowest WERs were ob-
tained when the evolved LSTM-LM was used. Tables 5 and 6
show the details of the WERs when the RNN and the evolved
LSTM-LM were used. By using the LSTM-LM, the averaged
real environment WER for the development and evaluation sets
were 8.06% and 16.58%, respectively.
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[17] M. Sundermeyer, R. Schlüter, and H. Ney, “LSTM neural net-
works for language modeling,” in Proc. INTERSPEECH, 2012,
pp. 194–197.

[18] T. Hori, C. Hori, S. Watanabe, and J. R. Hershey, “Minimum word
error training of long short-term memory recurrent neural network
language models for speech recognition,” in Proc. ICASSP, 2016,
pp. 5990–5994.

[19] R. Kneser and H. Ney, “Improved backing-off for m-gram lan-
guage modeling,” Proc. ICASSP, pp. 181–184, 1995.

[20] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep neu-
ral networks for LVCSR using rectified linear units and dropout,”
in Proc. ICASSP. IEEE, 2013, pp. 8609–8613.

[21] S. Tokui, K. Oono, S. Hido, and J. Clayton, “Chainer: a next-
generation open source framework for deep learning,” in Neural
Information Processing Systems (NIPS), 2015.

Proc. of the 4th Intl. Workshop on Speech Processing in Everyday Environments (CHiME 2016), San Francisco, CA, USA, Sep. 13, 2016

34



A. Appendix: Meta-parameters
Table 7 shows the initial and optimized meta-parameters for the DNN
acoustic model using the development set WER after the sequential dis-
criminative training as the objective for evolution. Similarly, table 8
lists the initial and optimized meta-parameters for the LSTM language
model. For each table, the best gene of the meta-parameters was se-
lected from the pool of all the generations based on the WER of the
development set.

Table 7: Meta-parameters for DNN-AM.
Description Initial value Best value
feature type({MFCC,FBANK,PLP}) FBANK FBANK
splice (segment length for DNN 5 7
# of hidden layers 6 9
# of hidden layer units 2048 2461
initial parameters in 1st RBM 1.00E − 1 1.15E − 1
initial parameters in other RBMs 1.00E − 1 5.04E − 2
RBM learning rate 4.00E − 1 5.64E − 1
lower RBM learning rate 1.00E − 2 1.26E − 2
RBM Lasso regularization 2.00E − 4 1.61E − 4
learning rate for fine tuning 8.00E − 3 3.38E − 4
momentum for fine tuning 1.00E − 5 9.33E − 6

Table 8: Meta-parameters for LSTM-LM.
Description Initial value Best value
vocabulary size 5000 8112
# of hidden layers 2 2
# of projection layer units 300 399
# of 1st layer units 300 671
# of 2nd layer units 300 438
NNLM weight 0.50 0.52
acoustic weight 14.00 21.56
minibatch size 32 35
dropout ratio 0.50 0.44
initial learn rate 1 0.90
learn decay 0.50 0.48
learn decay epochs 6 7
momentum 1.00E − 10 1.03E − 10
gradient clipping 5.00 6.23
initial forget gate bias 1.00 1.18
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Abstract
The submitted system for CHiME-4 this year includes sig-

nificant improvements over the previous one for CHiME-3, in-
cluding the front-end design, training data augmentation via
different versions of the official training data, acoustic model
fusion, and language model fusion. The final average WERs
of the real test set are 2.24%, 3.91%, 9.15% for 6-channel, 2-
channel, and 1-channel, respectively.

1. Background
For CHiME-4 [1], we participate all the tracks including 1 ch, 2
ch, and 6 ch tasks. In comparison to CHiME-3 challenge [2, 3],
our new progress mainly includes: 1) a closed-loop optimiza-
tion for beamforming by leveraging the information of deep
neural network (DNN) based single-channel speech enhance-
ment and the recognition results; 2) diversified training data us-
ing the noisy data of each channel, the multiple beamformers’
outputs data of 6 channels and 2 channels; 3) the acoustic model
upgrade via the deep convolutional neural networks (DCNNs)
[4, 5]; 4) the long short-term memory (LSTM) based language
modeling [6, 7]. In the next section, we will elaborate these
contributions.

2. Contributions
The overall system flowchart is given in Fig. 1, where a unified
framework for all three tasks, namely 1/2/6-channel cases, is
designed. In the training stage, both the acoustic models with
multiple front-ends and language models are built. In the recog-
nition, multiple acoustic models are fused at the state-level first
and then first-pass decoding is performed with the HMM and 3-
gram to generate the lattice as the hypotheses , which are served
for the second-pass decoding with a LSTM-based LM. The de-
tails can refer to the following subsections.

2.1. Beamforming

The beamforming approach showed in Fig. 2 is similar to the
work in [8], namely the generalized sidelobe canceller (GSC)
with a post-filtering. First, the time-frequency (T-F) masking is
calculated via the complex Gaussian mixture model (CGMM)
[9] to estimate the covariance matrices of noise and noisy
speech. The relative transfer function is implemented by the

eigenvector-based estimation in [10]. To further improve the
estimation of the time-frequency masking, both the VAD infor-
mation from the segmentation results of recognizer based on the
beamformed speech and the ideal ratio mask (IRM) estimated
using a DNN are used for a second-pass beamforming. The
input of IRM-DNN is the log-power spectra (LPS) of the beam-
formed speech while the output is the masking values of T-F
units calculated between the noisy speech of the channel 5 and
the underlying clean speech. Obviously, the VAD and IRM in-
formation are based upon the beamforming results, which forms
a feedback loop optimization [11] among them with multiple it-
erations. Experiments show that this new framework could sig-
nificantly improve the recognition accuracy, yielding a remark-
able gain over the best beamforming approach of CHiME-3 [2].

Figure 1: System overview.
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Figure 2: Beamforming.

2.2. Training data augmentation

The training data augmentation is a straightforward way to en-
large the data coverage, especially for 3 tasks with different set-
tings of channel number in CHiME-4. Three data types are em-
ployed. First, the noisy speech of 5 channels (excluding the
channel 2 with the most degraded speech) are used to simulate
the 1-channel testing case. Then, the enhanced version using the
beamforming approach applied to all 6 channels matches the 6-
channel testing cases. Finally, we randomly select some chan-
nel pairs from 5 channels and the beamformed results of the
corresponding channel pairs can correspond to the 2-channel
testing cases. As illustrated in Fig. 1, both the noisy speech
and 6-channel beamformed data are adopted to train the models
(DNN and DCNN1/2/3/4) for all testing. Meanwhile, the noisy
speech plus 2-channel beamformed data are combined to learn
two other models (DCNN5/6) for 2-channel and 1-channel test-
ing.

2.3. Acoustic models

We train mainly 2 types of neural networks. One is the con-
ventional DNN and the other is DCNN. For 6-channel system,
5 models are built and fused via the state-level posterior av-
erage [3], including one DNN and 4 DCNNs (DCNN1/2/3/4).
The DNN system concatenates the log mel-filterbank (LMFB)
and fMLLR features. 4 DCNNs consist of LMFB-based one,
fMLLR-based one and two others with different parameter set-
tings. For 2-channel and 1-channel systems, two additional
DCNNs (DCNN5/6) are used, namely 7 models in total. The
DCNN system shows the strong complementarity when fused
with the DNN system.

2.4. Language models

Besides the 5-gram and RNNLM provided officially, we also
train an LSTM-based LM to further improve the recognition
accuracy. According to our experiments, the LSTM-based LM
alone could yield a relative WER reduction of more than 30%
over the 5-gram+RNNLM based system.

3. Experimental evaluation
3.1. Beamforming

The Word Error Rates (WERs) on the evaluation data of the
official and our proposed beamformers for the 2 ch and 6 ch
track have been showed in Table 1. We adopted the DNN based
official baseline system, 11 frames of 40-dimension fMLLR

Table 1: WERs obtained with the proposed and official beam-
formers on the evaluation data for 2 ch and 6 ch tracks using the
official DNN acoustic model.

Track System Dev Test
real simu real simu

2ch Official 8.50 9.92 17.07 15.98
Proposed 6.20 8.12 10.86 11.69

6ch Official 6.25 7.15 11.82 11.43
Proposed 4.18 4.17 6.13 5.23

Table 2: WERs between the baseline and data augmentation
based systems on the evaluation data for 2 ch and 6 ch tracks.

Track System Dev Test
real simu real simu

2ch Official 6.20 8.12 10.86 11.69
Retrained 4.68 6.26 7.14 9.39

6ch Official 4.18 4.17 6.13 5.23
Retrained 3.24 3.33 4.33 4.21

features. The DNN architecture is 440-2048*7-1987, namely
40*11 dimension for fMLLR input features, 7 hidden layers
with 2048 nodes for each, and 1968 nodes for the output layers
as our ASR model. The IRM-DNN is trained using 7 frames
of 257-dimension LPS features of CH5. The IRM-DNN archi-
tecture is 1799-2048*3-257, namely 257*7 dimension for LPS
input features, 3 hidden layers with 2048 nodes for each, and
257 nodes for the output T-F IRM. The significant reduction of
WERs on the evaluation data for both the development and test
sets can be found in Table 1, and our beamformer is more effec-
tive for more adverse environments and more microphones than
official beamformer.

3.2. Training data augmentation

The Word Error Rates (WERs) on the evaluation data of the offi-
cial baseline and retrained by data augmentation DNN systems
for the 1 ch, 2 ch and 6 ch tracks have been showed in Table 2.
As for the retrained DNN system, 42-dimensional LMFB fea-
tures and 40-dimensional fMLLR features with their first-order
and second-order derivatives are used. The 20-dimensional i-
vector features [3] are concatenated. The DNN architecture
is 2234-2048*7-1965, namely (42+40)*3*9+20 dimension for
LMFB+fMLLR+ivector combined input features, 7 hidden lay-
ers with 2048 nodes for each, and 1965 nodes for the output
layer. The training data contains 1,3,4,5,6 channels data and 4
kinds of beamformered data, totally 78642 utterances(8738*9),
and the beamformered data by our proposed method is used as
our test set. Approximately 20% WERs reduction can be found
between the official and our proposed systems in the all test sets.

3.3. Acoustic models

The Word Error Rates (WERs) on the real evaluation data of
the different acoustic models for the 1 ch, 2 ch and 6 ch tracks
have been showed in Table 3. The main difference of our DC-
NNs and conventional CNNs is the number and the size of the
filters. The multi-layer small convolution kernels (3x3 and 3x5)
are used, and the total number of convolutional layers is 25.
And the learning rate is set to 0.002, and the batch size is 2048.
Batch normalization is also used to speed up the training. In
the Table 3, we can find that the performance of DCNNs is sig-
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Table 3: WERs with the different acoustic models on the real evaluation data for 1 ch, 2 ch and 6 ch tracks.

Track Set System
DNN DCNN1 DCNN2 DCNN3 DCNN4 Ensemble

1ch Dev 8.29 7.70 7.71 9.87 9.86 6.10
Test 14.58 15.47 14.72 17.05 17.45 11.12

2ch Dev 4.68 4.05 4.13 5.24 5.43 3.55
Test 7.14 6.87 6.94 8.34 8.36 5.40

6ch Dev 3.24 2.88 2.99 3.37 3.50 2.61
Test 4.33 3.87 4.09 4.67 4.90 3.22

Table 4: Average WER (%) for the tested systems.

Track System Dev Test
real simu real simu

1ch Official LM 6.10 8.24 11.15 13.62
LSTM LM 4.55 6.61 9.15 11.81

2ch Official LM 3.56 4.89 5.41 7.30
LSTM LM 2.33 3.46 3.91 5.74

6ch Official LM 2.55 2.61 3.24 3.06
LSTM LM 1.69 1.78 2.24 2.12

Table 5: WER (%) per environment for the best system.

Track Envir. Dev Test
real simu real simu

1ch

BUS 5.84 4.90 14.10 7.58
CAF 5.09 9.84 9.64 14.98
PED 2.66 4.84 6.89 11.58
STR 4.63 6.86 5.98 13.09

2ch

BUS 2.74 2.83 5.16 3.83
CAF 2.18 4.29 3.83 5.66
PED 1.73 2.94 3.18 6.14
STR 2.65 3.79 3.49 7.32

6ch

BUS 2.05 1.64 2.65 1.36
CAF 1.50 1.99 2.09 1.87
PED 1.50 1.55 1.74 2.35
STR 1.71 1.93 2.48 2.91

nificantly better than DNN, and it can bring approximately 20%
WERs reduction comparing to DNN on the real test set. Finally,
the model ensemble is used by the state posterior average of sin-
gle system output, it also can bring about 20% WERs reduction.

3.4. Language models

The Word Error Rates (WERs) on the evaluation data of the of-
ficial and our language models for the 1 ch, 2 ch and 6 ch tracks
have been showed in Table 4. The forward and backward LSTM
models are trained for the combination of language models. We
can find that the performance of LSTM-LM is more effective
when the front-end and acoustic models are better in Table 4.
Finally, Table 5 presents the results per environment for our
best system, and we can find the improvement is significantly
comparing to baseline system.
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Abstract
This paper describes automatic speech recognition (ASR) sys-
tems developed jointly by RWTH, UPB and FORTH for the
1ch, 2ch and 6ch track of the 4th CHiME Challenge. In the
2ch and 6ch tracks the final system output is obtained by a Con-
fusion Network Combination (CNC) of multiple systems. The
Acoustic Model (AM) is a deep neural network based on Bidi-
rectional Long Short-Term Memory (BLSTM) units. The sys-
tems differ by front ends and training sets used for the acoustic
training. The model for the 1ch track is trained without any
preprocessing. For each front end we trained and evaluated in-
dividual acoustic models. We compare the ASR performance of
different beamforming approaches: a conventional superdirec-
tive beamformer [1] and an MVDR beamformer as in [2], where
the steering vector is estimated based on [3]. Furthermore we
evaluated a BLSTM supported Generalized Eigenvalue beam-
former using NN-GEV [4]. The back end is implemented using
RWTH’s open-source toolkits RASR [5], RETURNN [6] and
rwthlm [7]. We rescore lattices with a Long Short-Term Mem-
ory (LSTM) based language model. The overall best results
are obtained by a system combination that includes the lattices
from the system of UPB’s submission [8]. Our final submis-
sion scored second in each of the three tracks of the 4th CHiME
Challenge.

1. Background
This paper describes ASR systems for the 1ch, 2ch and 6ch
tracks of the 4th CHiME Challenge. In contrast to the provided
baseline system [9] the back end has been replaced completely
and is described in Section 2.2. Furthermore we developed ad-
ditional systems using different front ends. The front ends are
described in Section 2.1. All experimental results presented in
this work (Sections 3 and 4) are obtained with the official train-
ing set following the rules of the CHiME challenge.

2. Contributions
2.1. Front ends

In addition to the baseline (BL) front end we developed three
other front ends that utilize different beamformers. The final

enhanced signal at the output of each beamformer is given by:

ZZZ(k, l) = www(k, l)HXXX(k, l) (1)

where k, l denote the frequency index and time-frame, respec-
tively, www(k, l) is the M × 1 vector of beamformer filter coef-
ficients for a given front end, XXX(k, l) is the M × 1 vector of
microphone array signals in the Short-time Fourier Transform
(STFT) domain, and M denotes the number of microphones.

We also improved the microphone failure detection mecha-
nism of [2], so as to better identify corrupted microphones. The
enhanced microphone failure detection was used in the front
ends described in Sections 2.1.2 & 2.1.3.

2.1.1. Microphone failure detection

Our microphone failure detection mechanism is based on mea-
suring the consistency of the energies (calculated in each time
frame) between the microphone signals. To do that, we con-
struct M time-series em(l),m = 1, . . . ,M , each one contain-
ing the energy of the signal for l = 1, . . . , L frames, where L
denotes the total number of frames in the utterance. Then, for
each microphone m, the average correlation coefficient rAV

m be-
tween em(l) and en(l) for n 6= m is calculated. A microphone
is considered to have failed if rAV

m is less than a threshold δ,
which was set empirically to 0.8. These microphones, in addi-
tion to the microphones which are considered to have failed by
the system of [2], are excluded from further processing.

2.1.2. MVDR beamformer with steering vector estimation

This front end (MV) utilizes a minimum variance distortionless
response (MVDR) beamformer with diagonal loading, similar
to the one in [2]. The filter coefficients are calculated as:

wwwMVDR(k, l) =

[
RRRn(k) + ε diag(|XXX(k, l)|2)

]−1
ddd(k)

ddd(k)H [RRRn(k) + ε diag(|XXX(k, l)|2)]−1 ddd(k)
(2)

where ε = 10−3 is the diagonal loading term, ddd(k) is the steer-
ing vector,RRRn(k) is the spatial correlation matrix of noise, and
diag(xxx) denotes the conversion of vector xxx to a diagonal matrix.

For the estimation of the unknown quantities ddd(k) and
RRRn(k) we use the method of [3], which does not require knowl-
edge of the array geometry or the speaker location. We assume
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that each frequency bin contains either speech and noise or is
dominated only by noise. This assumptions allows the cluster-
ing of the STFT coefficients into two classes: the noisy (i.e.,
speech + noise) and the noise-only class. The clustering is per-
formed by modeling the STFT coefficients at each frequency
with a 2-component complex Gaussian mixture model. To as-
sociate each Gaussian component to its correct class, we mea-
sure the ratio of the first to second largest eigenvalues of the
estimated covariance matrices. The component for which this
ratio is the largest is assigned to the noisy class.

The spatial correlation matrices of speech, RRRs(k), noise,
RRRn(k), and noisy signals, RRRsn(k), are then estimated based on
the posterior probabilities of each bin to belong to the noisy or
noise-only class as:

RRRsn(k) =
1

L

L∑

l=1

XXX(k, l)XXX(k, l)H (3)

RRRn(k) =
1∑L

l=1 λn(k, l)

L∑

l=1

λn(k, l)XXX(k, l)XXX(k, l)H (4)

RRRs(k) = RRRsn(k)−RRRn(k) (5)

where λn(k, l) denotes the posterior probability that the time-
frequency bin (k, l) is dominated by noise.

Finally, the steering vector for each frequency bin k is esti-
mated as the principal component of RRRs(k). For the 6ch track
the spatial correlation matrix of noise which is used in Eq. (2)
is estimated from Eq. (4), while for the 2ch track it is estimated
from 400 ms to 800 ms of context immediately before the utter-
ance, as it was shown to produce better recognition performance
in the 2ch case. Each utterance was processed using frames of
512 samples with 50% overlap, windowed with sine windows
and an FFT size of 512 samples, while channel 2 was excluded
from processing.

2.1.3. Superdirective beamformer using time-delays

The superdirective beamformer maximizes the array gain, while
maintaining a minimum constraint on the white noise gain [1].
The beamformer filter coefficients are computed as:

wwwSD(k, l) =
[ΓΓΓ(k) + εIII]−1 ddd(k, l)

ddd(k, l)H [ΓΓΓ(k) + εIII]−1 ddd(k, l)
(6)

where III is the identity matrix and ε is the diagonal loading term
which is used to control the white noise gain (WNG) constraint.
ΓΓΓ(k) is the noise coherence matrix for frequency bin k (as-
sumed to be spherically isotropic diffuse [10]) whose elements
are given by:

Γij(k) = sinc
(

2πfdij
c

)
(7)

where f is the frequency in Hz, c = 343 m/s is the speed of
sound and dij denotes the distance between the ith and jth mi-
crophone. Finally, the steering vector is represented by:

ddd(k, l) =
[
e−j2πfτ1(l) · · · e−j2πfτM (l)

]
(8)

where τi(l) denotes the time delay to the ith microphone for
time-frame l, which was estimated using the nonlinear SRP-
PHAT pseudo-spectrum [2]. To determine ε, we start from ε =
0 and iteratively increase it by 0.05 until the WNG becomes
equal or greater than −10 dB.

This front end (SD) is used in the 6ch track, as well as in
the 2ch track. For both tracks, we used frames of 1024 samples
with 50% overlap, windowed with sine windows and an FFT
size of 1024, while channel 2 was excluded from processing.

2.1.4. BLSTM supported GEV

The Generalized Eigenvalue (GEV) front end (GE) maximizes
the signal-to-noise ratio after the beamforming operation:

wwwGEV(k) = argmax
ddd

ddd(k)HRRRs(k)ddd(k)

ddd(k)HRRRn(k)ddd(k)
. (9)

Maximizing this equation leads to the generalized eigenvalue
problem and its solution to the beamforming vector wwwGEV(k)
for each frequency. Similar to the MVDR beamformer de-
scribed above, this beamformer only relies on the signal statis-
tics, i.e. no assumptions on the microphone array configurations
are made. In contrast to the MVDR however, the GEV can
introduce arbitrary distortions because the magnitude of each
beamforming vector can be chosen arbitrarily. We therefore
normalize the steering vectors using Blind Analytic Normaliza-
tion (BAN) [11]. This postfilter normalizes the Acoustic Trans-
fer Function (ATF) from the target source to unit gain for each
frequency.

The spatial correlation matrices needed for the beamform-
ing operation are estimated using time-frequency masks from a
neural network [12][4]. Here, we calculate two masks, one for
the target and one for the distortion. These masks do not neces-
sarily sum to one. We only want to take those time-frequency
bins into consideration where the respective source is surely
predominant. To calculate the masks we treat each microphone
separately and then use median pooling to condense the masks
into one for each source. This strategy makes the mask esti-
mation immune to corrupted channels. It also allows us to use
the same front end for the 6 channel, as well as for the 2 chan-
nel track without making any changes to the network. The net-
work is the same as described in [12] and is trained using binary
masks as targets.

2.2. Back end

2.2.1. Data sets

The participants of the CHiME 4 Challenge were given a train-
ing corpus that was derived from the WSJ0 SI-84 data set (ap-
prox. 18 hours) recorded with a close talk microphone (chan-
nel 0) and 6 distant microphones (channels 1-6). First off we
trained a fairly standard GMM/HMM acoustic model on the
quasi-clean data (channel 0 of the real training data as well
as the booth training data and the original WSJ corpus) in or-
der to use its alignments on all other channels without having
to re-align the data for every subsequent experiment. We fur-
ther created a flattened training set (referred to as a set of front
facing microphones FC) by simply concatenating the channels
{1, 3, 4, 5, 6} of both real and simulated data into a 90 hours
corpus. We mostly discard the second channel since the corre-
sponding microphone points away from the speaker, resulting
in a slightly worse quality. In order to investigate the effect
of beamforming on the overall ASR performance, we further
define an extension of the flattened set FC by adding the beam-
formed signal to the concatenation. The resulting 108 hours
corpus is referred to as set FC+B.

For the processing of test data we followed the rules of the
challenge. In the 1ch track, no beamforming is required. In the
2ch and 6ch tracks, we first beamform all available channels
into a single signal before decoding. The recognition was done
using the standard 5k lexicon and baseline 5-gram count LM,
followed by lattice rescoring with a neural network language
model.
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2.2.2. RWTH’s BLSTM acoustic model

The first back end was implemented using RWTH’s open-
source toolkits RASR [5] and RETURNN [6]. We will refer to
this back end as “R” and the Kaldi baseline back end as “K”.
The architecture and training algorithms for the speaker inde-
pendent and speaker adapted AM are identical. The AM is a
Deep Neural Network (DNN) with five BLSTM layers of size
600. The mini-batch training is carried out using stochastic gra-
dient descent with Nadam [13] and the learning rate reduction
is controlled by Newbob [14]. The initial learning rate is set to
10−3 and the gradient is distorted by Gaussian noise [15] with
an initial variance of 0.3. The cross-entropy training is regu-
larized by a dropout rate of 10% and L2 norm of the weights
with a factor of 0.01. The decoding pipeline is shown in Fig-
ure 1. It differs from a standard two-pass decoding strategy by
an additional LM rescoring with a neural network LM after both
passes.

2.2.3. UPB’s wide residual BLSTM acoustic model

The lower part of the second back end follows a slightly modi-
fied design of a Wide Residual Network (WRN) [16] with d =
22 and k = 5, where d describes the depth of the network (i.e.
number of layers) while k is a multiplicative factor for the num-
ber of channels (i.e. the width of the network). This number in-
creases with the depth as follows: 16→ k·16→ k·32→ k·64.
We halve the frequency resolution by using a stride of 2 each
time we increase the number of channels except for the first
time. On top of these layers are two BLSTM layers with 512
units for each direction and a final fully connected layer. We call
this configuration Wide Residual BLSTM Network (WRBN)
(or “W” for short in Section 3).

For training, we first extract the alignments with the base-
line back-end and the GEV front end using all six channels.
We then train this network with a cross-entropy criterion and
Adam [17]. To prevent overfitting we use dropout on the in-
put of each layer. Additionally we use it on the hidden-hidden
transitions of the BLSTM. Here, we sample the mask once per
sequence [18]. We use 80 dimensional mean-normalized log-
Mel filter bank features as input. Their delta and delta-delta
features act as extra channels. The network is trained on the un-
processed training data from all six channels. Instead of training
on a mini-batch of a few frames, we train it on a whole utter-
ance with full backpropagation through time. This allows the
WRN and BLSTM to exploit the full temporal context. Also,
it enables us to use Batch-Normalization (BN) [19] in an effec-
tive way. Here, we do not rely on statistics estimated on the
training or development data. We can normalize the networks
activations using the utterance statistics during test time. This is
not possible when working with frames because their high cor-
relation due to their overlap prohibits a good estimation of the
statistics. For (speaker) adaptation, we train an additional layer
consisting of a 80×80 weight matrix for each speaker and each
track. That layer with tied weights is applied to all three feature
channels equally.

2.2.4. RNN language model lattice rescoring

For the RASR back end (R) we carried out lattice rescoring
[20] with an LSTM-RNN language model [21, 22] as follows.
For each of the two rescoring steps (speaker independent and
adapted) shown in Figure 1, a specific model was used. The first
pass lattices were always rescored with a small LSTM model
we refer to as L1. For the rescoring of the second pass lat-

Figure 1: Decoding pipeline

tices we compared our own LSTM model L2 with the baseline
RNN model LB. The model L1 is based on a one-layer stan-
dard LSTM while L2 is based on a 3-layer LSTM with high-
way connections. The size of all hidden layers is set to 500
for both models. For the training of model L2 we applied a
dropout rate of 20% on the non-recurrent connections. The
output layer is factorized with word classes trained using the
exchange algorithm [23]. We used 100 classes for L1 and 70
for L2. For the training of the model L2, the sentences with
high OOV rates were removed from the training data, exactly
as described in [24]. The model L1 was trained without this
pre-processing. The interpolation weights between the baseline
5-gram count model and the LSTM model were optimized w.r.t.
the perplexity on the development data [25]. We used RWTH’s
open-source toolkit rwthlm [7] for both training and rescoring.

For the UPB back end (W) we employ a two layer LSTM
language model with 650 hidden units each – similar to the ex-
ample provided by [26]. Instead of training on an endless word
stream (initial state of next batch is end state of current batch),
we found that training on full sentences from the provided lan-
guage model training data in a random mini-batch improved
cross validation scores slightly. Again we use Adam [17] for op-
timization for 39 epochs and apply a dropout rate of 50% (this
time in the vertical connections only). Global gradient clip-
ping with a maximum value of 5 is used. All weight matrices
and bias vectors, including the embedding matrix, are initial-
ized with random weights sampled from a uniform distribution
in [−0.1, 0.1]. We experiment with restricted training sets limit-
ing the maximum number of unknown symbols during training.
This yielded reduced cross validation perplexities. Neverthe-
less, we finally selected a model trained on unrestricted training
data, since this lead to the lowest WER on the dev set.

2.3. System combination

For every track we obtain the final recognition result by per-
forming confusion network combination (CNC) of multiple sys-
tems. The lattices are first converted to individual confusion
networks [27, 28] and the combination is performed by align-
ing the confusion networks in the order of increasing word error
rate. We optimize the system weights w.r.t. the WER on the real
dev set using the downhill simplex algorithm. The frame-wise
CN construction algorithm is described in greater detail in Sec-
tion 4.4.4 of [29].

3. Experimental evaluation
The following section gives an overview over the effects of the
different components of the final system in the 6 channel track.
The following notation is used. The columns FE and BE de-
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scribe the front end and back end used in the decoding step, re-
spectively. The front end is either the baseline model (BL), the
superdirective beamformer (SD), the minimum variance distor-
tionless response beamformer (MV) or the GEV beamformer
(GE). The RWTH back end (R) is described in Sections 2.2.2
and the UPB back end (W) is summarized in Section 2.2.3.
See [9] for the description of the baseline Kaldi back end (K).
All optimization have been done exclusively on the real dev set.
The results on the simulated data are only provided for refer-
ence. All tables show absolute word error rates (WER) in per-
cent.

3.1. MVDR configurations

The MVDR beamformer uses a slightly different configuration
to estimate the spatial correlation matrix of noise used in Eq. (2)
for the 2ch and 6ch track. As described in Section 2.1.2, for the
6ch track the spatial correlation matrix of noise is estimated us-
ing the time-frequency masks derived from the complex Gaus-
sian Mixture Model (MV-NoiseMasks), while for the 2ch track
the matrix is estimated from 400 ms to 800 ms of context im-
mediately before the utterance (MV-NoiseContext).

The respective configurations have shown to yield better re-
sults on the real dev set, which has been used exclusively for
selection and optimization. Table 1 shows the recognition per-
formance of the MVDR beamformer with the two configura-
tions. In the following, MV will denote the MVDR front end
with the best performing configuration for each track, i.e., MV-
NoiseMasks for the 6ch track and MV-NoiseContext for the 2ch
track. These systems were trained on the FC+B data set.

Table 1: Configuration comparison for MVDR beamformer

Track MVDR configuration Dev Test
real simu real simu

6ch MV-NoiseContext 3.69 4.44 5.56 6.26
MV-NoiseMasks 3.57 4.73 5.58 6.28

2ch MV-NoiseContext 4.94 7.09 8.77 10.17
MV-NoiseMasks 5.09 7.61 10.53 12.01

3.2. Speaker adaptation and lattice rescoring

Table 2 shows the effect of speaker adaptation (SA) using Con-
strained Maximum Likelihood Linear Regression (CMLLR)
and lattice rescoring using an RNN-LM. It can be seen that both
components have a significant influence on the performance.
A relative improvement of 40% can be reached by using the
RWTH back end presented in Section 2.2.2 with speaker adap-
tation and lattice rescoring compared to the baseline back end
(compare first and last row).

Table 2: Effect of speaker adaptation (SA) and lattice rescoring
on the 6ch track evaluated on system trained on the FC training
set.

System Dev Test
FE BE SA RNN-LM real simu real simu

BL

K + LB 5.75 6.76 11.49 10.89

R

- - 7.80 8.71 11.81 13.89
- L1 5.87 6.43 9.35 10.55
+ - 6.22 8.10 9.69 11.70
+ LB 5.76 7.37 8.92 10.67
+ L2 4.34 5.65 6.83 8.16

3.3. Front end performance

In order to compare the front ends, we evaluate speaker adapted
systems trained on the FC training set and apply LM rescoring
with RNNs. Table 3 shows the performance of different beam-
formers on the 6ch track test data using both Kaldi and RWTH
back ends. The results indicate that all front ends presented here
have a positive effect on the ASR performance on the real data.
The best front end (GE) leads to a further relative improvement
of up to 41% over the baseline front end (BL).

Table 3: Comparison of front ends on a speaker adapted model
with lattice rescoring for the 6ch track.

System Dev Test
FE BE real simu real simu
BL

K

5.75 6.76 11.49 10.89
SD 5.47 6.34 11.47 10.42
MV 4.63 5.44 8.73 8.62
GE 3.70 3.72 5.76 4.24
BL

R

4.34 5.65 6.83 8.16
SD 3.89 5.14 6.59 7.99
MV 3.90 5.23 5.65 8.36
GE 3.27 3.41 4.02 3.93

3.4. Including beamformed signal in the training

Table 4 shows the effect of extending the training set of the
speaker adapted model by the pre-processed training data. The
recognition is performed with the RWTH back end and includes
lattice rescoring with the model L2. It can be seen that only mi-
nor improvements on the real data can be achieved. In the case
of the baseline front end (BL) the performance on the simu-
lated data even degrades. Nevertheless we decided to use the
extended training set (FC+B) for further experiments.

Table 4: Effect of enhancing the training set FC consisting of
channels 1,3-6 by the data obtained by pre-processing the train-
ing set with the matching front end on the 6ch track (FC+B).

System Dev Test
FE Training set real simu real simu

BL FC 4.34 5.65 6.83 8.16
FC+B 4.11 5.77 6.82 8.53

SD FC 3.89 5.14 6.59 7.99
FC+B 3.74 5.03 6.52 7.84

MV FC 3.90 5.23 5.65 8.36
FC+B 3.57 4.73 5.58 6.28

GE FC 3.27 3.41 4.02 3.93
FC+B∗ 3.05 2.79 3.77 2.67

∗ This system has not been available at time of evaluation and is only
included here for completeness

3.5. System combination

Table 5 shows the single systems used for system combination
and Table 6 shows the result of combining multiple systems.
It can be seen that in case of using only the RWTH back end
(R) each additional front end has a positive effect on the per-
formance on the real data. However, the optimization algorithm
reduces the weight of the system using the baseline front end
(BL) to zero when we include UPB’s back end W (last row).
The best result obtained for the real evaluation data on the 6
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channel track is 2.91%, which is a relative improvement of al-
most 75% over the baseline system.

Table 5: Single systems used for system combination in the 6
channel track

System Dev Test
ID FE BE Training set real simu real simu
1 BL

R

CH1,3-6+BL 4.11 5.77 6.82 8.53
2 SD CH1,3-6+SD 3.74 5.03 6.52 7.84
3 MV CH1,3-6+MV 3.57 4.73 5.58 6.28
4 GE CH1,3-6 3.27 3.41 4.02 3.93
5 GE W CH1-6 2.73 2.34 3.48 2.76

Table 6: Results of CNC system combination of different sys-
tems for the 6 channel track

System weights Dev Test
5 4 3 2 1 real simu real simu

0.50 0.50 2.75 3.13 3.57 3.56
0.33 0.33 0.33 2.70 3.18 3.55 3.77
0.40 0.25 0.25 0.10 2.61 3.07 3.40 3.46

0.45 0.55 2.48 2.47 3.12 2.90
0.43 0.33 0.34 2.25 2.30 2.98 2.61
0.35 0.20 0.20 0.25 2.19 2.34 2.91 2.68
0.35 0.20 0.20 0.25 0.00 2.19 2.34 2.91 2.68

3.6. Systems for 1 and 2 channel tracks

Table 7 shows the results of the single systems and the final
system combination in the 1ch and 2ch track of the challenge.
All shown systems have been included in the system combina-
tion. In the 1ch track no pre-processing has been used. Table 8
shows the breakdown of the results by environment for the best
systems in each track.

Table 7: Single system, system combination results for the 1ch
and 2ch track and best system combination result for the 6ch
track.

Tr. System Dev Test
FE BE Training set real simu real simu

1ch

- K CH5 11.58 12.99 23.77 20.82
- R CH1,3-6 7.42 9.86 12.02 15.22
- W CH1-6 5.19 6.69 9.34 11.11

COM 1ch 5.14 7.40 9.29 12.36

2ch

BL

K CH5

8.25 9.51 16.63 15.33
MV 8.11 9.12 16.41 14.03
SD 8.03 9.15 15.97 15.15
GE 6.93 8.03 13.76 9.90
BL

R

CH1,3-6+BL 5.43 7.35 9.12 11.74
MV CH1,3-6+MV 4.94 7.09 8.77 10.17
SD CH1,3-6+SD 5.53 7.54 9.60 12.33
GE CH1,3-6 4.90 6.48 7.69 7.49
GE W CH1-6 3.54 4.05 5.96 5.16

COM 2ch 3.02 4.04 5.32 5.27
6ch COM 6ch 2.19 2.34 2.91 2.68

4. Post evaluation results
The following results were not part of the submitted system for
the 4th CHiME challenge. Table 9 shows the performance gain
obtained by the sequence-discriminative training of the BLSTM

Table 8: Breakdown of the best results by environment.

Tr. Environment Dev Test
real simu real simu

1ch

BUS 6.59 5.88 13.12 8.91
CAF 5.90 9.88 9.84 15.11
PED 3.45 6.14 7.57 11.95
STR 4.60 7.71 6.63 13.45

2ch

BUS 3.91 3.44 7.52 3.68
CAF 3.07 5.43 5.04 6.33
PED 2.36 3.38 4.39 5.49
STR 2.73 3.91 4.33 5.57

6ch

BUS 2.61 2.06 3.16 2.19
CAF 2.01 2.92 2.65 2.95
PED 2.05 2.12 2.93 2.99
STR 2.11 2.26 2.91 2.60

acoustic model w.r.t. the sMBR criterion [30] in the 6ch track.
The cross-entropy (CE) model is trained on the FC data set us-
ing the RWTH back end and the GE front end. This model is
used to initialize the sMBR training. The lattices for the sMBR
training were generated with a 3-gram language model. During
the training we use state priors which were calculated from the
output layer of the CE model as was proposed in [31]. In order
to prevent overfitting we used CE-smoothing [32] with a factor
of 0.1. Table 10 shows that replacing the CE model (4) by the
sMBR model (4+) in the combination reduces the WER from
2.9 to 2.7% on the real test set.

Table 9: Effect of sequence training of the BLSTM acoustic
model in the RWTH back end. Results with the GE front end
on the 6ch track.

System Dev Test
ID Criterion real simu real simu
4 CE 3.27 3.41 4.02 3.93
4+ sMBR 2.77 3.11 3.43 3.30

Table 10: Effect of replacing the CE system (4) by the sMBR
trained system (4+) in the system combination. Results on the
6ch track.

System weights Dev Test
5 4 4+ 3 2 1 real simu real simu

0.35 0.20 0.20 0.25 0.00 2.19 2.34 2.91 2.68
0.30 0.25 0.20 0.10 0.15 2.09 2.32 2.71 2.47

5. Conclusion
In this paper we presented a detailed analysis of the acoustic
models developed by RWTH, UPB and FORTH for the 4th
CHiME challenge. Our joint submission based on confusion
network combination of multiple systems scored second in each
of the three tracks of the challenge. More specifically, we com-
pared four different front-ends and found that the BLSTM sup-
ported GEV-beamformer consistently leads to the best ASR re-
sults in 2ch and 6ch tracks. Further we found that extending the
training data set by the beamformed data only works well on
real test data.

We plan to further investigate the sequence training of
BLSTM back ends, since the post evaluation results have shown
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clearly, that further performance gain can be achieved and trans-
ferred to the final system combination.
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Abstract
Long Short-Term Memory recurrent neural networks (LSTMs)
have demonstrable advantages on a variety of sequential learn-
ing tasks. In this paper we demonstrate an LSTM “triple threat”
system for speech recognition, where LSTMs drive the three
main subsystems: microphone array processing, acoustic mod-
eling, and language modeling. This LSTM trifecta is applied
to the CHiME-4 distant recognition challenge. Our previous
state-of-the-art ASR systems for the previous CHiME challenge
employed LSTM mask estimation based beamforming, noise
robust features, in addition to DNN/RNNLM based back end.
The proposed system refines each module of the previous sys-
tem including bidirectional LSTM (BLSTM) mask estimation
based beamforming, BLSTM-DNN hybrid acoustic model, and
language model rescoring based on LSTM. We perform con-
strained re-estimation based speaker adaptation, and also pre-
pare several complementary systems by changing the beam-
forming strategy and the acoustic model configurations, and
combine these systems based on word-posterior based system
combination. The final system achieved 2.98% WER for the
real test set in the 6-channel track, which reduces the WER from
the baseline by 8.5% absolute, and also outperforms our previ-
ous CHiME-3 system by 6.1% absolutely.

1. Background
The MERL-Sabanci system, as shown in Figure 1, is a multi-
channel ASR system that focuses on the CHiME-4 6ch track
[1]. It is an extension of our CHiME-3 system [2], and improves
upon it using the following methods:

• BLSTM mask estimation for Minimum Variance Distor-
tionless Response (MVDR) and Generalized EigenVec-
tor (GEV) beamformers.

• BLSTM-DNN hybrid acoustic model via state posterior
combination.

• Expanded noisy data training using all 6 channels of of-
ficial training speech data (i.e., 6 times the amount of
training data).

• Unsupervised speaker adaptation based on constrained
retraining of DNN.

• Language model re-scoring based on LSTM.

• System combination across multiple methods and input
features.

The authors are listed in the alphabetic order. Tomoki Hayashi,
Wei-Ning Hsu, Suyoun Kim, and Zhong Meng performed the work dur-
ing their internship programs at MERL.

These techniques steadily improve the performance from the
baseline. Their technical details are explained in the following
section.

2. Contributions
2.1. BLSTM mask estimation for beamformers

We train a unique BLSTM neural network for single-channel
mask prediction using the simulated training data for all six
channels. The network takes a single channel as input and
predicts both speech and noise masks for that channel using
sigmoid output activations and ideal binary masks as targets.
The network is trained with the binary cross-entropy loss func-
tion [3]. During recognition, the network is applied separately
to each channel, and the predicted masks for the six channels
are combined to obtain a single mask by taking their median.
The obtained speech and noise masks are then used to predict
speech and noise spatial covariance matrices which are used in
MVDR and GEV beamformers to perform beamforming-based
enhancement on the multi-channel signal to be recognized.

2.2. Beamforming

We perform MVDR and GEV beamforming. The version of
MVDR beamforming we use only uses spatial covariance esti-
mates of speech and noise. To obtain these spatial covariances,
we make use of the masks predicted by the network. The co-
variances are estimated as follows:

Φ̂x(f) =

∑
t M̂x(t, f)Y (t, f)Y H(t, f)

∑
t M̂x(t, f)

,

where M̂x is the predicted mask for speech or noise and Y (t, f)
is the received multi-channel signal’s spatial vector correspond-
ing to time-frequency bin (t, f). For GEV beamforming [3],
we form the beamforming filters by maximizing the SNR for
each frequency by solving the generalized eigenvalue problem
for the spatial filter h:

Φ̂speechh = λΦ̂noiseh.

For MVDR beamforming, we first choose a reference micro-
phone and then find the direction of minimum noise variance
while keeping the speech signal distortionless. Using one pos-
sible formulation [4], the solution can be found as:

ĥ =
1

trace(Φ̂
−1

noiseΦ̂speech)
Φ̂

−1

noiseΦ̂speecheref,

where eref is a standard unit vector in direction ref.
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Figure 1: A flow chart of the proposed system for decoding.

2.3. Acoustic modeling and adaptation

Although RNNs (especially LSTMs) have been shown to be
very effective for noise robust speech recognition [5, 6], our pre-
liminary attempt at applying LSTMs/BLSTMs to the CHiME-4
task was not successful probably due to the limited amount of
training data and the difficulty of obtaining correct state align-
ments from noisy speech. Instead, the acoustic models we used
in our experiments are hybrid BLSTM-DNN systems. BLSTM
and DNN models are separately trained with augmented train-
ing data by using the noisy speech training data from all 6 chan-
nels [7]. The DNN model configuration is the same as that
of the official baseline acoustic model [1]: a 7 hidden layer
sigmoid DNN with 2048 activations per layer trained by us-
ing state-level Minimum Bayes Risk (sMBR) criterion in the
kaldi nnet1 module [8]. The BLSTM acoustic model has 3 lay-
ers, where each layer consists of forward and backward unidi-
rectional LSTMs with 512 cell states and one linear bottleneck
layer to combine the outputs of both unidirectional LSTMs out-
putting 512 activations. The BLSTM was trained based on the
cross entropy criterion by using stochastic gradient descent. We
used a state alignment obtained by using the DNN as a target.

On top of the training, we adapt the speaker-independent
DNN to the data of each speaker in an unsupervised way. We
used a constrained re-training (CRT) adaptation method where
we re-estimate the DNN parameters of only a subset of layers
while holding the remaining parameters fixed with the cross en-
tropy criterion. The optimal subset of layers to be estimated is
selected according to the development set performance. Since
we cannot use any prior knowledge about the environment ac-
cording to the CHiME-4 regulation, we train each speaker-
dependent DNN with the speaker’s speech from all different
environments. We also use KL divergence adaptation [9] by
using the speaker-independent DNN to regularize the speaker-
dependent DNN. The adaptation target (1-best alignment) was
obtained at the first-pass decoding, and the second-pass decod-
ing is performed using this speaker-adapted DNN, as shown in
Figure 1.

The BLSTM acoustic model and DNN model adaptation
are implemented by using chainer deep learning toolkit [10].

2.4. Language model re-scoring

We train an LSTM-based RNN language model (LSTMLM) us-
ing the official training data for language modeling in CHiME-
4.

RNN language models (RNNLMs) [11] robustly estimate
word probability distributions by representing the contextual in-
formation in a continuous space, which are kept in the hidden
layer with recurrent connections. Compared to N-gram models,
RNNLMs can exploit more long-distance interword dependen-
cies to predict the next word, and yield better performance in
many tasks. However, RNNs are not able to keep very long
histories because the contextual information at a certain time

exponentially decays by doing recurrent propagations through
time. Accordingly, we introduce LSTMLM [12, 13] to im-
prove the system performance. The LSTM RNN has a mem-
ory cell in each hidden unit instead of a regular network unit,
which can remember the contextual information for an arbitrary
length of time. By expoiting the longer contextual information,
LSTMLM can predict the next word more accurately than the
standard RNNLMs.

In the decoding phase, word lattices are first generated us-
ing the baseline language model for CHiME-4, which is the
standard 5k WSJ trigram downsized with an entropy pruning
technique [14]. After that, N -best lists are generated from the
lattices using a 5-gram language model with a modified Kneser-
Ney smoothing [15, 16]. Finally, the N -best lists are rescored
using a linear combination of the 5-gram and LSTMLM proba-
bilities in the log domain, i.e.,

logP (W ) =

L∑

i=1

{λ logPlstm(wi|hi)

+(1− λ) logP5gkn(wi|hi)}, (1)

where W = w1, w2, . . . , wL denotes each sentence hypothe-
sis, λ the interpolation weight, and hi the history of wi.. The
best-rescored hypothesis is selected as the result of each single
system. The N -best lists are also used for system combination.

For the challenge, LSTMLM was designed as an RNN with
one projection layer of 1000 units and one hidden layer of 1500
LSTM cells. We set the interpolation weight λ in Eq. (1) to
0.9 and the number of N -best hypotheses to 100, which were
selected based on word error rate for the development set.

2.5. System combination

In the proposed system, multiple feature vector sequences are
obtained for different pairs of beamforming and feature extrac-
tion methods, and they are separately processed by a WFST-
based decoder to output word lattices. After rescoring with the
LSTMLM, multiple lists ofN -best hypotheses are obtained and
then used for system combination.

System combination is a technique to improve recognition
accuracy by combining different recognition hypotheses from
different systems [17]. First, the multiple hypotheses are com-
bined by taking their union after reweighting each hypothesis
with its posterior probability. After that, minimum Bayes risk
(MBR) decoding is performed on the combined hypotheses us-
ing an algorithm in [18]. With this decoding, we can find the
hypothesis with the minimum expected word error rate from
among all the hypotheses obtained by the multiple systems.
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3. Experimental evaluation
3.1. Mask prediction network and beamforming setup

For mask prediction and beamforming, we used windows of
length 1024 samples with a frame shift of 256 samples. The
non-redundant FFT vector dimension was 513. Magnitude FFT
was used as an input to the mask prediction network for each
frame. The mask prediction network had a single BLSTM layer
with 256 nodes. After the BLSTM layer, we used two feedfor-
ward layers with rectified linear unit activations with an output
dimension of 513. The output layer predicted predicted 513
dimensional masks for speech and noise separately with a sig-
moid activation for each output. The target ideal binary masks
did not sum to one for each time-frequency bin. Ideal binary
masks were chosen to be one when the corresponding source
was significantly larger than the other source.

For beamforming, we pass each channel’s input through the
network, take the median of each channel’s outputs for each
time-frequency bin and use the value as a mask directly. For
the MVDR beamformer, we chose microphone CH5 as the ref-
erence microphone.

3.2. Experimental Results

The first set of experiments compare the baseline script (Beam-
formIt [19], DNN sMBR, and 3-gram) with two beamform-
ing techniques. Table 1 summarizes results for three types of
beamforming, and both methods using the BLSTM based masks
greatly improve the performance from BeamformIt. The train-
ing utilizes noisy data from channel 5 only. Also we observed
that the GEV beamformer yields similar performance on simu-
lated versus real data, both for the development and for the test
sets, whereas the MVDR beamformer has systematically better
performance on the simulation data. Because these properties
are complementary, both beamformers are included in the final
system combination.

Table 1: Average WER (%) for the front-end systems with fixed
DNN sMBR, 3-gram back-end.

Track System Dev Test
real simu real simu

6ch

Baseline: BeamformIt 8.14 9.07 15.00 14.23
BLSTM-Mask MVDR 6.66 5.55 11.39 6.39
BLSTM-Mask GEV 7.19 7.50 10.32 9.62

The second group of experiments compares acoustic model
techniques with fixed front end based on BeamformIt [19]. Ta-
ble 2 shows that using all 6 channels for training is particularly
effective for generalization to the test set, presumably due to the
increase in speech signal variety in the training data. Although
an individual BLSTM acoustic model does not outperform the
DNN sMBR, the state posterior patterns of both models seem
to be complementary, and the hybrid BLSTM-DNN acoustic
model achieves significant improvement. Based on the result,
we adopt BLSTM-DNN acoustic model as the main system, but
still use DNN sMBR as a complementary system to investigate
several features and training variations due to its lower compu-
tational cost.

Table 3 reports the results on combined front-end tech-
niques and BLSTM-DNN acoustic modeling. Here, we also
report the speaker adaptation and language model re-scoring on
top of the systems for both BLSTM-Mask MVDR and GEV
beamformers. Note that the speaker adaptation is only per-
formed for the DNN part of the BLSTM-DNN. The table clearly

Table 2: Average WER (%) for the back-end systems with fixed
BeamformIt front-end.

Track System Dev Test
real simu real simu

6ch

Baseline: DNN sMBR 3gram 8.14 9.07 15.00 14.23
6ch Training 7.71 8.21 12.79 12.67

BLSTM 6ch Training 8.50 8.96 13.59 13.28
BLSTM-DNN 7.44 7.48 11.51 11.51

Table 3: Average WER (%) for combined single systems with
BLSM-mask beamformers, BLSTM-DNN, LM re-scoring us-
ing LSTM, and speaker adaptation

Track System Dev Test
real simu real simu

6ch

BLSTM-Mask MVDR 5.80 4.68 8.57 5.23
+ LM re-scoring 2.92 2.27 4.83 2.51

+ Adaptation 2.54 1.95 4.18 1.84
BLSTM-Mask GEV 6.26 6.34 8.13 7.83

+ LM re-scoring 3.12 3.11 4.23 4.06
+ Adaptation 2.77 2.63 3.81 2.94

shows the improvement of the combination of beamforming and
BLSTM-DNN from Tables 1 and 2, and the effectiveness of the
LM re-scoring and speaker adaptation is also confirmed.

Finally we have combined our main BLSTM-DNN systems
with DNN sub systems. In addition to the two beamformer re-
sults (MVDR and GEV) in Table 3, we have additionally pre-
pared comparable systems by changing features with PNCC
[20] (pncc), ETSI AFE [21] (afe), and PLP [22] with pitch fea-
tures (plp+p) using DNN sMBR acoustic models (DNN), re-
trained DNN with beamformed features (DNN, ret), and using
alternative implementation of the BLSTM-Mask GEV beam-
former by [3] (GEV [3]). After that, we have combined all the
lattices obtained by these systems and performed system com-
bination using minimum Bayes risk decoding.

Table 4: Average WER (%) with final system combination.

Track System Dev Test
real simu real simu

6ch

GEV [3], DNN 2.62 2.58 3.74 3.26
GEV, DNN, ret 2.63 2.48 3.63 2.87

MVDR, DNN, ret 2.47 1.79 4.13 1.67
MVDR, afe, DNN 3.20 2.89 4.99 2.57
GEV, pncc, DNN 3.62 3.68 5.49 4.66

GEV [3], plp+p, DNN 3.31 3.26 4.85 4.43
Combination 2.11 1.95 2.98 1.97

Using these complementary systems, the system combina-
tion achieved 2.98%, representing an improvement of 0.6% ab-
solute over our best single system.

Table 5: WER (%) per environment for the best system.

Track Envir. Dev Test
real simu real simu

6ch

BUS 2.73 1.53 4.30 1.59
CAF 2.08 2.14 2.71 1.83
PED 1.78 1.67 2.37 1.81
STR 1.81 1.92 3.10 1.72
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4. Summary
This paper describes the MERL/Sabanci submission system
for the CHiME-4 speech separation and recognition challenge.
Our main single system consists of BLSTM-mask-estimation
based beamforming, DNN-BLSTM hybrid acoustic model, and
rescoring based on LSTMLM, leading to a system that employs
LSTMs all the way through. With acoustic model adaptation
and system combination, we finally obtained 2.98% WER, plac-
ing third among 15 submissions. Future work will consider how
to integrate these complicated modules within a deep learning
framework, including beamforming network [23, 24] and end-
to-end ASR [25, 26, 27].
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Abstract
In this paper, we describe our submitted systems for the

CHiME-4 challenge and report the experimental results.
We first examine unsupervised speaker adaptation method

for deep neural network (DNN) based acoustic model. The
speaker-dependent DNN is constructed by re-training the
speaker-independent DNN using evaluation data per speaker.
Experiments show that the method provides up to 29% relative
gain on the word error rate (WER).

Second, we describe a phonetically-oriented system combi-
nation method. The method utilizes phonetic similarity to con-
struct a word alignment. It gives a better treatment of insertion
and deletion errors in the word alignment. Experiments show
that the method provides up to 16% relative gain.

Finally, we combine the above methods with our previous
approaches for the submitted system. We utilize multi-output
signals from local Gaussian modeling (LGM) based source sep-
aration as augmented training data. We also used the LGM as a
preprocessing of beamforming at frontend. The submitted sys-
tem achieved 4.68% of WER for the real evaluation set.

1. Background
We participate in the CHiME-4 challenge [1] and we submit all
(1, 2, 6ch) tracks. We explain how the speaker-dependent deep
neural network (DNN) is constructed and a new development of
system combination method for this challenge. The local Gaus-
sian model (LGM) is also emphasized because it is successfully
applied to the speech enhancement for the past CHiME-3 chal-
lenge [2].

2. Contributions
2.1. Unsupervised network adaptation

Speaker adaptation is successfully applied in a lot of tasks. The
CHiME-4 baseline system employs feature-space maximum
likelihood linear regression (fMLLR) transform for speaker
adaptation. In the CHiME-3 best paper [3] used re-training of
convolution neural network (CNN) for speaker adaptation and
reported significant gain of word error rate (WER). While unsu-
pervised re-training of DNN has been shown no improvement
in [4], we observed an improvement on the CHiME-4 data set.

Figure 1 shows the decoding process with unsupervised net-
work adaptation. In this work, the baseline DNN trained with
state-level minimum Bayes risk criterion (DNN+sMBR) is used
as an initial acoustic model for speaker adaptation. Labels for
re-training are generated from 1-best decoding results of test
data. The decoding for re-training is performed using the ini-
tial acoustic model and 3-gram language model, followed by

test data decoding rescoring 

alignment 

1-best results 

DNN+sMBR 5-gram &RNNLM 

re-trained DNN 5-gram &RNNLM 

re-training 

decoding rescoring 1-best results 

Figure 1: decoding with unsupervised network adaptation

rescoring using the 5-gram and recurrent neural network lan-
guage model (RNNLM). Alignments of the 1-best decoding re-
sults are generated using the initial model. Then, re-training is
performed using mini-batch stochastic gradient descent (SGD)
algorithm with a cross entropy criterion. The parameters of
mini-batch SGD are tuned using the development set.

2.2. Phonetically-oriented system combination

The ROVER [5] is a well-known technique to reduce word er-
rors using multiple sentences obtained from multiple systems.
In the approach, word alignments among multiple sentences are
constructed by word-based DP matching. The word alignment
makes a word set which contains words obtained from different
systems in the same second. Based on the word alignment, the
most trustable word within a word set is chosen. However, the
word alignment often generates irrelevant word sets.

The left of Fig. 2 shows such an example: the word “their”
from recognizer 1 is put into a word set containing “are” from
recognizer 2 and 3. The ideal alignment in this case is that
“their” from recognizer 1 is be associated with “there are” from
recognizer 2 and “they are” from recognizer 3.

In this study, we employ the phonetically-oriented word
alignment (POWA) proposed in [6]. A word alignment example
with POWA is shown in the bottom right of Fig. 2.

Based on the POWA-based word set, we perform word se-
lection utilizing machine learning [2].

The feature vector x used for the correct word estimators is
formed as:

x = (x>oc,x
>
cf ,x

>
nl)
> ∈ R(

N
2 )+2N (1)

xoc = (δ(wi, wj); 1 ≤ i < j ≤ N)> ∈ R(
N
2 ) (2)

xcf = (ci; 1 ≤ i ≤ N)> ∈ RN (3)

xnl = (δ(wi,NULL); 1 ≤ i ≤ N)> ∈ RN (4)

where δ() is the Kronecker delta function, N is the number of
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Figure 2: Phonetically-oriented word alignment

recognizers, each element of xoc is an indicator showing the
chunk from a recognizer i is the same with the chunk from an-
other recognizer j , ci is a confidence of a chunk from a recog-
nizer i, which is calculated as a geometric mean of words’ con-
fidences within a chunk, and NULL means the word is empty.
The label vector y is formed as following:

y = (δ(wi, wtrue); 1 ≤ i ≤ N)> ∈ RN (5)

where wtrue means a chunk which consists of correct words.
Given feature vector x and label vector y, the correct word esti-
mator is trained by logistic regression model. The correct word
estimator was trained from the development set.

2.3. LGM based source separation

2.3.1. Data augmentation using LGM

In this work, we use the data augmentation method using multi-
ple output signals from LGM based source separation [7]. In the
LGM based source separation [8], the multi-microphone signal
in the time-frequency domain x(f, t) is expressed as

x(f, t) =

J∑

j=1

cj(f, t), (6)

where cj(f, t) = [c1j(f, t), · · · , cIj(f, t)]> is the contribu-
tion of the jth source to the mixture signals, J is the number
of sources, and I is the number of microphones. The source
separation problem is to estimate cj(t) from x(t).

In the LGM approach, the multichannel covariance matrix
of each speech source is assumed to be a multiplication of a
time-variant scalar vj(f, t) and a time-invariant multichannel
matrix Vj(f) for jth source.

cj(f, t) ∼ NC(0, vj(f, t)Vj(f)) (7)

The LGM estimates the maximum likelihood value of
vj(f, t) and Vj(f) by using expectation-maximization algo-
rithm. Then, the separated signal can be obtained by multichan-
nel Wiener filtering:

cj(f, t) = vj(f, t)Vj(f)R
−1
x (f, t)x(f, t), (8)

where Rx(f, t) is the covariance matrix of the input signal
x(f, t) which is the sum of covariance matrix of every sources.

In this study, the number of sources is set to 3. All channels
of the target source signals are used as augmented training data
for acoustic modeling.

2.3.2. Semi-stationary noise separation using LGM

In the original LGM framework, all of source signals are as-
sumed to be time-varying signals. However, in the real environ-
ments, there are a lot of semi-stationary noises. To deal with
these noises, we introduce moving average smoothing of activ-
ities for the non-target noise sources in addition to the origi-
nal LGM. The modification to the original LGM for non-target
noise sources (j > 0) is following:

cj(f, t) ∼ NC(0, v̂j(f, t)Vj(f)) ; j > 0 (9)

, where v̂j(f, t) is a smoothed activity:

v̂j(f, t) =

Tj∑

τ=0

vn(f, t− τ) (10)

Tj is the number of smoothing frames.
That modification works as a kind of regularization for

avoiding over-fitting problem especially in semi-stationary
noise environments. Applying the moving average filter in the
each EM iteration, the target source, i.e. the most active source
is extracted onto c0. So we no longer select the target source
from separated signals using SRP-PHAT.

In this work, we use this modification of LGM for the fron-
tend speech enhancement. For non-target two sources, the num-
bers of smoothing frames are set to 3 and 6. The test utterance
is processed by the modified LGM before the baseline beam-
forming is applied.

3. Experimental evaluation
3.1. Tuning adaptation parameters

We first evaluated the sensitivity to hyper-parameters for un-
supervised network adaptation. The system for this evaluation
used the LGM based source separation. The structure of acous-
tic model and language models are the same as the baseline
DNN+RNNLM system except the acoustic feature, which was
40 dimensional log mel filterbank with an energy term, followed
by per utterance mean variance normalization and delta and ac-
celeration feature augmentation.

The evaluation results for the development set are shown
in Table 1. We observed the results of unsupervised network
adaptation with any set of hyper-parameters always better than
the non-adapted result. The small learning rate and the small
number of iteration gives good result. Through this evaluation,
the mini-batch size was set to 12000, the learning rate was set
to 0.0004, and the number of iteration was set to 2 for further
evaluations.

Table 1: Average WER (%) for various adaptation parameters
iteration learn rate mini-batch WER (dev avg)

No adaptation 4.85
1 0.01 256 4.115
1 0.008 512 4.08
1 0.001 256 3.7
1 0.0004 256 3.745
1 0.0004 512 3.735
1 0.0004 12000 3.7
1 0.0001 256 3.865
2 0.0004 12000 3.695
10 0.0004 256 4.305
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3.2. Evaluation on submitted system

The evaluation results are shown in Table 2, and the WERs per
environment for the submitted systems are shown in Table 3.

The adapted system used unsupervised network adapta-
tion. The initial model was from the baseline DNN+sMBR
system. The baseline system used fMLLR transformed MFCC
feature. The adapted system was tested only on “6ch track”.

The combined system used phonetically-oriented system
combination. The system combined four baseline systems
(GMM, DNN+sMBR, DNN+5gram, DNN+RNNLM). The
combined system was tested only on “6ch track”.

The LGM system used the LGM based source separation.
For the frontend of 1ch track, we applied no speech enhance-
ment. The structure of acoustic model and language models
are the same as the baseline system except the acoustic feature,
which was 40 dimensional log mel filterbank with an energy
term, followed by per utterance mean variance normalization
and delta and acceleration feature augmentation.

The LGM+adapted system used unsupervised network
adaptation. The initial model was from the LGM system.

The submitted system used phonetically-oriented system
combination. The system combined 24 recognizers (12 back-
end models and 2 frontend methods). The backend models are
comprised of 4 baselines (GMM, DNN+sMBR, DNN+5gram,
DNN-RNNLM), 4 LGM-based data augmented models, 2
adapted DNN models (DNN+5gram, DNN+RNNLM) and 2
LGM-based data augmented and adapted DNN models. The
frontend methods are baseline beamforming (beamformit) and
LGM based beamforming as described in Section 2.3.2.

The results of the real test set on the 6ch track show the
effectiveness of the unsupervised network adaptation. The rela-
tive gain was 6% of WER from the baseline and 29% from the
LGM system. While the phonetically-oriented system combi-
nation was not effective for baseline systems, combination with
the LGM and LGM+adapt systems achieved 16% relative gain.
The LGM constantly reduced the WER and boosted the effec-
tiveness of unsupervised network adaptation and phonetically-
oriented system combination.

Table 2: Average WER (%) for the tested systems.

Track System Dev Test
real simu real simu

1ch
baseline 11.56 12.99 23.59 20.72

LGM 9.27 11.97 16.88 17.76
LGM+adapted 7.29 9.56 13.57 13.96

submitted 5.89 7.36 11.42 9.23

2ch
baseline 8.21 9.50 16.55 15.40

LGM 6.51 8.37 12.08 10.98
LGM+adapted 5.13 6.36 9.09 7.79

submitted 4.22 5.88 8.61 7.32

6ch
baseline 5.76 6.77 11.46 10.91
adapted 5.37 6.36 10.77 9.18

combined 5.77 6.80 11.48 10.72
LGM 4.49 5.20 7.78 6.35

LGM+adapted 3.58 3.81 5.56 4.47
submitted 2.68 3.33 4.68 4.15

4. Conclusion
We wrote our development for the CHiME-4 challenge and re-
ported the experimental results. We examined unsupervised

Table 3: WER (%) per environment for the best system.

Track Envir. Dev Test
real simu real simu

1ch

BUS 7.85 6.31 15.93 6.69
CAF 6.02 9.87 11.86 9.86
PED 4.01 5.78 9.81 9.69
STR 5.68 7.48 8.09 10.68

2ch

BUS 5.24 4.78 12.26 4.78
CAF 4.38 7.79 8.98 8.24
PED 3.05 5.04 7.03 7.56
STR 4.20 5.91 6.16 8.69

6ch

BUS 3.38 3.01 6.13 3.19
CAF 2.20 3.92 4.50 4.17
PED 2.33 2.88 3.87 4.20
STR 2.80 3.53 4.24 5.02

speaker adaptation for DNN based acoustic model and shown
that the adaptation gives up to 29% relative gain on the 6ch
track. Second, we evaluated a phonetically-oriented system
combination method. Experiments showed that the system
combination results up to 16% relative gain. Finally, we eval-
uated the combination of the above methods with LGM based
source separation. The experimental results of the submitted
system show that 4.68% of WER for the real evaluation set.
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ABSTRACT

This paper reports developments and evaluation results of
I2R system for CHiME-4 challenge which addresses distant
speech recognition on tablet device in challenging noisy en-
vironments. It features three tracks of 6-channel; 2-channel;
and 1-channel data, respectively. Our developments are more
focused on the algorithms with potentials in real-time imple-
mentation. In front-end processing, time-domain weighted
delay-and-sum beamforming (WDAS) was implemented with
following specific processing compared to the provided base-
line processing [1]: (1) channel SNR and coherence mea-
surements were used to calculate the beamforming weighted
coefficients; (2) slow updating of the beamforming weights
with 2-second windows; (3) a modified single channel speech
enhancement was applied on top of output beamforming en-
abling further reduction of the background noise while keep
controlling the introduced distortion. In the back-end pro-
cessing, two new components were applied compared to the
provided baseline: (1) LSTM language model for re-scoring;
and (2) Semi-supervised DNN adaptation for each individual
speaker in test. In evaluations, we stay with unique acous-
tic models for all the task and apply the processing on test
data only. Consistent improvements were obtained across all
three tasks. The submitted results for the real test set were
5.00%, 8.32%, and 11.19% for the 6-channel, 2-channel, and
1-channel tasks, respectively.

1. BACKGROUND

The industrial applications of speech recognition has been
moving from closed talk microphones to daily real life scenar-
ios thanks to booming developments in robotic and artificial
intelligence (AI) areas. The task, however, is remained chal-
lenging due to the problems of attenuation, noise, distortion,
and reverberation. Following the success of the CHiME-3
challenge which attracted many international teams to partic-
ipate, CHiME-4 revisits the CHiME-3 data, i.e., utterances
recorded via a 6-microphone tablet device in challenging
noisy environments. The difficulty is increased by reducing
the number of microphones. CHiME-4 features three tracks
depending on the number of microphones available for test-
ing: 6-channel track; 2-channel track; and 1-channel track.
Excepting the 6-channel task, the channels are randomly cho-
sen from the pool so that no specific geometrical prior in-

formation is given to the samples. The audio was recorded
under real acoustic mixing conditions, i.e. talkers speaking in
challenging noisy environments, including four varied noise
settings: caf, street junction, public transport and pedestrian
area. We participated in both three tasks and our focus is
the approaches which are suitable for real-time implementa-
tions. In the front-end, the weighted delay-and-sum beam-
forming (WDAS) was implemented with a specific way to
determine the weighted coefficients, using both coherence [1]
and SNR estimations [2]. A post-processing filter is applied
on top of WDAS output and that was modified from a pre-
vious speech enhancement development [3]. The modifica-
tion is made to reduce the distortion level from speech en-
hancement and was found useful for ASR task. The same en-
hancement filter is applied on noisy speech in the 1-channel
task. The back-end acoustic modelling follows a typical Kaldi
recipe [4] and unique DNN acoustic model is applied for all
the tasks [5]. In the decoding stages, LSTM LM [6] for re-
scoring is applied and semisupervied DNN adaptation [7] is
applied on individual speaker data. Consistent improvements
from baseline were obtained cross all three tasks. The major
contributions come from beamforming, LSTM LM re-scoring
and semisupervied DNN adaptation and additional improve-
ments were provided by post-processing enhancement and its
two-stage implementation. The submitted results for the real
test set were 5.00%, 8.32%, and 11.19% for the 6-channel,
2-channel, and 1-channel tasks, respectively. These results
significantly outperformed the baseline results of 11.51%,
16.58%, and 23.70% on the same datasets. The advantages
of our system is that it is applicable for universal situations
of environments and can be translated into real-time. We
also evaluated the data-driven BLSTM trained masking GEV
beamforming [8], proposed by Paderborn University (Ger-
many), with our back-end processing on the 6-channel data.
Although the masking GEV outperformed our front-end it re-
quires extra matching data to train putting a question on its
performance in an totally unknown and mismatch conditions.
Further studies are necessary to prove its practical value.

2. SYSTEM DESCRIPTIONS

The block diagram of our system is illustrated in Figure 1.
The highlighted yellow are the important modules which are
different from the baseline method.
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Fig. 1. Overview of our CHiME-4 ASR system.

2.1. Front-end processing

Our front-end processing includes two stages of weighted-
delayed-and-sum beamforming (WDAS) and a parametrized
single channel speech enhancement enabling optimization of
performances on the test data.

2.1.1. Beamforming

Time-domain weighted delay-and-sum (WDAS) method is
applied in the beamforming step.

1. The microphone signals are first alighted using time
difference of arrival (TDOA) which are estimated
through GCC-PHAT.

2. The reference channel is initialized as the channel with
the highest estimated SNR from channels and then it-
eratively tracking to the lowest negative TDOAs until
they turn positive. Note that since the SNR estimated
from channel number 2 is consistently bad, we have ex-
cluded this channel from our beamforming processing.

3. The weighted coefficients are calculated in two differ-
ent ways before getting averaged: (1) using channel co-
herence measurements; (2) using SNR estimation.

wi = αC
CHRi

N∑
j=1

CHRj

+ αS
SNRi

N∑
j=1

SNRj

, (1)

where the coherence measurements are calculated from

pair-wise cross-correlation coefficients [1], noted as

CHRi =
N∑

j 6=i

cij . (2)

The SNR in each channel is estimated and updated by
2 second segments using the algorithm in [2]. αC and
αS denote the weighting regularization coefficients be-
tween coherence and SNR measurements. Particularly,
we set both of them equal to 0.5.

4. Slower updating of WDAS weights, compared to pro-
vided baseline BeamformIt front-end [1] is imple-
mented using longer segments of 2 seconds

2.1.2. Post-processing filter

The advanatge of time-domain WDAS beamforming is that
it produces very low distortions in the output signal. How-
ever, the method is less effective in removing background
noise, particularly under low SNR conditions. Hence, post-
processing filter is introduced to partially solve the problem.
In this work, we applied the spectral estimation speech en-
hancement method introduced in a previous work [3]. This
method estimates the speech spectral amplitude using Max-
imum A Posterior (MAP) criteria using generalized gamma
distribution modelling of speech. While the method is effec-
tive in removing the background noise, it introduces distor-
tions which is harmful to ASR systems. To control the distor-
tion level, a simple modification has been applied and found
to be effective in applying this method for ASR under severe
noise conditions. It is done by introducing a rational power
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order to the original gain filter

G → Gα, (3)

where the original gain filter is

G =
Ŝ

X
, (4)

with the MAP spectral amplitude estimation noted by [3]

Ŝ=argmaxS [p (S,X)] (5)

The distortion controlling parameter α is chosen between 0 <
α < 1. As closer to original α = 1, the post-processing filter
provides more noise removal but also more distortions. A
trade-off in middle way near to α = 0.5 seems always able to
boost the ASR performances. Particularly, α = 0.5 is used in
our experiments for CHiME-4 data.

2.2. Back-end processing

2.2.1. Data augmentation

The 6-channel official training data, including both simulated
and real noisy recordings provided by the challenge organiz-
ers, was used in the training [9].

2.2.2. Acoustic modelling

The acoustic modelling is carried out using standard Kaldi
recipe [4]. The processing includes MFCC feature extraction
followed by auxiliary HMM-GMM which provides speaker
adaptive transforms (SAT) and the initial alignments. The
DNN training is started with RBM initialization followed by
two rounds of 4-iterations cross-entropy fine-tuning runs. The
DNN training is finally carried out to deliver the acoustic
models using the sMBR optimization [5].

2.2.3. Language modelling

Default 3-grams LM was used in the decoding followed by
a re-scoring by provided 5-grams. Additional LSTM LM [6]
was trained with provided text extracted from WSJ corpus and
being used in the final re-scoring stage.

2.2.4. Decoding with semi-supervised DNN adaptation

In the decoding stages, the enhanced signals from front-end
processing were used to input to the ASR system. It first
passes to the HMM-GMM decoder to get the SAT-fMLLR
transforms. Then the transformed features are used in the first
pass of speaker independent DNN decoding using the default
3-gram LM followed by a 5-gram LM rescoring. From here,
two important modifications were made, compared to the
baseline method. First, instead of using RNN-LM re-scoring,
we adopt more advanced LSTM LM described above. Sec-
ondly, semi-supervised adaptation is utilised, on each indi-
vidual speaker data [8] using the best path state sequence and

Table 1. Average WER (%) for the tested single systems.

Track System Dev Test
real simu real simu

1ch
I2R-fb-2 6.08 7.33 11.19 10.87
I2R-fb 6.14 7.42 11.25 11.34

Noisy-I2Rb 6.15 7.60 13.05 12.89
Baseline 11.57 12.98 23.70 20.84

2ch
I2R-fb-2 4.32 5.10 8.32 7.57
I2R-fb 4.35 5.33 8.43 7.70

BeamformIt-I2Rb 4.76 6.62 9.37 8.48
Baseline 8.23 9.50 16.58 15.33

6ch
MaskBF-I2Rb 2.70 2.16 3.94 2.90

I2R-fb-2 3.18 3.39 5.00 4.97
I2R-fb 3.25 3.48 5.08 5.00

BeamformIt-I2Rb 6.35 6.14 6.44 6.06
Baseline 5.76 6.77 11.51 10.90

confidence measures, decoded from testing data, as the label
and weightings, respectively for additional iterations of DNN
fine-tuning. Five rounds of adaptations has been applied to
maximize the WER reduction though it normally converges
after just two rounds of adaptations.

3. EXPERIMENTAL EVALUATIONS

This section reports the results achieved by your system. Fol-
lowing methods have been evaluated and compared for both
1-channel, 2-channel and 6-channel tasks, respectively.

1. Baseline refers to the use of provided BeamformIt
front-end and also provided decoding script.

2. Noisy-I2Rb refers to the use of original noisy audio
and our developed decoding script. This is applied for
single channel task only.

3. I2R-fb refers to single system using our proposed
front-end and back-end processing, illustrated in Fig.
1.

4. I2R-fb-2 refers to our improved version combined two
different enhancement setting (α = 0.5 and α = 0.25).

5. MaskBF-I2Rb refers to the BLSTM trained masking
GEV beamforming front-end provided by Paderborn
University (Germany) [9] with our back-end process-
ing

3.1. Overall results

Table 1 reports the experimental evaluation results on both
four data sets from development and testing phases. We can
see that consistent and significant improvements were ob-
tained across all the datasets and tracks, from both back-
end and front-end components. Our best system (I2R-fb-2)
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Table 2. WER (%) per environment for the best system.

Track Envir. Dev Test
real simu real simu

1ch

BUS 8.26 5.56 17.20 7.51
CAF 6.46 9.99 11.82 13.69
PED 3.64 5.58 7.70 10.27
STR 5.94 8.22 8.05 12.03

2ch

BUS 5.65 4.14 12.60 5.64
CAF 4.59 6.71 8.21 9.02
PED 2.73 3.91 4.07 4.89
STR 2.85 3.82 4.78 6.24

6ch

BUS 4.82 2.74 6.56 3.46
CAF 3.01 4.16 4.58 5.30
PED 2.04 2.85 4.07 4.89
STR 2.85 3.82 4.78 6.24

achieved approximately 12%, 8%, and 7% absolute WER
reductions for the real test sets in 1-channel, 2-channel and
6-channel tracks, respectively. The improvements were seen
consistently over datasets. The real test set is the most chal-
lenging set but the results are closing up on the 6-channel
data.

3.2. Back-end contributions

It can be seen that, our system achieved consistent improve-
ments cross all the datasets. Most significant improvements
come from our back-end processing which approximately
10%, 7% and 5% absolute accuracy gains when moving from
baseline to BeamformIt-I2Rb system. Among the back-end
processing components, LSTM LM re-scoring and Semi-
supervised DNN adaptation contributes the most.

3.2.1. Data augmentation

The multi-condition training using data augmentation has
proven to be very effective for the noisy ASR tasks. In
our experiments, we noticed nearly 2% additional improve-
ment compared to baseline training script just by using both
6-channel noisy data instead of single noisy in original script.
While it seems redundant in speech content, it may add some
more noise variation into the training which helps in deliver-
ing better models. Another explanation is adding more data
may help in DNN convergence which naturally requires suf-
ficient training data. This may have happened in this case be-
cause the size of data is significantly enlarged using 6-channel
data. But our effort to further improve the training by adding
more simulated data to the training was not successfully.

3.2.2. LSTM language model re-scoring

LSTM seems exclusively suitable for language modelling, as
it could extract temporal dependency from text data while
overcome fundamental vanish gradient problem in RNN

training hence deliver better prediction of text contents. Con-
sistent improvements of 2−3% WER reductions compared to
5-grams LM and 1 − 2% of the same compared to RNN LM
were seen in our experiments, respectively.

3.2.3. Semi-supervised DNN adaptations

Semi-supervised DNN adaptation has repeated its great con-
tributions in our experiments with consistent improvements
from 2 − 4% absolute WER reductions in both 1-channel,
2-channel and 6-channel tracks, respectively. Although the
default 5-round adaptation was applied, in most of cases, the
best results were converged after 1-2 steps.

3.3. Front-end contributions

Compared to provided BeamformIt baseline which stands
as a very good baseline method, our front-end processing
achieved consistent 1−2% absolute WER reductions for both
tracks of 1-channel, 2-channel, and 6-channel, respectively.

3.3.1. Speech enhancement

For the 1-channel tracks, the contribution of improvements
was fully made by the introduced speech enhancement.
Nearly 2% gain in WER reduction was obtained. Note that as
the original speech enhancement did not improve the WER,
the idea of gain modification to control the distortion has
shown to be a practical solution enabling applications of
speech enhancement methods in ASR. Although, a simplest
way of introducing a rational power order is applied in this
work, more sophisticated algorithms to address the introduced
idea could be more useful.

For the 2-channel and 6-channel tracks, as the beam-
forming already enhances the input signals, effect is post-
processing speech enhancement is less significant. Neverthe-
less, consistent improvements of 0.3−0.4% were seen on top
of beamforming method.

The post-processing speech enhancement module also
provides possibility for system combination in front-end level
while keeping acoustic models unchanged. That is more prac-
tical than fusion of totally different front-end and back-end
systems, often seen in the literature. In our experiments, sim-
ply combining two enhancement in lattice improved the per-
formances of the ASR system. Further studies in this direc-
tion are suggested.

3.3.2. Beamforming

Our beamforming method which had been developed and ap-
plied in our previous works [5] is similar to the BeamformIt
as the time-domain WDAS is applied in both cases. How-
ever, the way to calculate beamforming weights are different:
BeamfromIt uses only cross-correlation coefficients while we
use estimated SNR measurements on top of coherence mea-
surements. The SNR estimation is also used in our approach
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for the channel selection. Our method uses slower updating
windows. Finally, our algorithm is totally real-time while the
BeamformIt requires batch processing. In CHiME-4 datasets,
our beamforming achieved about 0.6 − 1% improvement in
absolute WER reduction for 2-channel, and 6-channel tracks,
respectively.

We also compared our front-end method to the BLSTM
trained masking GEV beamforming provided by Paderborn
University (Germany)[8]. This method uses a parallel
noisy/clean training data to train a BLSTM network to get
the time-frequency mask before applying it into GEV beam-
forming which is a spatial filter in frequency domain. The
masking-GEV BF achieved great results by other participants
and also got the best result in our experiments when combin-
ing with our back-end processing. It achieved amazing 3.75%
WER on real test set with our back-end and is superior to our
front-end. However, this method requires training data which
is matching to testing in CHiME-4 and this is unknown how
it would perform in totally unknown environments. Further
investigations are required to confirm its practical value.

3.4. Performances over noise conditions

Breakdown of the best performed system on real test set, per
each environment condition is shown in Table 2. We can see
that, excepting the bus conditions, the results from each track
are quite clustered over four datasets. That means that the
simulation could be used to predict and improve the devel-
opments for the real conditions. That is a very good finding
for the industrial developments of far-field noisy ASR appli-
cations. For the bus condition, our system underperformed
in the real test set compared to the rest of conditions. Note
that the same things were not observed on the masking GEV
method which deliver similar results for all the conditions.
Further analyses should be carried out to find out the reasons
of that.

4. CONCLUSIONS

This paper reports developments and evaluation results of
I2R system for CHiME-4 challenge. We achieved consis-
tent improvements compared to provided baseline across both
tracks and datasets, in both front-end and back-end process-
ing. More significant improvement achieved in back-end
processing with LSTM language modelling for re-scoring
and semi-supervised DNN adaptation. Consistent improve-
ments were also obtained in front-end processing with co-
herence and SNR joint analytic based WDAS beamform-
ing and distortion-controlled speech enhancement as a post-
processing filter. The proposed front-end is a real-time pro-
cessing method.
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Abstract

The MLLP CHiME-4 system is presented in this paper. It
has been built using the transLectures-UPV toolkit (TLK) de-
veloped by the MLLP research group which makes use of state-
of-the-art automatic speech recognition techniques. Our best
system built for the CHiME-4 challenge consists on the com-
bination of two different sub-systems in order to deal with the
variety of acoustic conditions. Each sub-system in turn, follows
a hybrid approach with different acoustic models, such as Deep
Neural Networks or BLSTM Networks.

1. Introduction

The CHiME Speech Separation and Recognition Challenge [1]
encourage participants to develop innovative ASR approaches
capable of dealing with challenging noisy environments that
rely in speech processing, signal separation or machine learn-
ing. It is based on the Wall Street Journal corpus sentences,
spoken by talkers located in real noisy environments, such as
in a street junction, on the bus, or in a pedestrian area. All the
audios have been recorded using a common 6-channel tablet
microphone array.

In previous years, the challenge consisted of obtaining the
best possible transcription from the 6 channels simultaneously,
but given the successful results achieved, this year the challenge
proposes two more tracks: 1-channel and 2-channels tracks.
Each track only differs in the number of available channels for
testing. Thus, the 6-channels track is the easiest since more fa-
vorable audio enhancement techniques can be applied. In the
case of the 1-channel and 2-channels tracks, the audio enhance-
ment techniques cannot exploit channel information at all which
makes this tasks harder to deal with.

The MLLP CHiME-4 system has been developed focus-
ing on the acoustic modeling aspect. Specifically, two differ-
ent acoustic models have been trained following the hybrid ap-
proach. On the one hand, a Context-Dependent Deep Neural
Network Hidden Markov Model (CD-DNN-HMM) and on the
other hand, a Bidirectional Long Short Term Memory Neural
Network (BLSTM). Both acoustic models will be trained on
the same data and their output combined. From the proposed
three tracks, this global back-end system have been tested in
the 1-channel and 2-channel tracks.

The rest of this work is divided as follows. Section 2 de-
scribes the ASR toolkit used for the experiments. In Section 3
the proposed system is described and the conclusions are given
in section 5.

2. The TransLectures-UPV Toolkit
The MLLP CHiME-4 system has been developed using the
transLectures-UPV Toolkit (TLK) [2]. TLK comprises a set of
tools for audio processing, feature extraction, HMM and DNN
training and decoding. The main latest features added to the
toolkit are the following:

• Multilingual and Convolutional NNs.

• Different DNN speaker adaptation techniques: output-
feature discriminant linear regression (oDLR) [3] or
Kullback-Leibler Divergence based [4].

• DNN sequence discriminative training based on Maxi-
mum Mutual Information (MMI).

• Online decoding.

• Gammatone feature extraction.

TLK has demonstrated to provide competitive results in
challenging and well-known tasks. In [5] the TLK-based sys-
tem dealt with TED video lectures, and in [6] the TLK system
provided good results in the LibriSpeech [7] corpus.

3. Proposed System
The system proposed by the MLLP group is based on the TLK
toolkit. It is composed of two transcription sub-systems that are
combined following a recognizer output voting error reduction
(ROVER). Each of those sub-systems are based on the HMM-
NN hybrid approach. The only difference is that for the first
sub-system a classical DNN is used whereas for the second sub-
system a BLSTM NN is employed.

Each of those sub-systems perform a three step recognition
process as can be observed in Fig. 1. The first and second steps
are shown in the upper box. Regarding the first step, it is shared
between both sub-systems, cepstral mean and variance normal-
ization (CMVN) is applied and the decoding is performed using
a standard DNN which provides the best possible transcription
and a better feature-space Maximum Likelihood Linear Regres-
sion (fMLLR) transform. For the second step, each sub-system
makes use of their own acoustic model (DNN or BLSTM) tak-
ing as input the transformed fMLLR features. The output of
this system is used to perform a final third-pass recognition
(the lower box of Fig. 1). During this step, an unsupervised
speaker adaptation technique is applied to both, the DNN and
the BLSTM. Specifically, the technique used in this work con-
sisted of a conservative training approach using a very small
learning rate and early stopping [4]. This means that a very
small learning rate is estimated for a fixed number of epochs as
to minimize the Word Error Rate (WER) and then this learning
rate is used in evaluation. To the best of our knowledge, it is the
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first time that this kind of technique is applied to BLSTM NNs
for acoustic modeling.

TLK allows to perform decoding efficiently with large vo-
cabulary language models applying pruning techniques: beam
search, histogram pruning, word end pruning and look-ahead.
Thus, the provided 5-gram language model has been used to
obtain the recognition outputs along all the steps. Once the last
step is performed, the output lattices are re-scored using also
the provided RNN-based language model.

BLSTM NNs have been built using TensorFlow [8]. With
this purpose, a new feature has been added to TLK for decoding
using TensorFlow-based graphs.

4. Experimental evaluation
The data used for training the acoustic models belong to the
multi-condition training set defined by the CHiME-4 challenge.
In our case, all data from channels 1,3,4,5 and 6 have been used
to train the DNN and the BLSTM sub-systems.

Regarding feature extraction, classical Mel-frequency cep-
stral coefficients (MFCC) were extracted with a Hamming win-
dow of 25 ms. shifted at 10 ms. intervals. This MFCC fea-
tures consisted of 16 MFCCs and their first and second deriva-
tives (48-dimensional feature vectors). The resulting feature
vectors were then normalized by mean and variance at speaker
level. And after that, a single fMLLR transform for each train-
ing speaker was then estimated and applied to perform speaker-
adaptive training (SAT).

In order to train the DNN and BLSTM based acoustic mod-
els, we first trained a basic context dependent triphone HMM
model up to 64 component Gaussian mixtures, after which a
second-pass fMLLR was applied. This model yielded a total of
9079 tied states, estimated following a phonetic decision tree
approach.Both models were built on top of these HMM acous-
tic model. On one hand, the DNN-based acoustic model took as
input the fMLLR features with a window size of 11, 5 hidden
layers, sigmoid activation functions and an output layer of 9079.
It was applied a discriminative pre-training stage and after that,
the network was trained as to obtain the best frame accuracy
on a validation set. On the other hand, the BLSTM acoustic
model was trained with fMLLR input features (without win-
dowing) with 4 hidden layers of 500 units each (both forward
and backward directions) and an output layer of 9079. In this
case, dropout was applied at the output of each cell with a prob-
ability of 0.1, and the Newbob strategy was also applied in order
to reduce the learning rate by 0.8 each time the frame accuracy
improved less than 3% relative on the validation set. Both net-
works were trained by minimizing the cross-entropy loss func-
tion, following the classical stochastic gradient descent algo-
rithm. This two acoustic models were used for the 1-channel
and 2-channels tracks. It is worth mentioning, that in the case
of the 2-channel track, the audio enhancement beamformit was
applied.

In Table 1 the results after each recognition step from the
1 channel track are shown, and similarly in Table 2 the results
from the 2-channels track. As can be observed, the first recog-
nition step is common to both sub-systems and tracks. With
respect to the rest of recognition passes, very similar behav-
iors are observed in both tracks; the DNN performs better in all
recognition steps and the BLSTM obtains a huge gain after the
third step. For the first statement, we argue that the DNN is far
more complex in terms of number of parameters, as we have
trained a 5 hidden layer neural network of 2048 units per layer,
while the BLSTM consist of 4 hidden layers of 500 units each

Feas.Standard
CD-DNN

Recognition Pass #1

Output.
Pass #1

Target
HMM

CMLLR

fMLLR
feas.

fMLLR
CD-NN

Recognition Pass #2

Output.
Pass #2

DNN Adaptation

Adapted
CD-DNN

Recognition Pass #3

Output.
Pass #3

2-pass system

Third adaptation pass

Figure 1: Multi-Pass recognition system with DNN adaptation.
Top: 2-pass decoding using fMLLR features. Bottom: Third
pass DNN adaptation.

Proc. of the 4th Intl. Workshop on Speech Processing in Everyday Environments (CHiME 2016), San Francisco, CA, USA, Sep. 13, 2016

58



Table 1: WER (%) per step for the 1-channel track.

System Rec. Pass Dev Test
real simu real simu

DNN

1 16.03 17.63 24.87 24.47
2 12.66 14.52 19.80 19.92
3 11.93 13.19 18.34 17.73

+RNNLM 10.45 11.98 17.20 16.56

BLSTM

1 16.03 17.63 24.87 24.47
2 15.10 17.18 23.09 23.56
3 13.40 14.46 19.30 18.47

+RNNLM 11.96 12.79 17.78 17.03

Table 2: WER (%) per step for the 2-channels track.

System Rec. Pass Dev Test
real simu real simu

DNN

1 13.83 14.35 21.14 20.80
2 10.39 11.49 16.26 15.75
3 9.60 10.46 14.77 13.71

+RNNLM 8.45 9.29 13.71 12.57

BLSTM

1 13.83 14.35 21.14 20.80
2 12.81 14.22 19.09 19.64
3 11.63 12.67 15.50 14.93

+RNNLM 10.12 11.36 14.31 13.46

one. Regarding the second statement, the huge WER improve-
ment from the BLSTM at the third step comes from the fact that
we are using the best transcription obtained during the previous
step, i. e. the DNN, as to better perform speaker adaptation to
the NN during the third step.

Once the output from both systems has been obtained,
ROVER technique is applied as to combine both transcriptions.
As can be seen in Table 3, the DNN system systematically out-
performs the BLSTM-based. However, the combination of both
systems yields the best result in both tracks. If we take a look
to the real test set, the baseline provided by the organizers for
the 1-channel track yielded 23.70% WER points whereas our
system obtains 16.11%. This represents 32% relative reduc-
tion in WER for the 1-channel track. In the case of the 2-
channels track, the baseline system achieved 16.58% average
WER whereas our system achieves 12.82%. This represents a
22.7% relative reduction in WER for the 2-channel track. These
improvements seems quite competitive, taking into account the
simplicity of our system.

Table 4 summarizes the results obtained by the best sys-
tem per environment. As shown, the most challenging has been
the bus environment in all tracks for the real test set. In fact,
the baseline system achieved 35.8%, while our system 21.61,
which means almost 40% of relative improvement in the 1-
channel track. In the case of the 2-channels track, the improve-
ment is about 37% (from 25.37 to 16.00).

5. Conclusions
In this work we have described the MLLP ASR system devel-
oped for the CHiME-4 challenge built using TLK. The system
is based on the combination of two sub-systems which make
use of different acoustic models: DNNs and BLSTMs. The fi-
nal system obtains 32% and 22.7% relative improvements over
the 1-channel and 2-channels tracks compared to the baseline.
This represents a good enough result taking into account the
simplicity of our approach.

Table 3: Average WER (%) for the tested systems.

Track System Dev Test
real simu real simu

1ch
DNN 10.45 11.98 17.20 16.56

BLSTM 11.96 12.79 17.78 17.03
Combined 9.95 11.13 16.11 15.72

2ch
DNN 8.45 9.29 13.71 12.57

BLSTM 10.12 11.36 14.31 13.46
Combined 7.96 8.93 12.82 12.06

Table 4: WER (%) per environment for the best system.

Track Envir. Dev Test
real simu real simu

1ch

BUS 11.74 9.04 21.61 10.95
CAF 11.18 14.68 18.12 19.57
PED 7.42 9.35 13.25 15.37
STR 9.45 11.46 11.47 16.98

2ch

BUS 8.84 7.73 16.00 8.67
CAF 8.70 11.55 13.78 14.34
PED 6.27 7.45 11.17 11.77
STR 8.02 9.00 10.31 13.47
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Abstract
Beamforming enhances sound components coming from a
direction specified by a steering vector. Some beamforming
methods use the time-frequency masks for the steering vector
estimation. Better masks lead to better beamforming results.
Meanwhile, the beamforming results carry cross-channel
information which make the mask estimation easier. Therefore,
the beamforming and the mask estimation can boost each other,
and can be treated as a “chicken-and-egg” problem. In this
work, we embed the beamforming and the mask estimation into
a deep stacking network architecture as the speech separation
front-end. Together with the state-of-the-art speech recognition
back-end, the proposed method obtains 11.00% and 6.00%
WER for the real test data in the 4th CHiME Challenge 2
channels and 6 channels tracks.

1. Background
This paper introduces the speech separation and recognition
system designed for the 4th CHiME Challenge [1] 2 channels
and 6 channels tracks.

From the review of the last CHiME Challenge, we find
that the success is mostly relative to the time-varying minimum
variance distortionless response (MVDR) beamforming [2].

A beamformer enhances the sound components coming
from a direction which specified by a steering vector. The
accurate steering vector estimation is the key to effective
beamforming. Recently, a beamforming method was proposed
that uses the time-frequency masks to estimate the steering
vector [3], where the masks represent the probabilities
of background noise dominating the corresponding time-
frequency points. In this method, the accurate mask estimation
is the key to effective steering vector estimation. Better mask
estimations lead to better steering vector estimations and
better beamforming results. Mask estimation is helpful for
the beamforming. Beamforming is also helpful for the mask
estimation. The beamforming results are built from multi-
channel microphone array, so that they contain cross-channel
information which is useful for the mask estimation of a certain
single channel.

Because the beamforming and the mask estimation can
boost each other, they can be treated as a “chicken-and-egg”
problem. In [4], the authors proposed using the deep stacking
network (DSN) architecture to solve the “chicken-and-egg”
problem. In DSN, each basic module is used to process a
“chicken-and-egg” step. DSN stacks these basic processing
modules to build forward deep architectures. With the
increasing of the number of stacked modules, the system’s
performance is improving. We consider the mask estimation
and beamforming as a “chicken-and-egg” step, process them
with a basic module, and embed them into a DSN to form the
speech separation front-end. Specifically, we first obtain the

estimated masks from a basic module. Then these estimated
masks are used to perform the beamforming. Next these
beamforming results are used to obtain new estimated masks
by another basic module. Then these new estimated masks are
used for beamforming, estimating new masks, and so on.

2. Contributions
2.1. Mask Estimation

Before getting any beamforming results, we need a initial mask
estimation. We use deep neural network (DNN) as a basic
module to estimate the ideal ratio mask (IRM):

IRM =

√
|STFT {speech}|2

|STFT {speech}|2 + |STFT {noise}|2 (1)

where |STFT {speech}| and |STFT {noise}| is the short time
Fourier transform (STFT) features of the premixed speech
and noise. We obtain the STFT features by applying 320-
point Fourier transform on each hamming window frame which
length of 20-ms and shift with 10-ms, and using the absolute
value of the first 161-D Fourier coefficients.

The DNN contains three 1024-node ReLU hidden layers,
and the output transform is sigmoid. The inputs of the DNN
is the STFT features of the mixtures. Before feeding into
the DNN, the STFT features are compressed by a cubic root
operation. The input features also contain a context window of
previous 2 and subsequent 2 frames. Therefore, the input is a
161× 5 = 805 dimensional vector.

The DNN is trained with all of the simulated training data
with early stop controlled by a 10% left out develop set.

2.2. Beamforming

After obtaining the estimated mask, we get the beamforming
results using the the time-frequency mask based MVDR
beamforming method [3], where the masks represent
the probabilities of background noise dominating the
corresponding time-frequency points. We obtain this mask
base on the estimated IRM:

mask = 1−max{IRM1, . . . , IRMN} (2)

where IRMi is estimated IRM in channel i. N is number of
channels. For 2 channels track, N = 2, and for 6 channels
track, N ≤ 5, where we drop the backward channel 2, and
remove failed channels with the scripts offered by the official
baseline.

2.3. Mask Estimation with Beamforming

After getting the beamforming results, we can use them to
improve the mask estimation. In this step we use another DNN
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basic module to estimate the IRM. The DNN’s structure is
same as the one in Sect. 2.1 except the inputs. The inputs
of the DNN contain three parts: the estimated IRM from the
last DNN module, the STFT features of the mixtures, and
the STFT features of the corresponding beamforming results.
These beamforming results may contribute to the improvement
of the mask estimation. Before feeding into the DNN, all of
the STFT features are compressed by a cubic root operation.
All of the STFT features are extended with its previous and
subsequent 1 frames as context. Therefore, the input is a
161 + 161× 3 + 161× 3 = 1127 dimensional vector.

We use the same DNN for the 2 channels and 6 channels
tracks. The beamforming results used for training are generated
as follows. We first divide the simulated training utterances
randomly into two sets whose size are almost the same. One
part for the 6 channels track, and another for the 2 channels
track. In the one for 2 channels track, we further pick 2 channels
randomly for each utterance, and remove others. Then the
beamforming results are generated from these two sets.

The DNN is trained with all of the simulated training data
with early stop controlled by a 10% left out develop set.

2.4. Combining Mask Estimation and Beamforming

We perform the mask estimation and beamforming alternantly
and iteratively by embedding them into a DSN, where we stack
basic modules one by one, and as illustrated in Fig. 1. We first
obtain the initial estimated IRM by the module described in Sec.
2.1. Then we get the beamforming results as described in Sec.
2.2. Next the beamforming results are used for updating the
estimated IRM by the module described in Sec. 2.3. Then these
updated estimated masks are used for beamforming, estimating
new masks, and so on.

 

Mask-based 

Beamforming 

Mask Estimation  

with Beamforming 

Estimated  

Mask 

Estimated 

Mask 

Beamforming  

Output 

Estimated 

Mask 

Raw 

Features 

Beamforming  
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(a) Basic Module (b) Proposed Stacking Architecture 

Figure 1: Schematic diagram of the proposed system.

2.5. ASR Back-end

We can further improve the performance of ASR systems by
increasing the amount of training data, so that we use scripts
offered by the official baseline to train a new ASR back-end
with all of the 6 channels training data.

3. Experimental evaluation
In the official baseline, four types of ASR back-ends are
involved, which are GMM-based (denoted as “GMM”),
DNN-based (denoted as “DNN”), DNN-based with a larger

language model (denoted as “5kng”) and DNN-based with
RNN-based language model (denoted as “RNNML”). We
report the results using all of these four ASR back-ends,
and compare the proposed system with the official baseline
front-end “BeamformIt” system. The proposed front-end is
named as “model-N”, where N indicates the number of the
stacked modules. The average WER of all systems with the
baseline ASR back-end and with the new ASR back-end in
Tab. 1 and Tab. 3. And the detail WER of the best system are
given for each noisy environment in Tab. 2 and Tab. 4.

Compared the Tab. 3 with Tab. 1, we can see that the
new ASR back-end can generate better ASR results than the
baseline ASR back-end. From Tab. 1, compared with the 6
channel the model-1 system with RNNML ASR back-end and
the one reported in [3], the WER in the real test data is 7.44
and 8.86, respectively. It indicates that the DNN is powerful
than the complex Gaussian mixture model (CGMM) used in
[3] for mask estimation. And compared among the proposed
system with different numbers of the stacked modules, we find
the performance of the system is improving with the increasing
of the number of stacked modules. In addition, the single
channel signal and the corresponding beamforming result are
often mismatch in the time axis. The experimental results show
that the mask estimation can benefit from the beamforming
results although the inputs do not match strictly.

4. Conclusion
Because mask estimation and beamforming can boost each
others, we treat them as a “chicken-and-egg” problem,
and iterate them alternatingly in a DSN. The experimental
results show that the proposed method can improve the ASR
performance in noisy environment, and the performance of
the system is improving with the increasing of the number of
stacked modules. The proposed method obtains a comparable
performance without any advanced language model or
speaker adaptation which are the primary weapons of other
participators.
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Table 1: Average WER (%) for the tested systems with baseline ASR
back-end.

Track System Dev Test
real simu real simu

2ch

GMM

BeamformIt 16.23 19.14 29.05 27.56
model-1 14.53 16.25 24.49 19.50
model-2 14.47 15.97 23.84 19.10
model-3 14.61 15.83 24.47 19.73

DNN

BeamformIt 10.90 12.36 20.44 19.03
model-1 9.29 10.03 17.39 12.86
model-2 9.08 9.89 16.58 12.91
model-3 9.04 9.91 16.80 12.72

5kng

BeamformIt 9.63 10.72 18.08 16.88
model-1 7.77 8.65 15.07 10.68
model-2 7.71 8.53 14.27 10.62
model-3 7.74 8.63 14.38 10.71

RNNML

BeamformIt 8.23 9.49 16.58 15.34
model-1 6.74 7.66 13.54 9.46
model-2 6.57 7.57 12.92 9.55
model-3 6.57 7.57 12.75 9.37

6ch

GMM

BeamformIt 13.04 14.30 21.83 21.29
model-1 9.64 10.10 15.08 11.81
model-2 9.55 10.12 14.53 11.99
model-3 9.48 10.17 14.48 11.87

DNN

BeamformIt 8.14 9.07 15.04 14.19
model-1 6.25 5.96 10.22 7.62
model-2 6.10 6.08 10.07 7.87
model-3 6.01 6.20 10.10 8.02

5kng

BeamformIt 6.85 7.74 13.18 12.33
model-1 4.91 5.09 8.69 6.17
model-2 4.82 5.07 8.52 6.29
model-3 4.91 5.03 8.47 6.60

RNNML

BeamformIt 5.75 6.77 11.47 10.91
model-1 4.12 4.20 7.44 5.44
model-2 3.99 4.41 7.17 5.32
model-3 4.03 4.42 7.15 5.58

Table 2: WER (%) per environment for the best system with baseline
ASR back-end.

Track Envir. Dev Test
real simu real simu

2ch

BUS 8.17 6.06 20.15 7.08
CAF 6.30 10.16 12.07 10.38
PED 4.60 6.39 9.38 9.54
STR 7.20 7.67 9.39 10.46

6ch

BUS 5.21 3.89 11.57 4.54
CAF 3.55 5.06 5.42 5.36
PED 3.38 3.91 5.64 5.32
STR 4.00 4.84 5.96 7.10

Table 3: Average WER (%) for the tested systems with new ASR back-
end.

Track System Dev Test
real simu real simu

2ch

GMM

BeamformIt 15.21 16.86 26.23 25.80
model-1 13.17 14.76 22.06 18.14
model-2 12.92 14.46 21.43 17.78
model-3 12.94 14.45 21.50 17.78

DNN

BeamformIt 9.52 10.58 17.59 16.94
model-1 7.99 8.37 14.79 11.02
model-2 7.79 8.36 14.32 10.84
model-3 7.83 8.26 14.51 11.09

5kng

BeamformIt 7.97 8.95 15.31 14.57
model-1 6.65 6.99 12.86 9.17
model-2 6.47 7.09 12.37 8.95
model-3 6.37 7.13 12.36 8.89

RNNML

BeamformIt 7.01 8.02 13.70 13.28
model-1 5.58 6.25 11.47 7.99
model-2 5.48 6.26 11.02 7.80
model-3 5.56 6.32 11.00 7.80

6ch

GMM

BeamformIt 12.25 12.97 19.99 19.53
model-1 9.13 9.42 14.13 10.91
model-2 9.01 9.51 13.47 11.33
model-3 8.97 9.52 13.62 11.29

DNN

BeamformIt 7.30 8.27 13.08 12.79
model-1 5.53 5.30 8.90 6.76
model-2 5.45 5.21 8.65 7.17
model-3 5.44 5.27 8.66 7.09

5kng

BeamformIt 6.04 6.71 11.23 10.95
model-1 4.44 4.17 7.38 5.24
model-2 4.25 4.28 7.08 5.39
model-3 4.28 4.33 6.92 5.59

RNNML

BeamformIt 5.07 6.08 9.88 9.47
model-1 3.74 3.56 6.23 4.40
model-2 3.62 3.65 6.05 4.58
model-3 3.62 3.66 6.00 4.83

Table 4: WER (%) per environment for the best system with new ASR
back-end..

Track Envir. Dev Test
real simu real simu

2ch

BUS 7.11 5.31 17.22 5.85
CAF 5.34 8.48 10.14 9.19
PED 4.07 5.13 8.05 7.92
STR 5.71 6.37 8.61 8.24

6ch

BUS 4.59 3.32 9.46 3.88
CAF 3.08 4.23 4.15 4.87
PED 3.11 3.17 4.93 4.74
STR 3.70 3.92 5.47 5.81
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Abstract 
This paper describes CRIM's contribution to the 4-th CHiME 
speech separation and recognition challenge. We took part in 
all the three tracks of the CHiME-4 challenge. Since the 
focus of this challenge was to address the more difficult 1 
channel and 2 channel tasks, we focussed on algorithms that 
will have the largest impact on these two tasks. We focussed 
on increasing the training data and on using proven robust 
features from previous challenges so that they can favorably 
impact the word error rates (WER) for 1 channel and 2 
channel tasks. We enhanced the training data by using the 
audio from all the microphones (i.e., microphones 1-6) 
instead of just microphone 5. We also added beamformed 
data from mic 1, 3-6. We band-limited the above training 
data to 4 kHz bandwidth and added these to the original 
training set, thereby doubling the training data. We tried 
many different robust feature parameters to see which ones 
actually gave lower WER than the Mel-frequency cepstral 
coefficients. In all our sub-systems we used the baseline 
language model and the backend provided by the organizers.  
Three different robust features actually gave lower WER for 
the 1 channel task. Combining the recognition outputs of 6 or 
7 different features gave the optimal reduction in WER for 
the 1 channel, 2 channel and 6 channel tasks. Among all the 
features used in this task the Regularized MVDR Cepstral 
Coefficients (RMCC) features performed the best. 
 
Index Terms: 4th CHiME challenge, speech recognition, 
robust features, RMCC, ROVER, DNN. 

1. Introduction 
Automatic speech recognition is a key component in hands-
free man-machine interaction. State-of-the-art speech 
recognition systems are based on statistical acoustic models 
which are trained in a clean and controlled environment. In 
recent years the use of deep neural network acoustic model 
and large amount of training data has helped to improve the 
performance of automatic speech recognition significantly. In 
many applications, speech recognition systems are deployed 
in real world scenarios (e.g. cafe, bus station, street, and 
pedestrian area) where the speech signal is severely distorted 
by background noise and reverberation. Consequently, the 
performance of speech recognition systems trained on clean 
data degrades severely in noisy and reverberant environments 
because of the mismatch between the training and the test 
conditions. Therefore, robust speech recognition in real world 
scenarios has attracted increasing attention in ASR research 
and development. This attention is due to the widespread use 
of mobile devices with speech enabled personal assistants. 
The fourth edition of CHiME (CHiME-4) challenge, 
designed to be close to a real world application, provides a 

common framework for the evaluation and comparison of 
various approaches for the noise robustness of speech 
recognition system. Although CHiME-4 challenge revisits 
the corpora originally collected for CHiME-3, the level of 
difficulty has been increased by imposing constraint on the 
number of microphones available for testing. Depending on 
the number of microphones available for testing CHiME-4 
offers three tracks: 1 channel, 2 channel and 6 channel tracks. 
CHiME-4 corpus is comprised of Wall Street Journal corpus 
sentences spoken by speakers situated in challenging noisy 
environments (such as bus, street junction, cafe, and 
pedestrian area) recorded using a 6-channel tablet based 
microphone array [1]. A Kaldi-based [2] baseline speech 
recognizer is provided by the organizers which uses sequence 
trained deep neural network (DNN) acoustic models and 
language model (LM) rescoring based on a linear 
combination of 5-gram LM and RNNLM [3]. 
In this work we present CRIM's system designed for CHiME-
4 challenge tasks and report evaluation results. We took part 
in all the three tracks of the 4-th CHiME challenge: 1 channel 
(1ch), 2 channel (2ch), and 6 channel (6ch) tracks. In our 
contribution we mainly focussed on the robust features 
extraction and combination of systems based on different 
frontends using ROVER. In order to reduce the word error 
rate (WER), we tried many robust features that have 
performed better in other evaluations of noisy corpus such as 
the REVERB challenge [4] / AURORA-4 corpus [5], and 
also features that showed good performance in a speaker 
recognition task. In addition to the conventional Mel-
frequency cepstral coefficients (MFCC) features, we tried the 
following robust features for speech recognition for CHiME-
4 challenge tasks:  

 The regularized MVDR spectrum-based cepstral 
coefficients (RMCC) [6, 7]. 

 Gabor filter-bank feature (GBFB) [8]. 
  The ETSI - advanced front end (ETSI-AFE) [9]. 
  Infinite impulse response – constant Q transform 

(IIR-CQT) [10] - based cepstral coefficients 
(ICQC).  

 The IIR-CQT–based log filterbank (ICQF) features 
[11].  

For the 2ch and 6ch tasks, all our systems employ 
beamformed speech signals supplied by a weighted delay-
and-sum beamforming technique. In two systems we apply 
beamforming after enhancing the signals using weighted 
prediction error (WPE)-based dereverberation [12] and 
Consistent Wiener filtering (CWF)-based audio source 
separation [13] techniques. We denote those two systems as 
the WPE-MFCC, CWF-MFCC, respectively. The only 
difference between the CWF-MFCC and CWF2-MFCC 
systems is in the noise spectrum estimation while performing 
audio source separation using CWF. CWF-MFCC uses a 
MMSE-based noise spectrum estimator whereas CWF2-
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MFCC utilizes regional statistics-based noise spectrum 
estimator. The motivation behind using the ICQC and ICQF 
features is that these features provide good performance in 
speaker verification and spoofing detection tasks [11]. As 
mentioned in the abstract, using all the training data 
(channels 1-6) gave significantly lower WER than using just 
the 5 channels (1, 3-6). Also, band-limiting the training data 
and adding it to the training data [14] had only a small effect 
on the WER of the development set. Among all the frontends 
considered for the CHiME-4 tasks, the Regularized MVDR 
Cepstral Coefficients (RMCC) features yielded the lowest 
WER. Combining results of 6 or 7 different feature-based 
systems with ROVER (Recognizer Output Voting Error 
Reduction) [15] gave the lowest WER for all the tasks. 

2. CHiME-4 Tasks 
The CHiME-4 challenge revisits the CHiME-3 corpora with 
increased level of difficulty by imposing a constraint on the 
number of microphones available for testing. CHiME-4 tasks 
consist of three tracks: 1 channel (1ch), 2 channel (2ch) and 6 
channel (6ch) tracks. The 6ch track is based on a subset of 
the channels of CHiME-3 data. CHiME-4 challenge is 
designed to be close to the real world applications having real 
acoustic mix, i.e., speakers speaking in challenging noisy 
environments such as bus, street junction, cafe, and 
pedestrian area. 
 

3. Overview of CRIM System 
In this section we provide an overview of the CRIM system 
as presented in fig. 1, for the 1ch, 2ch and 6ch tasks of 
CHiME-4 challenge. Our main contributions include: 
 

i. We band-limit the training data to 4 kHz bandwidth 
and include these to the original training set, 
thereby doubling the training data. 

ii. For multi-channel tasks, as a pre-processing step, 
we apply beamforming to enhance the target 
speech. This step is same as the baseline system 
provided by the organizer. In two of our systems 
we additionally enhance the signals using weighted 
prediction error (WPE)-based dereverberation [12] 
and Consistent Wiener filtering (CWF)-based audio 
source separation [13] techniques and then apply 
beamforming. 

iii. We extract robust features by employing RMCC 
feature extractor.  

iv. We combine different robust-feature-based systems 
using ROVER. 

 

3.1. Pre-processing 
As a pre-processing for 2ch and 6ch tasks we enhance the 
target speech by using a weighted delay and sum 
beamforming technique. After selecting a reference signal 
based on the pair-wise cross-correlation, the time delay 
between a microphone and the reference is estimated using 
the GCC-PHAT algorithm. Weights for the m-th microphone 
are estimated from the cross-correlations of the m-th 
microphone with other microphones. Finally beamformed 
signal ( )ŷ t is obtained using the estimated delays and 
microphone weights as 

                          ( ) ( )
1

ˆ ,
M

m m m
m

y t w y t t
=

= −∑                        (1) 

where m is the microphone index, M is the total number of 
microphones, mw  and mτ are the estimated weights and time 

delays, respectively and ( )my t is the m-th microphone 
signal. 
Among our systems, one system utilizes weighted prediction 
error (WPE)-based dereverberation to enhance the 1ch, 2ch 
and 6ch signals. The WPE does dereverberation using a 
linear time invariant filter and produces M-channel outputs 
from M-channel inputs. From the M-channel dereverberated 
signals (M > 1) beamformed signal is obtained using a 
weighted delay and sum beamforming technique. 
Another one of our systems employs a consistent Wiener 
filtering (CWF)-based audio source separation to enhance the 
signals. The CWF refers to a time-frequency masking which 
takes into account the consistency of spectrograms for the 
computation of true optimal solution to the Wiener filtering 
problem. In this framework, to estimate noise spectrum we 
used either a MMSE-based noise spectrum estimator or a 
regional statistics-based noise spectrum estimator. 

WPE/CWF
1-, 2- and 6-

channel signals

Weighted Delay 
and Sum 

beamforming 

MFCC RMCC ETSI-AFE ICQC ICQF GBFB

Feature extraction

DNN
Acoustic 

model

DNN
Acoustic 

model

System combination using 
ROVER

DNN
Acoustic 

model

DNN
Acoustic 

model

DNN
Acoustic 

model

DNN
Acoustic 

model

ASR Decoding

Results

Pre-processing

Fig. 1. Schematic diagram of CRIM’s system for the 4-th 
CHiME challenge. Beamforming is applied to the multi-
channel signals only. Only two of our systems use weighted 
prediction error (WPE)-based dereverberation and consistent 
Wiener filtering (CWF)-based audio source separation 
(shown with dotted rectangle). 
 

3.2. Extraction of robust features 
In this section we describe the robust features used for 
CHiME-4 challenge tasks. 

3.2.1. The ETSI-advanced front-end (ETSI-AFE) 

The ETSI-advanced frontend (ETSI-AFE) [9] employs a 
two-stage Wiener filter and blind equalization technique, 
which is based on the comparison to a flat spectrum and the 
application of the LMS (Least Mean Squares) algorithm, for 
improving robustness of ASR systems against additive noise 
distortions and channel effects.  

Proc. of the 4th Intl. Workshop on Speech Processing in Everyday Environments (CHiME 2016), San Francisco, CA, USA, Sep. 13, 2016

64



3.2.2. Gabor filterbank features (GBFB) 

The Gabor filterbank (GBFB) features [8] are extracted from 
the log Mel-filterbank spectrum using auditory motivated 
spectral-temporal 2D filters. These filters were tuned to 
specific spectro-temporal modulation patterns that occur in 
speech signals and motivated by the fact that some neurons in 
the primary auditory cortex of mammals were found to be 
tuned to very similar spectro-temporal modulation patterns.  

3.2.3. IIR-Constant Q transform-based features 

The ICQC and ICQF feature representations are derived from 
the infinite impulse response - constant Q transform by 
recursively filtering the multi-resolution fast Fourier 
transform of the signal. We refer to these features by the 
acronym ICQC for Infinite impulse response Constant Q 
transform Cepstrum and ICQF for Infinite impulse response 
Constant Q transform log filterbank features. In order to 
compute ICQC features we first estimate the IIR-CQT 
spectra by designing an infinite impulse response (IIR) 
filterbank that has constant Q behavior. The location of the 
poles of the IIR filterbank vary for each frequency bin along 
the real axis in order to make wider window width for lower 
frequency and narrower for higher frequency. Then a linear 
time variant (LTV) IIR filter is devised based on the poles of 
the filterbank. The filter is applied in the forward direction 
followed by reverse filtering to obtain the IIR-CQT spectrum 
[10]. The ICQC features, as shown in fig. 3, are obtained by 
applying discrete cosine transform to the estimated spectrum 
following logarithmic compression [11].  

Pre-
emphasis Framing

ICQF

Speech
signal

Compute
IIR-CQT
spectrum

Log

ICQC DCT

Fig. 2. The ICQC and ICQF feature extraction from 
the IIR-CQT spectra. Here Q = 13 was chosen. 

3.2.4. Regularized MVDR cepstral coefficients 

The conventional Mel-frequency cepstral coefficients 
(MFCC) are usually computed from a DFT-based spectral 
estimate. When regularized MVDR (RMVDR) spectrum 
estimator is used to compute the cepstral features instead of 
the DFT-based spectrum estimator we denote the features as 
the regularized MVDR cepstral coefficients (RMCC). RMCC 
was introduced in [6, 7] and evaluated on the AURORA-4 
corpus under both clean and multistyle training modes. Here 
we use RMCC to extract robust features for the CHiMe-4 
challenge tasks.  
 
The first step in computing RMCC is to estimate RMVDR 
spectra. Similar to the MVDR spectrum estimator, the p-th 
order regularized MVDR spectral estimate can be 
parametrically written as 

                    ( )
( ) 2

1
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∑
,                  (2) 

where the parameter ( )r kµ of the regularized MVDR 
method can be obtained from a non-iterative computation 
using the regularized LP (RLP) coefficients r

qa and the 

prediction error variance r
eσ as: 
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The regularized predictor coefficients r
qa are computed by 

adding a penalty measure ( )uaψ , which is a function of the 

unknown predictor coefficients ua , to the objective function 
of the LP method and therefore, minimizing the modified 
objective function of the following form [1, 2]   

               ( ) ( ) ( )
2

1

p
u

q
n q

y n a y n q aλy
=
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+ − + 

 
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Where ( )s n  is the current speech sample, regularization 

constant 0λ >  controls the smoothness of the all-pole 
spectral envelope. RLP method helps to penalize the rapid 
changes in all-pole spectral envelope and therefore, produces 
a smooth spectral estimate keeping the formant positions 
unaffected [6]. The optimal values chosen for the model 
order p and regularization constant λ  are 100 & 10-7, 
respectively [6, 7]. 
After estimating RMVDR spectrum, RMCC features are 
obtained by integrating Mel-scale filterbank and taking 
discrete cosine transform following logarithmic compression. 
Mean and variance normalization is used for feature 
normalization. 
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Fig. 3. Regularized MVDR cepstral coefficients 
(RMCC) feature extraction. 

3.3. Backend 
The backend of our system is very similar to the default 
system provided by the challenge organizers. The language 
models (LM) are the same: the search language model, the 5-
gram rescoring LM and the RNNLM are the same. The 
training process is the same for the features with small 
dimension. For features with large dimension (like GBFB 
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and ICQF features), the output states are the same as for the 
MFCC features, but the input to the DNN corresponds to the 
feature dimension (with +/- 5 frames context). For features 
with smaller dimension, the initial alignment of the training 
set with MFCC features is used to train the GMM-HMM sat 
models for the new features. As mentioned before, the 
training data consists of all the training data from channels 1-
6 and also includes the beamformed training data from 
channels 1, 3-6. The data is doubled by band-limiting each 
training audio file to 4 kHz. The training process is the same 
as provided by the organizers. We discriminatively train one 
DNN for each feature. For each track, we generate one ctm 
file for each feature and each set (i.e., development and 
evaluation). These ctm files are generated after rescoring 
with 5-gram LM followed by RNNLM rescoring.  

3.4. Combining systems using ROVER 
In this step we combine the ctm files of 6 or 7 systems, 
obtained in the previous step, using ROVER. As mentioned 
before, some of the features gave significantly lower WER 
for the evaluation set for some of the tracks. Combining the 
results from six or seven different features-based systems 
reduced the WER even further. 
ROVER [15] reduces word error rates for automatic speech 
recognition systems by exploiting differences in the nature of 
the errors made by multiple speech recognition systems. It 
works in two steps:  
 

 The outputs of several speech recognition systems 
are first aligned and a single word transcription 
network (WTN) is built.  

 The best scoring word (with the highest number of 
votes) at each node is selected. The decision can 
also incorporate word confidence scores if these are 
available for all systems [15]. 

4. Experiments and Evaluation Results 
 
Word error rates (WER) for each feature parameter and for 
each task are shown in Table 1. As mentioned before, for 
each feature parameter, we discriminatively train one DNN 
as provided by the default scripts. The same DNN is used to 
compute WER for all the tasks. For 1 channel task, there is 
no beamforming. For 2 channel and 6 channel tasks, the dev 
and eval sets go through appropriate beamforming using the 
beamforming software supplied by the organizers. In Table 1, 
the first row in each task corresponds to the default setup 
provided by the organizers. We ran the provided scripts and 
the results correspond to those scripts. The first row only uses 
channel 5 training data. The 2nd row for each task uses 
training data from channels 1 through 6 (channel 0 is not 
used). We also use the training data after beamforming using 
channels 1, 3, 4, 5, 6. Channel 2 was not used in this 
beamforming. 
 
From Table 1 we can see that for 1ch task, the RMCC, GBFB 
and ETS-AFE features (rows 3-5) gave lower WER for the 
real test set than using the MFCC features (row 2). For 2 
channel and 6 channel cases, only RMCC feature gave better 
results than the MFCC features. We combined results from 
different features using ROVER. We combined them in the 
WER order. 

Table 1 : Average WER for the tested systems. 

Track System 
Dev Test 

real simu real simu 

1ch 

MFCC (5ch) 
MFCC 
RMCC 
GBFB 

ETSI-AFE 
ICQF 

WPE-MFCC 
ICQC 

CWF-MFCC 
CWF2-MFCC 

ROVER 

11.46 
9.46 
8.46 
9.33 

10.02 
11.03 
14.02 
13.62 
16.39 
17.40 
6.79 

13.10 
10.65 
11.24 
12.74 
12.54 
15.93 
15.78 
19.03 
18.39 
19.65 
9.27 

23.08 
18.87 
15.16 
17.61 
17.65 
22.12 
28.44 
26.06 
31.09 
32.47 
12.70 

20.88 
16.43 
15.83 
18.03 
17.01 
22.28 
22.87 
27.62 
23.70 
25.46 
13.72 

2ch 

MFCC (5ch) 
MFCC 
RMCC 
GBFB 

ETSI-AFE 
ICQF 

WPE-MFCC 
ICQC 

CWF-MFCC 
CWF2-MFCC 

ROVER 

8.39 
6.72 
6.22 
7.29 
8.96 
8.48 

10.11 
10.39 
13.40 
12.79 
5.13 

9.44 
7.75 
8.29 
9.63 

10.95 
12.28 
11.11 
14.16 
13.82 
14.31 
6.69 

16.70 
13.77 
11.54 
13.91 
16.14 
18.10 
20.18 
21.17 
23.67 
25.81 
9.97 

15.16 
12.00 
11.74 
14.52 
14.52 
18.13 
17.47 
22.39 
19.89 
21.23 
10.34 

6ch 

MFCC (5ch) 
MFCC 
RMCC 
GBFB 

ETSI-AFE 
ICQF 

WPE-MFCC 
ICQC 

CWF-MFCC 
CWF2-MFCC 

ROVER 

6.08 
4.86 
4.86 
5.96 
7.09 
6.74 
6.75 
8.19 
8.13 
9.20 
4.00 

6.82 
5.49 
5.98 
7.40 
8.67 
9.41 
7.82 

10.16 
9.94 

11.78 
5.07 

11.50 
9.97 
8.65 

10.40 
12.42 
13.31 
13.54 
14.16 
17.09 
18.71 
7.23 

10.73 
8.75 
8.71 

10.70 
11.30 
13.72 
13.27 
16.00 
15.56 
16.47 
7.53 

 

Table 2 : WER per environment for the best system. 

Track Envir. Dev Test 
Real simu real simu 

1ch 

BUS 
CAF 
PED 
STR 

8.54 
7.51 
4.68 
6.43 

7.95 
12.37 
7.04 
9.71 

18.75 
13.80 
9.55 
8.70 

9.73 
16.59 
13.73 
14.85 

2ch 

BUS 
CAF 
PED 
STR 

6.40 
5.24 
3.78 
5.10 

5.66 
8.63 
5.03 
7.42 

14.21 
9.90 
8.20 
7.58 

7.28 
12.05 
10.80 
11.23 

6ch 

BUS 
CAF 
PED 
STR 

5.24 
3.95 
2.74 
4.07 

4.48 
6.28 
3.86 
5.65 

9.44 
6.50 
6.02 
6.95 

4.97 
8.11 
7.47 
9.58 

 
For 1ch task, we achieved the best results when we combine 
following 6 features: RMCC, GBFB, ETSI-AFE, MFCC, 
ICQF, and ICQC as shown in the last row for 1 channel results. 
For the 2 channel task, we achieved the best results when we 
combine 7 different features, namely, RMCC, MFCC, GBFB, 
ETSI-AFE, ICQF, WPE-MFCC and ICQC. For 6 channel task 
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also, we achieved the best results when we combine the outputs 
from these 7 different feature parameters in the same order. 
These results are shown in the last row of each track. Results 
for each environment after ROVER are shown in Table 2. For 1 
channel task, for real test set, we have reduced the WER by 
45% (from 23.08% to 12.7%). For 2 channel task, WER has 
been reduced by 40% (from 16.7% to 9.97%), and for the 6 
channel task the WER has been reduced by 37% (from 11.5% 
to 7.23%). 
 
In table 3 we compared the WER of CRIM’s system with the 
USTC-iFlytek system for CHiME-4 challenge with the lowest 
WER on the real portion of evaluation set [16]. Since we only 
used the default LMs, this comparison is with the default LMs 
for both the systems. Note that in [16], DNN-based single 
channel speech enhancement was used to enhance the signals, 
and, besides DNN-based acoustic model, deep convolutional 
neural networks (DCNN)-based upgraded acoustic models 
were also used.  As we can see from table 3, CRIM's WER for 
1ch system is close to the WER for the best CHiME-4 system. 
The primary reason for this is the noise robust RMCC features. 
 

Table 3: WER comparison of CRIM’s system with 
the best CHiMe-4 system [16] using the baseline (or 
default) language models on the evaluation set (real 
only). 

Track 
Real 

CRIM Best system [16] 
1ch 12.7 11.15 
2ch 9.97 5.41 
6ch 7.23 3.24 

 

5. Conclusion and Future Works 
We presented automatic speech recognition systems developed 
at CRIM for the all three tracks (1ch, 2ch and 6ch) of CHiME-
4 challenge. We used the same backend and baseline language 
models provided by the organizer.  Therefore, to reduce word 
error rates (WER) we mainly focussed on the extraction of 
robust features and on system combination of various robust 
features-based sub-systems. Compared to the other features the 
RMCC features provided lowest WERs in all three tracks. By 
combining multiple hypotheses from different robust features-
based systems we were able to reduce WER significantly from 
the baseline system. For 1ch track, for real test set, the WER 
was reduced by 45% (from 23.08% to 12.7%). For 2ch track, 
WER was reduced by 40% (from 16.7% to 9.97%), and for the 
6 channel task the WER was reduced by 37% (from 11.5% to 
7.23%). 

    In our future works we intend to keep RMCC features 
extractor fixed and focus on modifying the acoustic model 
and language models.  
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Abstract
In this paper, we investigate the application of the copula model
for enhancing features in automatic speech recognition task. We
compute a set of utterance-specific nonlinear transformations
based on the copula model and use these transformations to ob-
tain the enhanced features for every utterance in the dataset.
These features improve the performance of the baseline system
by about 4.3%, 1.4%, and 0.5% (absolute) respectively for 1-
channel, 2-channel and, 6-channel. Further gains were obtained
when our system was combined with the baseline system us-
ing minimum Bayes risk decoding to achieve 4.3%, 2.4%, and
1.2% absolute WER improvements for the respective channels.

1. Background
Generally, the mismatch between the training and testing con-
ditions degrades the performance of machine learning tasks
including automatic speech recognition (ASR). In real-world
ASR applications, it is impractical to obtain training data that is
representative of wide range of background noise and reverber-
ations under which utterances are spoken, even when training
data is modified using additive noise and simulated reverbera-
tions such as in multi-style training (MTR). These variations are
currently modeled implicitly by the ASR acoustic models, such
as deep neural networks (DNNs), recurrent neural networks
(RNNs) and Gaussian mixture models (GMMs). The typical in-
put features presented to the acoustic models are the logarithm
of the mel-warped frequencies after passing it through a filter
bank or mel-warped cepstral coefficient (MFCC).

The strategies to compensate the mismatch between the
training and testing can be categorized into model based and
feature based methods. The model-based methods attempt to
model the variations associated with speech and neglect other
variations such as background noise or channel distortion.
Feature mismatch reduction: In this approach features are ex-
tracted in a manner that minimizes the effect of additive and
convolutional noise. The simplest version of such a normal-
ization is the well-known cepstral mean-variance normalization
(CMVN) that removes the convolutional channel noise in the
homomorphic cepstral domain. The method assumes that the
channel noise varies slowly, a mild assumption that is often true.
The key advantage of this feature-based method is that it gen-
eralizes remarkably well to test utterances with channels distor-
tions that have never been seen before. Many other feature-
based transformations have been developed and investigated,
but with limited success. One such previously developed ap-
proach shares the same motivation as our work [1]. They learn
a coarse transformation so that the histogram of their test fea-
tures matches those of their training features.

These approaches are ad hoc in that they treat each fea-
ture component independently and do not take into account the
joint distribution of the feature vector. Moreover, they do not
consider the influence of the transformation in computing the
likelihood of the input signal. Copula models provide a prin-
cipled approach for decoupling the marginal distributions from
the component that models the interaction between the random
variables. As such, they are well-suited to address the effect
of the mismatch between the train and test set. In our previous
study [2], we showed that the CMVN and histogram equaliza-
tion are two special cases of copula-based models.

In state-of-the-art ASR systems, CMVN is the only fea-
ture processing used to address mismatch between the train-
ing and testing condition. This assumes that components of
input feature vectors are statistically independent, which is typ-
ically a poor assumption. In the section below, we propose a
method to avoid this assumption and address the mismatch us-
ing a very flexible multivariate distribution – the multivariate
copula model.

2. The Multivariate Copula Model
The standard multivariate distribution estimation methods such
as GMM entirely focus on choosing a parametric form for the
joint distribution of the variables. The choice of joint distri-
bution automatically dictates a specific form for marginal dis-
tributions,which may not be appropriate for a given applica-
tion or data. It would be convenient if the choice of suitable
marginal distribution is decoupled from that of the joint distri-
bution. Sklar’s theorem provides the necessary theoretical foun-
dation to decouple these choices. The theory formally states
that any joint distribution can be uniquely factorized into its
univariate marginal distributions and a Copula distribution. The
Copula distribution is a joint distribution with uniform marginal
distributions on the interval [0, 1]:

f(X) = c(F1(x1), F2(x2), . . . , Fn(n))Πn
i=1fi(xi) (1)

where {fi(xi)}ni=1 are the marginal density functions of f ,
{Fi(xi)}ni=1 their corresponding marginal cumulative distribu-
tion functions, and c(·) is the Copula density function.

Equation (1) shows that any continuous density function
can be constructed by combining a Copula density function and
a set of marginal density functions.
Gaussian Copula model: Gaussian Copula density function is
the most common multivariate Copula function:

cgaus(U ;R) =
1

|R| 12
exp{−1

2
UT (R−1 − I)U} (2)

where R is the correlation matrix.
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The Gaussian Copula model can be constructed by substi-
tuting the Gaussian Copula density function into Equation (1):

f(X;R,Λ) = cgaus(U ;R)

n∏

i=1

fi(xi;λi) (3)

where ui = Φ−1(Fi(xi)) and Φ−1 is the quantile function of
standard univariate normal distribution.

The main difference between the Gaussian Copula model
in Equation (3), and standard Gaussian distribution is that the
marginal density functions in the Gaussian distribution are nec-
essarily Gaussian while the marginal density functions of the
Gaussian Copula model can by any continuous density func-
tion and this capability makes the Gaussian Copula model more
flexible than the Gaussian distribution.

In our previous work, we have shown how to compute the
optimal feature transformation to minimize the KL distance be-
tween two multivariate Gaussian copula distributions [2].

3. Experimental Setup & Results
Akin to speaker adapted training, we estimate the acoustic mod-
els in 3 stages: (a) estimate a canonical multivariate copula
distribution of the 13-dim MFCC features using all the utter-
ances in the single channel noisy training data; (b) transform
each utterance in the training data to reduce the KL distance be-
tween the multivariate distribution of the given utterance and the
canonical distribution; and (c) train a standard acoustic model
in the transformed feature space. At test time, we transform the
features of each utterance to the canonical multivariate copula
distribution space before decoding.

Compared to the performance of the baseline system [3],
tabulated in Table 1 for different conditions, our copula-based
system, in Table 2 shows significant improvement in several
conditions, but not all. Note, 5gkn stands for 5-gram Knesser-
Ney smoothed LM provided with the baseline system. The
gains are particularly remarkable in single channel input for
which it is well-suited. Note, we haven’t applied any special
processing for multi-channel case and hence didn’t expect gains
there. The gains are highest in bus background noise and our
hypothesis is that there is more structure and correlation in the
noise in this case for which the multivariate copula is an apt
representation. We expect applying copula-based feature en-
hancement to give further improvements when it is applied to
frequency spectrum before the filterbank and MFCC where the
noise components can be modeled in a fine grained manner.
Finally, our copula-based system is sufficiently different from
the baseline system that we are able to obtain additional gain
through system combination using MBR, as reported in Table 3.
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Table 1: Average WERs of the baseline systems trained on sin-
gle channel data.

Track System Dev Test
simu real simu real

1ch

DNN 17.4 16.5 26.0 30.0
smbr 15.8 14.6 24.0 27.1

smbr+5gkn 13.9 12.3 22.1 24.3
smbr+rnn 12.8 11.5 20.8 22.9

2ch

GMM 18.7 16.3 27.3 28.7
DNN 13.5 12.2 20.4 22.4
smbr 12.1 10.8 18.8 20.0

smbr+5gkn 10.7 9.6 16.4 17.6
smbr+rnn 9.3 8.4 15.2 16.2

6ch

GMM 14.2 12.7 21.1 21.7
DNN 10.1 9.5 15.9 16.6
smbr 9.0 8.2 14.2 14.7

smbr+5gkn 7.8 7.0 12.1 12.8
smbr+rnn 6.7 6.0 10.9 11.3

Table 2: Average WERs of the baseline systems trained on sin-
gle channel features after copula-based transformation.

Track System Dev Test
simu real simu real

1ch

GMM 23.0 19.8 30.0 29.4
DNN 17.6 15.4 24.9 24.4
smbr 16.5 13.9 23.5 23.1

smbr+5gkn 14.7 12.1 21.7 20.1
smbr+rnn 13.2 10.7 20.4 18.6

copula+baseline 12.1 9.8 19.2 18.6

2ch

GMM 18.1 15.2 24.9 24.4
DNN 13.9 12.1 20.4 19.8
smbr 12.7 10.7 19.1 18.2

smbr+5gkn 10.9 9.1 17.2 16.4
smbr+rnn 9.6 8.0 15.6 14.8

copula+baseline 8.8 7.3 13.9 13.8

6ch

GMM 14.4 12.5 19.7 19.3
DNN 10.8 9.6 16.0 15.4
smbr 9.8 8.2 15.2 14.5

smbr+5gkn 8.2 7.1 13.0 12.2
smbr+rnn 7.1 6.1 11.7 10.8

copula+baseline 6.3 5.4 10.1 10.1

Table 3: Average WERs after combining the baseline and
copula-based system using MBR decoding.

Track Envir. Dev Test
simu real simu real

1ch

BUS 10.3 12.6 13.8 26.0
CAF 15.7 10.5 23.5 20.8
PED 9.3 6.6 18.8 15.7
STR 12.9 9.6 20.6 11.9

2ch bus 7.2 9.2 10.0 19.4
CAF 11.8 7.5 16.2 14.1
PED 6.9 4.9 14.2 12.0
STR 9.1 7.7 15.2 9.7

6ch bus 5.3 6.8 6.7 13.3
CAF 7.7 5.1 11.2 9.5
PED 5.1 3.9 10.0 8.5
STR 7.2 5.7 12.5 9.1
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Abstract
Noise robust speech recognition is one of the most challeng-
ing problems. This paper described the most important tech-
nical designs in the SJTU CHiME-4 Challenge system cover-
ing data usage, feature normalization, advanced acoustic model,
auxiliary feature joint training, multi-model joint decoding and
multi-pass decoding pipeline. The impacts on the final recog-
nition accuracy from each technology are explored and com-
pared. With the proposed technologies, our final system ob-
tains a very large improvement compared to the formal released
baseline system. The final average WERs of the real test set
are 6.41%, 9.14%, 13.91% for 6-channel, 2-channel, and 1-
channel, respectively.

1. Background
This paper describes the key points and contributions of the
SJTU system (Shanghai Jiao Tong University) for the 4th
CHiME Challenge [1]. We participate in all the evaluations for
the challenge, including 6-ch / 2-ch / 1-ch tracks. Our works
mainly focus on the acoustic modeling, so the front-end we used
is the released baseline BeamformIt, the language model is the
baseline RNNLM. In comparison to CHiME-3 challenge, our
new progress mainly includes:

• Data augmentation using all channels with the beam-
formed data

• Feature normalization

• Advanced acoustic model including very deep CNN [2]
and auxiliary feature joint training [3]

• System combination using the multi-model joint decod-
ing and multi-pass decoding pipeline.

In the next section, we will describe these key technologies
in detail.

2. Contributions
2.1. Data usage

Compared to the released baseline only using 18 hours noisy
training data from channel 5, the training set is augmented with
data from all channels (excluding the channel 2 located at the
back of the device), and moreover the beamformed audio stream

Thank Mr. Mengxiao Bi for the support on the computational clus-
ter platform. This work was supported by Shanghai Sailing Program
No. 16YF1405300, Program for Professor of Special Appointment
(Eastern Scholar) at Shanghai Institutions of Higher Learning, China
NSFC projects (No. 61573241 and No. 61603252) and Interdisci-
plinary Program (14JCZ03) of Shanghai Jiao Tong University in China.

Figure 1: Model structures and configs used in our systems

on these channels is also pooled together, which totally results
6×18=108 hours for training.

2.2. Feature normalization

The appropriate feature normalization is very important for
speech recognition in noisy scenarios. It can make the sys-
tem more robust to the changes in environments and channels.
CMN, CVN and CMVN are compared with FBANK, and the
FBANK with CMN on per speaker shows the best performance.

2.3. Advanced acoustic models

In addition to the basic DNN model, which is used in the re-
leased baseline, other advanced models are applied. One is
named very deep CNN (VDCNN), which is proposed in our
recent work [2, 4, 5], and particularly it shows the powerful po-
tentiality on noise robustness [2]. Another is LSTM-RNN, and
it has been verified effective on several tasks [6]. The model
structures and configurations used in this work are illustrated in
Figure 1, and more details can be referred to the work in [2].

2.4. Joint training with auxiliary features

The use of auxiliary features in factor-aware training is one type
of adaptation popular for robust ASR [3, 7, 8, 9]. We use the
same framework as our previous work for LSTM-RNN based
speaker-aware training using i-vector [8], which concatenating
the auxiliary feature with the original feature at the input layer.

In contrast, for the VDCNN usage, [5] proposed another
auxiliary feature joint training architecture shown as the left
part of Figure 2. Considering the auxiliary features, such as fM-
LLR and i-vector, are the non-topographical, they are separately
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(a) Joint training of VDCNNs
with auxiliary features

(b) Joint decoding of VDCNN &
RNN

Figure 2: The architectures of VDCNN with auxiliary features
joint training, and VDCNN & RNN joint decoding

transformed with a normal fully-connected layer first, and then
the outputs are concatenated with those of the VDCNN block to
be fed into the following shared MLP layers. Both fMLLR and
i-vector can be used as auxiliary features for VDCNNs here.

2.5. Joint decoding with VDCNN and RNN

To explore the huge complementarity within VDCNN and
LSTM-RNN, a joint decoding scheme shown as the right part
of Figure 2 is implemented [5, 10]. It uses a weighted sum com-
bination of acoustic log likelihoods from VDCNN and LSTM-
RNN systems. Moreover, the DNN system also can be added
into this framework to perform the multi-model (three) joint de-
coding.

2.6. Final multi-pass decoding system

Embedded with these above key features, our final submitted
system is based on a multi-pass decoding framework, which is
illustrated as Figure 3. It consists of 5 stages, shown as P1∼P5.

• P1: The front-end audio processing, including beam-
forming for multi-channel condition and feature extrac-
tion. In the 1-ch track, the single channel audio is used
to extract all types of features directly.

• P2: Speaker-independent acoustic models are built indi-
vidually, including DNN, VDCNN & LSTM-RNN. and
auxiliary features based modeling are also constructed.

• P3: The DNN-SI system is adapted by the 2-pass mode,
which uses 1-best from the first pass SI model. Then
the 1-best from the adapted DNN-SA model is used to
do the cross-adaptation for VDCNN and LSTM-RNN,
named VDCNN-SA and LSTM-RNN-SA respectively.

• P4: Three speaker-adaptation models, including DNN-
SA, VDCNN-SA and LSTM-RNN-SA are integrated to
perform the proposed multi-model joint-decoding.

• P5: The RNNLM rescoring is applied on the lattices
from the P4 stage to get the final results of the fusion sys-
tem. If only considering the best single system, the lat-
tices from VDCNN-SA in P3 are applied with RNNLM
rescoring to generate the best single system results.

Noisy Audio

Beamforming, track 2&6

Feature extraction: Fbank, fMLLR, i-vec

DNN-SI

P5: RNNLM

P4: Joint Decoding

LSTM-
RNN-SIVDCNN-SI

DNN-SAVDCNN-SA LSTM-
RNN-SA

Track 1

P3:

P2:

P1:

Self-Adap

Cross-AdapCross-Adap

Audio stream
Feature stream

1-best
Log-likelihood

Lattice

Best fusion system

P5: RNNLM

Best single system
SI: Speaker-Independent
SA: Speaker-Adaptation

Figure 3: The multi-pass decoding for the CHiME4-Challenge

3. Experimental evaluation
The detailed results comparison in our system will be described
in this section. The GMM-HMM system was trained using the
released standard Kaldi [11] recipe. It is a MFCC-LDA-MLLT-
FMLLR GMM-HMMs system. After that, a forced-alignment
is performed to get the state level labels for NN training. In this
work, all the DNN models are constructed using Kaldi [11], and
other models are built using CNTK [12]. It is noted that except
the results in Table 4 which used SMBR training and RNNLM
rescoring, all the results in other tables used the CE criterion in
training and the released trigram in decoding.

3.1. Data augmentation

Data augmentation was first evaluated, different amount of data,
described in Section 2.1, were compared. In this experiment,
DNN systems with fMLLR feature were used. As shown in
Table 1, using more data always get better performance. For the
fast investigation on the other system configuration, only the
beamformed audio stream was used in training first (18 hours)
in the following experiments, and the final submitted system
will be retrained using all 108 hours data.

Table 1: WER (%) comparison of different training data usages
for the 6ch-track, using fMLLR features in DNN models. The
beamformed data on ch1-ch6 is used for testing in all setups

System fMLLR
dev-real dev-sim

Chan5 9.39 10.46
BF 9.30 10.51

Chan1-6 8.49 9.29
Chan1-6+BF 8.20 8.90
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3.2. Acoustic models

Different acoustic models were then constructed, including
DNN, LSTM, CNN and very deep CNN. As shown in Table
2, VDCNN get a 10% relative improvement on the real data
over the DNN with the speaker dependent feature.

Table 2: WER (%) comparison of different acoustic models for
the 6ch-track. Beamformed data on ch1-ch6 is used for both
training and testing in all setups. Feats indicates the model in-
put feature

System Feats dev-real dev-sim
DNN fMLLR 9.30 10.51

LSTM fMLLR 10.26 11.69
CNN FBANK 10.14 12.22

VDCNN 8.66 10.52

3.3. Auxiliary feature joint training

The auxiliary feature joint trainings in the VDCNN model and
LSTM-RNN model are implemented. The different types of
auxiliary features are explored and the related results are shown
in Table 3. For the i-vector, a GMM with 2048 Gaussians is
used to extract a 10-dimensional i-vector for each utterance, and
these i-vectors were obtained using MFCC features. We can
see that joint training with auxiliary features obtain consistent
gains on both VDCNN and LSTM-RNN, and the improvement
in VDCNN is especially large which demonstrats the superior-
ity of the proposed new architecture.

Table 3: WER (%) comparison of the very deep CNNs and
LSTM-RNNs with auxiliary features joint training for the 6ch-
track. Beamformed data on ch1-ch6 is used for both training
and testing in all setups. Aux indicates the auxiliary feature

System Feats Aux dev-real dev-sim

VDCNN FBANK
— 8.66 10.52

fMLLR 7.92 8.90
fMLLR+ivec 7.69 8.83

LSTM fMLLR — 10.26 11.69
ivec 10.23 11.52

3.4. Submitted system

At last, we give the final submitted results in Table 4. As stated
above, the augmented 108 hours data was used for all model
trainings, and the multi-pass decoding shown as the Figure 3
was performed to obtain the 1-best results. Considering we
only want to focus on the acoustic modeling, so the released
RNNLM was applied for the rescoring.

Due to the limited evaluation time, we can not finish the
testing using the best fusion system on time. Accordingly
the results from the best single system (applying RNNLM on
VDCNN-SA in P3) are submitted as our final results for the
challenge. All the results covering three tracks, including both
dev and eval under different environments.
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Abstract
In this work, we focus on methods for enhancing the six-
channel CHiME4 data using beamforming that is driven by
voice activity detectors (VAD). We propose two beamformers
and two VADs that are based on trained deep neural networks
(DNN). Their combinations are compared when used as front-
ends whose outputs are forwarded to the baseline automatic
speech recognition system. Results in term of Word-Error-Rate
(WER) achieved when the acoustic model of the baseline is or
is not adapted for the given front-end (re-trained on enhanced
training sets) are reported.

1. Introduction
Many multichannel speech enhancement systems apply beam-
forming methods such as the conventional Delay-and-Sum
Beamformer (DSB), various implementations of minimum vari-
ance distortionless (MVDR) beamformer, or a generalization
of the latter one, the linearly constrained minimum variance
(LCMV) beamformer [1]. In order to achieve optimum per-
formance, parameters have to be estimated and tracked with a
sufficient accuracy. If not, the target signal in the system output
can be distorted, which often deteriorates the final performance
achieved by back-end processors (e.g., automatic speech recog-
nition systems) even if the Signal-to-Noise Ratio (SNR) in a
beamformer’s output is improved.

In the conventional beamforming, the free-field sound prop-
agation is assumed, and the DSB relies purely on the Time-
Difference-Of-Arrival (TDOA) estimation. By contrast, the
MVDR and LCMV can regard reverberation and multiple
sources when using relative transfer functions (RTFs); see [2].
Such systems tend to be less robust as compared to the con-
ventional approach. In particular, they are more sensitive to
possible nonlinearities in the signal path as well as to various
measurement (sensor) failures. On the other hand, their perfor-
mance is potentially higher than that of the DSB, especially, in
multi-source and reverberant conditions. The goal of this work
is to compare the methods within CHiME4.

The baseline system of CHiME4 utilizes a state-of-the-
art DSB technique named BeamformIt, proposed in [3]. The
method estimates TDOAs using generalized cross-correlations
(GCC-PHAT) and performs a robust multichannel TDOA track-
ing, which significantly helps to avoid sudden changes and esti-
mation errors in TDOA. This and other straightforward modifi-
cations such as a mechanism that helps to avoid microphone
failures make BeamformIt robust and useful for CHiME4.
A practical drawback is that BeamformIt is passing through the
signals several times before the output is computed, which ham-
pers its direct applicability in continuous (on-line) processing.

Multichannel enhancement systems applying MVDR or
LCMV with the aid of Deep Neural Networks (DNN) were ap-
plied to CHiME3 data; see, e.g., [4, 5]. The beamformers rely
on the estimation of the noise covariance and of the source steer-
ing vector from masked signals, where the masks are obtained
as outputs of DNNs.

In this work, approximate Minimum Mean-Squared Er-
ror beamformer (MMSE), recently proposed in [6], is mod-
ified in order to be applied within CHiME4. Similarly to
[4, 5], the beamformer exploits DNNs, however, the DNNs are
used to control the estimation of RTFs, not the estimation of
noise/speech covariances. This is done through applying the
RTF estimator from [7] where speech presence probabilities are
obtained as the outputs of Voice-Activity Detectors (VAD) that
are realized using the DNNs.

The performance of the MMSE depends purely on the accu-
racy of the estimated RTFs. As such, the beamformer strongly
relies on the linearity of the observed signals. However, this ap-
pears to be often violated in the CHiME4 data, e.g., because of
microphone failures and nonlinear gain fluctuations. The results
of this work thus provide a comparison of the advanced beam-
forming with BeamformIt. We compare also a Filter-and-Sum
Beamformer (FSB) based on the estimated RTFs, which could
be seen as a solution on the half way between the MMSE and
BeamformIt.

The paper is organized as follows. Section 2 describes the
problem and basic beamforming approaches. Section 3 pro-
vides details of the proposed multichannel enhancement sys-
tems. Section 4 defines the back-end solutions that we use for
CHiME4. Section 5 reports the results and Section 6 concludes
the paper.

2. Problem Description
2.1. Model

A noisy recording of a directional source observed through m
microphones can be described, in the short-term frequency do-
main, as

x(k, `) = g(k, `)s(k, `) + y(k, `), (1)

where x(k, `) is them×1 vector of the signals on microphones,
s(k, `) is the target speech as observed on a reference micro-
phone, and y(k, `) involves all other interfering sources and
noise components that are uncorrelated with s(k, `); k is the
frequency index and ` is the frame index.

The vector g(k, `) determines the position of the target
speaker. Its elements contain relative transfer functions (RTFs)
related to the reference microphone [2]. Since the speaker can
perform movements during utterances, g(k, `) is varying in
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time. Nevertheless, we assume that the changes are slow, so
g(k, `) is approximately constant during blocks of frames.

From now on we will omit the arguments k and ` from the
notation. They will be used only when the more precise notation
is needed.

2.2. MVDR and MMSE beamforming

The MVDR beamformer is a popular multichannel processor
that extracts s from x, thereby reduces noise, enhances or even
dereverberates the target signal [8]. Its output is u = wH

MVDRx
where

wMVDR =
C−1

y g

gHC−1
y g

. (2)

Here, Cy = E[yyH ] is the covariance matrix of the noise sig-
nal y, E[·] stands for the expectation operator, and ·∗ and ·H
denote the conjugate value and the conjugate transpose, respec-
tively.

The beamformer can be followed by a Wiener postfilter that
attenuates the residual noise yres = wH

MVDRy in the output
of MVDR. The whole operation is equivalent to the Minimum
Mean Square Error (MMSE) beamforming [1] and is given by

wMMSE = wMVDR
E[|u|2]− E[|yres|2]

E[|u|2]︸ ︷︷ ︸
Wiener postfilter

. (3)

To apply MMSE and MVDR efficiently in practice, it is
crucial to estimate Cy, g and yres with a sufficient accuracy.

2.3. Previous MVDR implementations for CHiME3

In [4, 5], Cy is estimated with the aid of trained DNNs that
compute frequency-dependent speech presence probabilities.
The probabilities are used to control the noise covariance update
so that the update is suspended during the speaker activity and
vice versa. Then, the steering vector is estimated as the princi-
pal vector of the target covariance, which is estimated as the dif-
ference between the covariance of input signals C = E[xxH ]
and that of noise Cy.

The principal vector can be significantly biased in low SNR
conditions. In the frequency bands where the target signal is not
active, a vector steered towards another directional (interfering)
source can be obtained instead. The above noise covariance es-
timation is not effective in two aspects. First, the computation
of masks requires to pass data through a large DNN with as
many outputs as is the number of frequency bins, which is com-
putationally expensive. Second, the noise covariance should be
updated continuously, also during the speaker activity, when the
noise is nonstationary. The methods we propose here aims to
overcome these drawbacks.

2.4. Filter-and-sum beamforming

The computation of the inversion matrix in (2) increases the
computational burden and makes the MVDR (MMSE) beam-
former sensitive to estimation errors. Once the steering vector
g is estimated, a method that is less sensitive to possible errors
and does not require the knowledge (estimation) of Cy is rep-
resented by

wFSB =
1

m
(g−1)∗, (4)

where g−1 contains the reciprocal values of the elements of g.
This method, in fact, performs a filter-and-sum beamforming

(FSB) that is a generalization of the DSB for reverberant envi-
ronments. Indeed, in the free-field conditions, the FSB coin-
cides with the DSB, because the elements of g correspond to
pure delay filters, and g−1 are their respective inverse delays.

The FSB can be followed by the Wiener postfilter similarly
to (3) if any estimate of the residual noise in the FSB output
(i.e., an estimate of wH

FSBy) is available.

3. Front-End
In this section, details of four different systems for multichannel
speech enhancement are described. Each system is a combina-
tions of a VAD and of a beamformer.

Two VADs are considered where both are designed through
trained DNNs. One VAD performs a detailed speech presence
detection, that is, within each frequency bin. The other VAD
performs only the per-frame detection. The VADs are used to
estimate g−1 using the method from [7].

Then, two beamformers are considered: A variant of the ap-
proximate MMSE beamformer described in [6], and the simpler
FSB, which was described above.

The processing of signals proceeds in the short-time Fourier
(STFT) domain where the window length is 512 samples and
the frame shift is 128 samples. The systems operate in a batch-
online processing regime. Each batch of 100 STFT frames is
processed independently in the following steps.

1. The input channels are selected based on their time do-
main correlation coefficients. Specifically, for the ith
channel, the maximal correlation coefficient with the
other channels is computed; let us denote the value µi. If
this value is smaller than a threshold, the channel is not
used. However, at least two channels are kept for further
processing (the channels with maximum µi).

2. The reference channel is CH5 unless it has been with-
drawn in the previous step. If yes, the channel with the
maximum µi is selected.

3. VAD is applied to the selected channels.

4. The steering vector g as well as g−1 are assumed to be
approximately constant within the batch of frames. The
elements of g−1, that is, the respective RTFs related to
the reference channel, are estimated using the estima-
tor from [7] where speech presence probabilities are re-
placed by the outputs of VAD.

5. A given beamformer is applied. Its output is transformed
back to the time domain using the inverse Fourier trans-
form and overlap-add.

3.1. VAD using DNN

We consider two VADs: The first detector, referred to as sVAD,
yields the speech activity over every frame of the processed sig-
nal. The second one detector, referred to as dVAD, estimates the
speech activity for every frequency bin and every signal frame.
Both VADs are implemented as DNNs trained using the Torch
framework1. Training as well as testing sets were created from
the CHiME4 training data.

sVAD is trained to estimate Wiener gains (values between
0 and 1). Each STFT frame is represented by raw magnitude of
the 40 mel filter bank features (which are not decorrelated). The
input feature vector concatenates the analyzed frame, 10 frames

1http://torch.ch
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Figure 1: Illustration of the data flow of dVAD FB 4 (white–black color scale refers to 0–maximum values)

before and 2 after it. Global zero-mean and unit-variance nor-
malization is applied (computed from the training data).

sVAD consists of 5 hidden layers (3x256 and 2x128 neu-
rons, respectively) all with sigmoid activation function. Binary
Cross Entropy criterion was optimized using 1024 minibatches
and finished within 50 epochs. No pre-training or dropout was
used, data order was randomized every epoch.

dVAD consists of 6 smaller DNNs, referred to as
dVAD FB 1,. . . ,dVAD FB 6. Each DNN has one of six fre-
quency bands (FB 1,. . . ,FB 6) on its input together with re-
duced outputs of the previous DNNs. For example, the input
of dVAD FB 4 is illustrated in Figure 1.

The output of each DNN is a vector of values from the
interval [0; 1] containing the speech presence probabilities for
the respective frequency band and frame. The reduced outputs
(used on the inputs of the other DNNs) contain averages over 10
neighboring bins. For a given frequency bin, the training output
label is zero if the SNR for the frequency is smaller than 5 dB.
Otherwise, the label is set to one.

The structure of dVAD is computationally cheaper by about
50% as compared to a VAD that resides in a big DNN that com-
putes the speech probabilities in all frequency bins simultane-
ously. dVAD FB 1,. . . ,dVAD FB 6 were trained subsequently.
Therefore, zero mean and unit variance normalization of the in-
put data was applied between the training of each DNN.

Each dVAD FB x consists of 5 hidden layers (2x350, 256
and 2x128 neurons, respectively) all with ReLU activation func-
tion. For the kth frame, the context of frames k−8, k−6, k−4,
k−2, k+2 and k+4 is used. Mean Square Error criterion is op-
timized within 1024 minibatches. No pre-training was applied;
training data order was randomized. The training was finished
between epochs 54 and 60.

3.2. Approximate MMSE beamformer

We implement the MMSE beamformer as an approximate
MVDR followed by the Wiener post-filter. The MVDR part ex-
ploits a blocking matrix to obtain noise reference signals. The
blocking matrix is defined as (without any loss on generality,
assume that the reference channel is CH1)

B =




−1 g−1
2 0 . . . 0

−1 0 g−1
3 . . . 0

...
...

...
. . .

...
−1 0 0 . . . g−1

m


 , (5)

where g−1
i denotes the ith element of g−1. The noise reference

signal is obtained by passing the input through the blocking ma-

trix, that is,
u = Bx, (6)

however, this signal is different from the noise term y in (1).
Since the beamformer operates with a batch of frames, the least-
square estimate of y using u can be computed as

ŷ = CBH(BCBH)−1Bx, (7)

where C = E[xxH ] is replaced by its sample mean estimate.
The estimator (7) is scale-invariant in the sense that any scaling
substitution B ← ΛB where Λ is regular does not have any
influence on ŷ. In particular, this property is useful when B is
derived using blind methods such as Independent Component
Analysis (ICA) that can estimate B only up to the unknown
scaling factor Λ; see, e.g., [9].

The covariance of ŷ is equal to

Cŷ = E[ŷŷH ] = CBH(BCBH)−1BC. (8)

In the approximate MVDR, the strategy is to replace Cy in (2)
by Cŷ. The steering vector g can be computed directly from
g−1; an alternative approach is to compute g as a vector from
the null space of B.

Since the rank of Cŷ ism−1, its inversion matrix does not
exist. We therefore replace C−1

ŷ by the Moore-Penrose pseu-
doinverse denoted as C†ŷ. Then, the approximate MVDR beam-
former is represented by

ŵMVDR =
C†ŷg

gHC†ŷg
. (9)

In case that the target channel is different from the reference
channel, the scale-invariant least-squares can be applied as in
(7). Then, all enhanced channels can be obtained as ŴMVDRx
where

ŴMVDR =
CŵMVDR(ŵMVDR)

H

(ŵMVDR)HCŵMVDR
. (10)

From now on, let ŵMVDR denote the approximate MVDR for
the selected target channel. Let the output be denoted as v =
ŵH

MVDRx.
Using (7), the residual noise in the output can be estimated

as
r = ŵH

MVDRŷ. (11)

According to (3), the gain of the Wiener postfilter can be ap-
proximated as

G(k, `) =
max{|v(k, `)|2 − |r(k, `)|2, ε}

|v(k, `)|2 + ε
, (12)
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Figure 2: Results of the objective evaluation experiment in
terms of SDR and SIR. The results were averaged over the four
noisy environments BUS, CAF, STR and PED.

where ε is a small positive constant that prevents from division
by zero. The final output of the approximate MMSE is

ŝ(k, `) = G(k, `)v(k, `). (13)

It is worth noting that G(k, `) can be modified in various
heuristic ways before it is applied in (13). In CHiME-4, we
set G(k, `) = 1 for k corresponding to frequencies higher
than 3 kHz. By contrast, for the frequencies below 100 Hz,
G(k, `) = 0.01. The gain could be also modified according
to the output of the VAD. For example, if for given k the VAD
yields speech probability higher than 0.5, we set G(k, `) = 1
to avoid the distortion of the speech in the system output.

4. Back-End Solutions
For the experimental evaluation, we consider two automatic
speech recognition back-ends:

1. the baseline DNN+RNNLM back-end [10] provided by
CHiME4 organizers, and

2. the same back-end with a re-trained acoustic model.

The front-end processing usually introduces additional ar-
tifacts into the processed speech signals, which are unknown to
the acoustic model trained on the unprocessed signals. This may
lead to a deterioration of the performance of the ASR system
and motivates us to adapt the acoustic model for the given front-
end. This is done as follows. The training set is enhanced by
the front-end processor, by which a new training set is obtained.
Then, this set is used by the training procedure of the baseline
DNN models, which results in an adapted acoustic model.

5. Experiments and Results
5.1. Objective evaluation

Here, we describe an experiment where the proposed mul-
tichannel enhancement (front-end) systems are compared
with BeamformIt in terms of signal separation criteria from
BSS Eval [11]2. Two utterances were selected from the
development set: F01 421C0201 (a female speaker) and
M04 052C0112 (a male speaker). Four simulated (SIMU)
noisy variants of each utterance (BUS, CAF, STR and PED)
were processed by the enhancement systems. The outputs were
evaluated in terms of Signal-to-Distortion Ratio (SDR) and
Signal-to-Artefact Ratio (SAR). The results in terms of Signal-
to-Interference Ratio (SIR) were similar to SDR, but we do not

2We use version 2.3 of BSS Eval, which contains
bss decomp tvfilt.m, a function that enables us to evaluate
time-variant mixtures.

show them to save space. Averaged SDR and SAR over the
environments are shown in Figure 2.

The proposed systems outperform BeamformIt in terms of
SDR and SIR, which confirms their advanced ability to enhance
the signal. The best SDR was achieved by MMSE+sVAD.
On the other hand, the results in terms of SAR show that the
proposed systems tend to introduce more artifacts into the en-
hanced signal. Only FSB+sVAD yields higher SAR than Beam-
formIt. The worst SAR yields MMSE+sVAD, which is the com-
promise for the high SDR and SIR.

5.2. CHiME4

Now we present the speech recognition results achieved by 10
systems. Each proposed ASR system is denoted byA(B) where
A denotes the front-end system, e.g., MMSE:sVAD, and B de-
notes the acoustic model used within the baseline ASR system,
which is either ”Base” (original model) or ”Adapt” (the model
adapted to the front-end). The case when the CHiME4 data are
sent directly to the baseline ASR without any processing is de-
noted as ”Unprocessed”.

The resulting absolute Word Error Rates (WER) are shown
in Table 1. Detailed results of FSB:sVAD(Base) and of the base-
lines for different noisy environments are presented in Table 2.

Comparing the proposed front-end systems, those using the
FSB beamformer yield superior results compared to those with
MMSE. The difference in simulated sets is about 2-3% WER.
In case of the real-worlds recordings, the difference is up to 9%.

The choice of the VAD does not appear to have much influ-
ence on the final WER, especially in the combination with FSB.
Considering the MMSE beamforming, the dVAD improves the
WER compared to sVAD by 0-6%.

The adaptation of the acoustic models appears to be benefi-
cial for the systems with MMSE, where it improves the perfor-
mance by 0-2%. On the other hand, the re-training did not bring
any significant improvement for the FSB technique.

Table 1: Absolute WER (%) averaged over four environments
for the 6-channel track. The best achieved results are written in
bold.

System Dev Test
real simu real simu

Unprocessed (Base) 9.83 8.86 19.90 10.79
BeamformIt (Base) 5.77 6.76 11.52 10.91

MMSE:sVAD (Base) 10.91 9.31 22.39 9.72
MMSE:sVAD (Adapt) 10.56 9.21 20.61 9.11
MMSE:dVAD (Base) 7.78 9.84 16.27 9.68

MMSE:dVAD (Adapt) 7.89 9.28 16.09 9.40
FSB:sVAD (Base) 7.26 7.23 13.48 7.70

FSB:sVAD (Adapt) 7.23 7.68 13.46 7.95
FSB:dVAD (Base) 7.09 8.00 13.48 7.85
FSB:dVAD (Adapt) 7.43 8.24 14.40 8.16

6. Conclusions
From the results of our experiments we conclude that, among
the proposed systems, FSB:sVAD(Base) appears to be the most
effective for CHiME4. It achieves WER between 7%-13%,
which improves the WER achieved on unprocessed data by
about 1.5%-6.5%. The system is computationally simple, be-
cause the FSB does not use the matrix pseudo-inversion in (9),
and the sVAD performs the computationally save per-frame de-
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Table 2: Absolute WER (%) per environment. The best achieve-
ments are written in bold.

(a) FSB:sVAD (Base)

Envir. Dev Test
real simu real simu

BUS 10.27 6.21 22.21 5.68
CAF 6.55 9.73 12.59 8.91
PED 4.57 5.52 10.71 6.85
STR 7.54 7.46 8.40 9.34

(b) BeamformIt (Base)

Envir. Dev Test
real simu real simu

BUS 7.43 5.97 16.88 7.66
CAF 5.77 8.13 10.20 11.52
PED 3.73 5.47 9.87 10.35
STR 6.15 7.45 9.13 14.12

(c) Unprocessed (Base)

Envir. Dev Test
real simu real simu

BUS 16.06 10.07 33.17 9.58
CAF 8.44 10.59 19.22 11.95
PED 5.44 6.34 14.63 9.64
STR 9.38 8.44 12.61 11.97

tection. The method achieves the best WER over the compared
systems in the simulated test set.

For the other sets, in particular in the real-world sets, the
best WER was achieved with BeamformIt. The experiment of
Section 5.1 has demonstrated on typical simulated recordings
that BeamformIt achieves lower SDR as well as lower SAR
compared to FSB:sVAD. While the simulated recordings are
sufficiently linear and do not contain microphones failures, the
real-world recordings of CHiME4 do. We therefore attribute
the better WER achieved by BeamformIt in real-world sets to
its robustness against nonlinear effects rather than to its ability
to enhance the target signal.

The improvement of the proposed methods in terms of the
robustness against microphone failures and other nonlinearities
is the subject of our future progress.
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Abstract
This paper presents a noise-robust Wrapper-based acoustic
Group Feature Selection (W-GFS) method and its large noise
Optimized (OW-GFS) version for automatic sleepiness classifi-
cation and compares their performances with Correlation-based
Feature Selection (C-FS) and Pearson Correlation Coefficient
Feature Selection (CC-FS) filters. We use Interspeech 2011
Speaker State Challenge’s “Sleepy Language Corpus” and base-
line feature set. Group Feature Selection (GFS) considers the
feature space in Low Level Descriptor groups rather than indi-
vidually. Reduced time-complexity and potential generalization
power of GFS are discussed. A model to predict on test data
with changing Signal-to-Noise Ratio (SNR) is presented based
on results from artificially corrupted development data with 10
dB SNR white-noise. Using Support Vector Machine, W-GFS
achieves 2.6%, 4.2%, and 1.9% relative Unweighted Average
Recall (UAR) improvement over the C-FS, CC-FS, and baseline
feature set systems, respectively, on white-noise corrupted test
data with randomly changing SNR within a broad range. The
corresponding improvements for OW-GFS, using Voted Percep-
tion, are 4.8%, 9.8%, and 2.2% relative UAR on strongly white-
noise corrupted test data with randomly changing SNR between
-5 and +5 dB. Finally, we discuss consistent results obtained us-
ing everyday environment noises.
Index Terms: robust paralinguistics, computational paralin-
guistics, noise-robust feature selection, wrapper method, filter
method

1. Introduction
The prevalence of sleep related accidents [1, 2, 3] and the im-
perative to prevent them highlights the importance of sleepiness
detection systems. In situations where the use of certain types
of detection methods, e.g., a spontaneous eye-blink detection
system [4] requiring the use of intrusive sensors, is not optimal,
speech can offer a unique advantage [5, 6, 7]. Moreover, the
widespread nature of the sleep phenomenon is indicative of the
abundance of applications concerned with its detection.

Computational paralinguistics tasks like sleepiness classifi-
cation deal with the manner in which something is said rather
than the content of what is said [8]. The binary task of Sleepi-
ness Sub-Challenge was presented as part of the Interspeech
2011 Speaker State Challenge and employed the “Sleepy Lan-
guage Corpus” (SLC) [9]. The 4368 acoustic baseline features
generated using the openSMILE software [10] include those
deemed relevant to sleepiness state [11] and result in a Sub-
Challenge baseline score of 70.3% Unweighted Average Recall

(UAR). The findings of the Sub-Challenge demonstrate that us-
ing larger feature sets result in superior performances. Further-
more, in the presence of various types and levels of noise, larger
feature sets provide a larger pool for subsequent feature selec-
tion operations to choose from, in a data-driven fashion [12].
Using domain knowledge to design relevant features for clas-
sification in noisy environments is an alternative feature-based
approach [13].

The two main types of feature selection methods are fil-
ters and wrappers [14]. The filter evaluates feature subsets
based on statistical properties of data whereas the wrapper uses
a classifier’s performance score for the evaluation. The wrap-
per searches the feature space and evaluates feature subsets for
selection. Wrapper-based Group Feature Selection (W-GFS)
[15] uses a linear method, a fast variant of Best Incremen-
tal Ranked Subset (BIRS) [16], for feature space search and
WEKA toolkit’s [17] Support Vector Machine (SVM) [18] im-
plementation, Sequential Minimal Optimization (SMO) [19]
with linear Kernel, for feature subset evaluation. W-GFS modi-
fies the basic wrapper by considering features in groups defined
by Low Level Descriptor (LLD) partitions [20] rather than in-
dividually. Group Feature Selection (GFS) approach is moti-
vated by two factors. First, GFS improves the tractability of the
computationally intensive wrapper method by reducing the time
complexity of the subset search component [15]. Second, an
LLD-based GFS could potentially improve the generalization
power of the classification algorithm by avoiding overfitting that
may result from using a detailed individual feature search. Opti-
mized Wrapper-based Group Feature Selection (OW-GFS) op-
erates identically to W-GFS but its more restrictive selection
criteria does not consider groups with evaluation scores of less
than 55% UAR for selection.

The novel aspects of this work, to the best of our knowl-
edge, are the following. First, although W-GFS has been used
for another paralinguistics classification task [15], a specialized
selection mechanism was employed that removed less than 1%
of the features in the best performance. In this work, our two
GFS methods remove about 80% and 90% of the features. In
this mode, which achieves meaningful dimensionality reduc-
tion, the use of W-GFS is novel. Second, implementation of
W-GFS in the context of noise-robust paralinguistics is novel.
Finally, OW-GFS is a novel method that provides further noise-
robustness under high noise conditions.

This paper is organized as follows. Section 2 describes
the LLD-based partitioning and the BIRS algorithm for fea-
ture space search. Section 3 provides details about the cor-
pus. Noise-robust feature selection and performance evaluation
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Table 1: Results in % UAR of SMO and VP classifications using
the four feature selection methods and the baseline (BL) repre-
sented by columns of the table on high noise level test data. The
best performances for each column are depicted in bold.

CLS W-GFS OW-GFS C-FS CC-FS BL
SMO1 61.5 62.3 59.6 59.9 65.0
SMO2 62.5 62.7 61.1 60.4 64.2
SMO3 64.2 63.5 61.6 60.5 63.2
SMO4 64.2 64.2 62.5 60.4 60.8
SMO5 63.4 64.0 62.9 60.2 58.5
SMO6 63.5 64.3 62.7 60.0 57.5
SMO7 62.6 64.1 62.9 60.4 55.9

VP 63.1 66.4 63.4 59.1 58.9

Table 2: Results on medium noise level test data.
CLS W-GFS OW-GFS C-FS CC-FS BL

SMO1 64.1 64.3 64.1 61.9 65.8
SMO2 66.1 64.7 64.9 62.9 66.4
SMO3 67.2 65.4 65.3 64.6 66.1
SMO4 67.5 65.7 65.9 64.7 64.7
SMO5 67.5 65.9 65.9 64.9 61.7
SMO6 66.7 65.6 66.0 64.7 61.0
SMO7 65.4 66.1 66.1 65.9 59.5

VP 65.1 67.4 66.2 61.9 62.6

methods are explained in section 4. The experimental results
are discussed in section 5 and the paper’s conclusions and sug-
gested future work are covered in the last section.

2. Background
2.1. LLD-Based Groups

Acoustic features are generated by chunk level application of
functionals like arithmetic mean to LLD contours like RMS en-
ergy [21, 9]. The Sleepiness Sub-Challenge uses three sets of
LLDs, each having a corresponding set of functionals listed in
[9]. Using LLD-partitioned groups is acoustically motivated. If
application of a statistical functional to an LLD contour gen-
erates a feature relevant to a classification task, it is likely that
application of other functionals to the same LLD could be use-
ful for the task as well and vice versa [15].

2.2. BIRS Search

BIRS is a linear forward search algorithm performed in two
steps: ranking and feature subset selection. In the ranking step,
the features are ranked from highest to lowest based on their
evaluation score. In the feature subset selection step, the en-
tire ranked feature set is traversed starting with an empty subset
which selects features whose addition results in a subset that
is evaluated to a higher UAR value, by a threshold level. Our
fast variant of the algorithm used here does not employ cross-
validation and t-test in the subset selection step. Wrapper eval-
uation cycles are used as the time complexity measure. The
algorithm performs 2 ∗ N evaluations, where N is the number
of individual features in the search space. Our LLD-based GFS
reduces the algorithm’s N = 4368 evaluation cycles, in each
step, to 118 cycles, i.e., the number of LLDs in the baseline
feature set.

Table 3: Results on low noise level test data. An additional com-
plexity parameter = 0.01 (used by classifier SMO8) is needed to
cover the range of interest for CC-FS.

CLS W-GFS OW-GFS C-FS CC-FS BL
SMO1 66.6 66.6 65.9 63.1 66.8
SMO2 68.2 67.3 66.3 64.8 67.1
SMO3 69.0 68.1 67.2 65.6 67.1
SMO4 69.6 68.2 67.8 66.1 67.2
SMO5 69.3 68.0 67.4 66.2 66.9
SMO6 68.6 68.0 67.1 66.4 67.0
SMO7 67.8 67.0 66.4 66.8 64.6
SMO8 ... ... ... 67.2 ...

VP 63.7 65.1 63.9 63.5 64.5

Table 4: Results on unknown noise level test data.
CLS W-GFS OW-GFS C-FS CC-FS BL

SMO1 64.1 64.4 63.2 61.6 65.9
SMO2 65.6 64.9 64.1 62.7 65.9
SMO3 66.8 65.7 64.7 63.6 65.5
SMO4 67.1 66.1 65.4 63.7 64.2
SMO5 66.7 66.0 65.4 63.8 62.4
SMO6 66.2 66.0 65.3 63.7 61.8
SMO7 65.3 65.7 65.1 64.4 60.0

VP 64.0 66.3 64.5 61.5 62.2

3. Corpus
The SLC used in our classification contains speech recordings
of 99 subjects made in realistic car and lecture-room settings
and has a duration of 21 hours. The original 44.1 kHz record-
ings made with a microphone-to-mouth distance of 0.3 m are
down-sampled to 16 kHz and use 16 bit quantization [9]. The
levels of sleepiness 1 through 10 are reported according to the
Karolinska Sleepiness Scale (KSS) [22] which is shown to be
valid in certain studies [23]. A level equal or below 7.5 is clas-
sified as non-sleepy and one above 7.5 as sleepy.

4. Method
We first explain how our two W-GFS and OW-GFS methods and
the two filters, Correlation-based Feature Selection (C-FS) [24]
and Pearson Correlation Coefficient Feature Selection (CC-FS)
[25] (implemented by WEKA’s CfsSubsetEval and Correlation-
AttributeEval, respectively), are used in the development phase
to obtain the four noise-robust feature sets which are subse-
quently used in the evaluation phase. For the GFS methods,
in the development phase, we train on the training set and pre-
dict on the development set. For the two filters, we train on
the combined training set (training plus development sets com-
bined). Next, we describe our evaluation of the four noise-
robust selected feature sets using test data sets with changing
noise levels. For evaluation, we train on the combined training
set and report predictions on the test set. Features are standard-
ized to standard normal and WEKA’s Synthetic Minority Over-
sampling Technique (SMOTE) implementation [26] is used to
balance the number of the classes in the development sets.

4.1. Noise-Robust Feature Selection on Development Data

In the absence of knowledge about the nature of the background
noise, we model our feature selection systems using additive
white Gaussian noise. First, in matched manner, we use devel-
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Table 5: Best performance results (bold entries) from Tables 1,
2, 3, and 4. The highest value of W-GFS and OW-GFS methods
is displayed under “Best GFS” column.

Noise Best GFS C-FS CC-FS BL
High 66.4 63.4 60.5 65.0
Med 67.5 66.5 65.9 66.4
Low 69.6 67.8 67.2 67.2

Unknown 67.1 65.4 64.4 65.9

Table 6: % Improvement in relative UAR of the best perform-
ing model (Best Pair) over the best C-FS, CC-FS, and baseline
models on each noise level test data.

Noise Best Pair ↑ C-FS ↑ CC-FS ↑ BL
High OW-GFS, VP 4.8 9.8 2.2
Med W-GFS, SMO4 1.6 2.5 1.8
Low W-GFS, SMO4 2.6 3.5 3.6

Unknown W-GFS, SMO4 2.6 4.2 1.9

opment data with additive white-noise of 10 dB Signal-to-Noise
Ratio (SNR) level (generated by MATLAB’s Communications
System Toolbox function awgn [27]) to find the optimum linear
kernel SMO complexity parameter. We model our feature se-
lection methods for noise-robustness based on results from this
mid-range SNR level. Second, using the obtained complexity,
we perform W-GFS to obtain the noise-robust feature set which
we will use to evaluate W-GFS on test data. Third, to add more
robustness under high noise levels, the selected feature set ob-
tained by W-GFS is reduced by removing groups with less than
55% UAR scores. The resultant feature set will be used to eval-
uate OW-GFS on test data. Finally, we obtain the two other fea-
ture sets using the C-FS and CC-FS filters. For CC-FS, we use
the top 400 features as in [28]. The four noise-robust selected
feature sets, in the mentioned order, are of sizes 935, 407, 138,
and 400, respectively.

4.2. Evaluation System on Test Data

We use WEKA’s linear kernel SMO and VotedPerceptron (VP)
[29] implementations in the evaluation phase. If the type of
noise is known, evaluation can be performed in a matched man-
ner. In the absence of knowledge about the nature of the every-
day environment noise, our four prediction models are trained in
a partially matched fashion, i.e., using the clean combined train-
ing set reduced by the four noise-robust feature sets obtained
using additive white-noise in the development phase. Predic-
tions are made on noisy test data. Since the degree of similarity
between white-noise and the particular everyday environment
noise is unknown, prediction in a fully matched manner could
produce unpredictable outcome. Noisy test data is produced as
described below.

We generate three test sets with high, medium, and low lev-
els of additive white-noise, respectively. To generate the high
level noise test data, following a uniform distribution, we ran-
domly add white-noise to the test data using an SNR level be-
tween -5 and +5 dB. This generation process allows for evalu-
ation under changing noise levels. The medium noise level test
data is generated in a similar manner except that the SNR range
is between +5 and +15 dB. In order to include clean data as
part of our test sets, the low noise level test data is generated
similarly to the other levels using the +15 to +25 dB range but
only with a 50% chance following a uniform distribution. The

Table 7: Results on everyday environment noise test data (coun-
terpart of Table 6’s last row). The “Best Pair” obtains 63.1 %
UAR.

Noise Best Pair ↑ C-FS ↑ CC-FS ↑ BL
Unknown OW-GFS, SMO7 2.1 3.1 1.4

remaining 50% of data is clean.
In practice, hyperparameters tuned in the development

phase are used for prediction in the test and evaluation phases.
However, using W-GFS for tuning the SMO complexity pa-
rameter gives the model an unfair advantage over others. To
fairly compare our four feature selection and baseline models
using the SMO classifier, therefore, we need to evaluate their
performances using several SMO complexity parameters span-
ning the range of interest. The seven values of interest range
from 0.00005 to 0.005 in approximately double increments, i.e.,
0.00005, 0.0001, 0.0002, ..., 0.005. The corresponding classi-
fiers are named SMO1, SMO2, SMO3, ..., SMO7, respectively.
For the VP classifier, WEKA’s default settings are used.

5. Experimental Results
Table 1 depicts results obtained on high noise level test data.
The highest value in this table represents the model (feature
selection method and classifier pair) that achieves best perfor-
mance on high noise level test data. Tables 2 and 3 are generated
similarly for the medium and low level noise test data. Table 4
is the average of the high, medium, and low noise level test
data tables and represents the unknown noise level. The high-
est value in this table represents the model that achieves best
performance under changing and unknown noise levels.

To facilitate comparison of results obtained by the four fea-
ture selection methods and the baseline we generate Tables 5
and 6. Table 5 displays the best performance results (bold en-
tries) from Tables 1, 2, 3, and 4. Results from these tables
demonstrate that our two GFS methods obtain the top two per-
formances for each noise level. The highest value obtained by
the W-GFS and OW-GFS methods is displayed under the com-
mon “Best GFS” column. Table 6 is constructed in the fol-
lowing manner. Column 1 displays the noise level. Column 2
identifies the model (method and classifier pair) that attains best
performance on each noise level test data. Column 3 (↑ C-FS)
depicts, for each level, the percent improvement in relative UAR
of the best model over the best C-FS model. Similarly, columns
4 (↑ CC-FS) and 5 (↑ BL) show improvements of the best model
over the best CC-FS and best baseline models. These results
demonstrate that the best GFS method consistently outperforms
the C-FS, CC-FS, and baseline models on all four noise level
test data. Specifically, for high noise, the OW-GFS and VP
pair outperforms the best C-FS, CC-FS, and baseline models
by 4.8%, 9.8%, and 2.2% relative UAR, respectively. The over-
all best performing model under changing and unknown noise
level, the W-GFS and SMO4 (SMO with complexity = 0.0005)
pair, outperforms the best C-FS, CC-FS, and baseline models
by 2.6%, 4.2%, and 1.9% relative UAR, respectively.

Finally, we evaluated the four feature selection methods and
the baseline on test data with additive everyday environment
noises. Recording of nature plus driving car sounds was un-
dergone SNR level changes according to the same distributions
that was used in generating the unknown noise level test data
for additive white-noise. The resultant test data was generated
directly rather than through the averaging process used for the

Proc. of the 4th Intl. Workshop on Speech Processing in Everyday Environments (CHiME 2016), San Francisco, CA, USA, Sep. 13, 2016

80



white-noise case. The results are displayed in Table 7. The per-
formance improvement pattern is similar to that of the white-
noise case (last row of Table 6) although the best performance
value of 63.1% UAR using everyday environment noise (not
shown in the table) is expectedly lower than the 67.1% obtained
by the white-noise counterpart.

6. Conclusions and Future Work
In the absence of specific knowledge about the type and num-
ber of noise sources, we used additive Gaussian white-noise to
model the background noise. This noise model was employed
by four feature selection methods to obtain four reduced fea-
ture sets. Systems based on these reduced feature sets per-
formed sleepiness classification on the SLC test data with addi-
tive white and everyday environment noises whose SNR levels
are changed dynamically following a uniform distribution. In a
partially matched design, our best GFS systems showed perfor-
mance improvement over the two alternative filter systems and
the baseline. For further real-world noise-robustness, our GFS
systems could be trained on models that incorporate actual ev-
eryday environment noises and subsequent predictions could be
made in a matched manner.

7. References
[1] A. I. Pack, A. M. Pack, E. Rodgman, A. Cucchiara, D. F. Dinges,

and C. W. Schwab, “Characteristics of crashes attributed to the
driver having fallen asleep,” Accident Analysis & Prevention,
vol. 27, no. 6, pp. 769–775, 1995.

[2] A. T. McCartt, S. A. Ribner, A. I. Pack, and M. C. Hammer,
“The scope and nature of the drowsy driving problem in new york
state,” Accident Analysis & Prevention, vol. 28, no. 4, pp. 511–
517, 1996.

[3] W. Vanlaar, H. Simpson, D. Mayhew, and R. Robertson, “Fatigued
and drowsy driving: A survey of attitudes, opinions and behav-
iors,” Journal of Safety Research, vol. 39, no. 3, pp. 303–309,
2008.

[4] P. P. Caffier, U. Erdmann, and P. Ullsperger, “Experimental eval-
uation of eye-blink parameters as a drowsiness measure,” Euro-
pean Journal of Applied Physiology, vol. 89, no. 3-4, pp. 319–325,
2003.

[5] J. Krajewski and B. Kröger, “Using Prosodic and Spectral Char-
acteristics for Sleepiness Detection,” in INTERSPEECH 2007 –
8th Annual Conference of the International Speech Communica-
tion Association, August 27-31, Antwerp, Belgium, Proceedings,
2007, pp. 1841–1844.

[6] F. Hönig, A. Batliner, T. Bocklet, G. Stemmer, E. Nöth,
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