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Model-based Speech Separation and Recognition

 Noise-robust Automatic Speech Recognition (ASR)

 Noise-robust Multi-talker ASR

 Signal Separation/Isolation/Analysis/Decomposition

Some Applications

Motivation

mobile 
computing

surveillance

signal re-composition/editing

acoustic forensics

robust audio search

artificial perception

enhanced 
hearing 



Model-based Speech Separation and Recognition

 Multiple sources of interference, including speech
– Computational explosion in the number of possible 

“acoustic states” of the environment

– This makes data acquisition difficult

– This makes statistical data analysis difficult

Why is Robust ASR hard?

PLACE GREEN WITH B 8 SOONLAY BLUE AT P ZERO NOWPLACE RED IN H 3 NOWPLACE WHITE AT D ZERO SOON

Audio demos: http://researcher.watson.ibm.com/researcher/view_project.php?id=2819
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4Combinatorial Considerations
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Source Models:
-features xn

-states sn

-number of states jsnj

- functions of 
connected variables
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4Combinatorial Considerations
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5Factorial Models of Noisy Speech
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6Exact Interaction:  signal with additive noise, log domain
n
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[1] Hershey, J. R., Rennie, S. J., & Le Roux, J. (2012). Factorial Models for Noise Robust Speech Recognition. 
Techniques for Noise Robustness in Automatic Speech Recognition, 311-345.
[2] Radfar, M. H. et al., (2012) “Nonlinear minimum mean square error estimator for mixture-maximisation
approximation,” Electron. Lett., vol. 42, no. 12, pp. 724–725.
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7Pascal Speech Separation Challenge:
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Mixture

2006: Factorial HMMs achieve super-human performance on the SSC. 

Tampere 

[3] Hershey, J. R., Rennie, S. J., Olsen, P. A., & Kristjansson, T. T. (2010). Super-human multi-talker speech 
recognition: A graphical modeling approach. Computer Speech & Language, 24(1), 45-66.
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8SSC Model
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9Beyond Two Sources

PLACE GREEN WITH B 8 SOON

LAY BLUE AT P ZERO NOW

PLACE RED IN H 3 NOW

PLACE WHITE AT D ZERO SOON

PLACE GREEN WITH B 8 SOONLAY BLUE AT P ZERO NOWPLACE RED IN H 3 NOWPLACE WHITE AT D ZERO SOON

0 dB

-7 dB

 Excellent separation using a variational posterior with 1K masks/frame

-7 dB

-7 dB

2009: New variational methods can separate data with trillions of states

[4] Rennie, S., Hershey, J., Olsen, P., Single Channel Multi-talker Speech Recognition: Graphical 
Modeling Approaches. IEEE Signal Processing Magazine, Vol. 27:6, November 2010.

Audio demos: http://researcher.watson.ibm.com/researcher/view_project.php?id=2819
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10Max Interaction: More than two speakers
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f
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*If all masks are known, the sources can be independently inferred.

*
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11Max Interaction: New Variational Bound

¸
X

k

q(df ) log
p(yf ; df jfskg)

q(df )

log(p(yf jfskg)) = log(
X

df

p(yf ; df jfskg))

 If                                                 the bound is tight!
 Complexity of inference (i.e. #masks inferred) can be controlled
 Models of the sources are utilized to jointly estimate the   
masks and decode the sources
 Deep connections with CASA and MFT.

q(df ) = p(df jyf ; fskg)

[5] Rennie, S., Hershey, J., and Olsen P . "Hierarchical variational loopy belief propagation for multi-
talker speech recognition." ASRU, 2009. 
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12Two Speaker Results 
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13Factorial RBMs for robust ASR

 Learn parts-based models

– Distributed states
• Compositional model 
• Better generalization

 Leverage known interactions

– Instead of learning the transformation 
from noisy speech to clean speech 
again and again

Motivation:
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14Review: Restricted Boltzmann Machines

 A Markov Random Field (MRF)
– Two layers, no connections between hidden layer nodes

– For binary hidden, Gaussian visible units:

– Form of conditional posterior of hidden units

log p(v; h) = ¡
VX

i=1

(vi ¡ bi)
2

2¾2
i

+
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ajhj +

VX
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!ijvihj ¡ Z
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PV
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15Review: Restricted Boltzmann Machines (cont’d)

– Form of conditional prior of a visible unit

– Can be represented as a mixture of        Gaussians

– Can be evaluated in time linear in the number of hidden 
units       since    

p(vijh) =
exp(¡(vi¡bi)

2

2¾2
i

+
PH

j=1 !ijvihj)
R

vi
exp(¡ (vi¡bi)2
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i );
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Q
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16Factorial Hidden Restricted Boltzmann Machines

– Interaction Model describes how the visible 
units of multiple RBMs (two here) generate observed data

– Inference now intractable due to explaining away effects 

– One solution: variational methods 

– Choose surrogate posterior q that makes inference tractable 
(bound tight without structural assumptions on q)

p(yjvx; vn)

log p(y) = log
X

h;v

p(hx; vx)p(hn; vn)p(yjvx; vn)

¸
X

h;v

q(h;v) log
p(hx; vx)p(hn; vn)p(yjv)

q(h;v)

= Eq(vx;vn)[log p(yjv)] +
X

i=x;n

Eq(hi;vi)[log
p(hi; vi)

q(hi; vi)
] ´ L
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FHRBM Model : Factor Graph
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18FHRBMs for Robust ASR

– Speech RBM

– Noise RBM

– Interaction Model (log Mel power spectrum) 

– Assumed form of surrogate posterior q 

p(vx; hx)

p(vn; hn)

p(yjvx;vn) =
Y
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N (yf ; g(vf ); Ã2
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[ this choice ignores 
phase interactions ]
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19FHRBMs for Robust ASR
– Iteration:

1. Update context-dependent linear approx. of interaction

p(yjvx; vn) ¼
Y
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21FHRBMs for Robust ASR

– Iteration:
2. Update the variational parameters of source s

3. Toggle s (between s=x and s=n)
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[6] Rennie, S. J., Fousek, P., & Dognin, P. L, “Factorial Hidden Restricted Boltzmann Machines for noise 
robust speech recognition”. ICASSP 2012.
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22Deep FHRBMs for Robust ASR
– Updates readily generalize to use of deep belief 

network (DBNs) of RBMs

– Example: Source RBMs with two hidden layers

• Top Layer Variables 

• Variational distribution

• New update for first hidden layer

• Extension to use of source RBMs with more than two 
hidden layers straightforward…

ls = fls
1; ls

k; : : : ; ls
Lsg

q(ls) =
Q
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Influence of layer aboveInfluence of layer below



Model-based Speech Separation and Recognition

23

Middle Layer (8 Units)Middle Layer (32 Units)

To
p 

La
ye

r (
8 

U
ni

ts
)

Fe
at

ur
es

 (2
4 

di
m

)

To
p 

La
ye

r (
3 

U
ni

ts
)

Fe
at

ur
es

 (2
4 

di
m

)

Speech RBM Noise RBM



Model-based Speech Separation and Recognition

24Experimental Results

 Task: Test time only noise compensation, noisy in-car 
speech data

 Recognizer: IBM embedded system (eVV)

 AM: 10K Gaussians, 865 CD states

 LM: task-specific grammars

 Training data: 786 hrs, ~10K speakers, C&C, dialing, 
navigation

 Test data: 206k words, well matched
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25Results (cont’d.)

 WER/SER Ranks



 DNA outperforms use of noise GMM on 
this task (diffuse evolving noise)

 FHRBM outperforms DNA, but not DNA 
with Condition Detection (CD)

 CD could be used with FHRBMs…

jµRBMx j = jµGMMx j
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RBMRBMFHRBM
Gaussian ProcessGMMDNA (CD)
Noise ModelSpeech ModelAlgorithm

1 2 3
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26Results (cont’d.) – WER vs. (biased) SNR 
fMLLR off, SS off
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27Results (cont’d.) – WER vs. (biased) SNR 
fMLLR on, SS on
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28Thoughts

– Results/investigations quite preliminary
• Models

– DNA: (matched) quasi-stationary noise model, speech GMM
– FHRBM: no dynamics yet, tiny RBMs

• SNR estimates of each frequency band 
– DNA: estimated uniquely for every speech state for each frame
– FHRBM: single set of SNR estimates for each frame

• Initialization
– DNA: noise model initialized on first 10 frames
– FHRBM: only state posterior (feature layer not yet adapted)

– Need to evaluate FHRBMs on more general noise 
containing non-stationary & structured elements

– Need to explore model/inference procedures further: 
e.g. FHRBM a bootstrap for fast feed-forward system?



Model-based Speech Separation and Recognition

29Direct Product Based Deep Neural Networks

Motivation:
 Resurgence of interest/success with DNNs for ML

– New algorithms, more data, better machines

 Still time-consuming to train
– Restricts neurons/layer, #layers utilized

Idea:
 Learn networks with connections that can be 

represented using sums of direct products
– Make it feasible to learn networks with millions of 

neurons
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30Direct Product DNNs

 Constrain the weight matrix W to be a sum of 
direct products

– Direct products: Kronecker, outer, “box” product
– Low rank W a DPDNN, Input layers are naturally 

Kronecker-structured for spliced input data
– A structured weight-tying strategy that

• Facilitates efficient matrix multiplication, storage
• Composes W from sets of “complete” bases: exact 

representation always possible

W =
X

i

Ai ¯ Bi;
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31Review

 The Kronecker Product (KP)

Interesting Facts:
 FFT can be expressed as a recursive factorization of 

the DFT matrix using KPs

 So can several combinatorial algorithms

 Any circulant Matrix can be diagonalized by DFT

W = A­ B =

µ
a11B a12B
a21B a22B

¶
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32Kronecker Product DNNs

 Efficient Matrix Multiplication

– For M=N,  A, B square

– E.g. Multiplying a vector by 10K x 10K matrix requires only 
1 million rather than 100 million scalar multiplications.

 Efficient Storage
– For M=N, all A,B square

– A 1M x 1M matrix has only 2 million parameters, rather 
than 1 trillion

W =
X

i

Ai ­ Bi; Ai 2 RMi£Ni ; Bi 2 ROi£Pi

W 2 RM£N

(Ai ­ Bi)vec(Z) = vec(BiZAT
i )

O(N2) ! O(N3=2)

O(N2) ! O(2N)
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33Factoring Existing DBNs

 Recall

 If all A,B dims are independent of i, reduces to an 
SVD problem (Van Loan, 1992)

 Spliced features lead to Kron-structured W 

W =
X

i

Ai ­ Bi; Ai 2 RMi£Ni ; Bi 2 ROi£Pi

W = ~W = = UDV T

[7] Fousek, P., Rennie, S., Dognin, P., and Goel, V., “Direct Product Based Deep Belief Networks for 
Automatic Speech Recognition”. ICASSP 2013.



Model-based Speech Separation and Recognition

34Learning/Inference

 Forward Pass

 Error Back-propagation

zj = ¾(xj) = ¾(W zj¡1 + bj)

xj =
X

i

vec(BiZ
j¡1
i AT

i ) + bj

@E

@Bi
= ¢j

i AiZ
(j¡1)T

i

±j¡1 = ¾0(xj¡1) ¢ W T ±j

@E

@Ai
= ¢

(j)T

i BiZ
j¡1
i ;

= ¾0(xj¡1) ¢
X

i

vec(BT
i ¢j

i Ai)
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35Experiments
 50 hr English Broadcast News (EBN) task
 Training: 50 hours 1996/1997 EBN (5/50 Dev.)
 Test: 3 hrs EARS dev-04f set
 Acoustic Model

– Hybrid (NN fully replaces GMM)
– 2200 acoustic targets
– Features: 13 dim. PLP -> VTLN -> CMS ->             

splice ±4 frames -> 117 dim. input features
– Baseline:

• NN topology: 117 -> 1K -> 1K -> 2200
• NN training: Stochastic Gradient, CE (no pre-training)
• WER: 23.0%
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36Training DPDBNs

 Poor Man’s Trainer:
– Enforce Kronecker structure via periodic SVD during 

training (first layer only)

– Not effective

W =
X

i

Ai ­ Bi;

W 2 R1024£117

Bi 2 R1024£13

Ai 2 R1£9
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37Training DPDBNs

 By Projected Gradient
– Project full gradient onto representation

– Pros: easy, correct, sub-routine of existing trainer

– Cons: no training speedup, can’t train large W
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38Results

Trend: For fixed #params, DPDNNs outperform standard DNNs.
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39Current/Future Work

 Native DPDBN Trainer
– Operational, experimentation in progress

• Currently training 100K by 100K weight matrices

 Generalization of estimation framework
– to non-uniform direct products of non-uniform size, and 

transformations thereof

 Test interactions
– RELU, dropout, input noisification,…

 Investigate on composite data
– Factorizations correspond to independence 

assumptions…
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40Scalar-Matrix Function Optimization 
 The Anatomy of the Hessian

[8] Chin, G., Nocedal, J., Olsen, P., Rennie, S., “Second Order Methods for Optimizing Convex Matrix Functions”, 
IEEE Transactions on Audio, Speech, and Language Processing, Special Issue on Large-scale Optimization, 
Vol. 20, No. 6, 2013.
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41Scalar Matrix Function Optimization

 Efficiently Solving the Covariance Selection Problem
– Problem: infer a sparse (L1-regularized) inverse covariance 

matrix that maximizes the probability of a dataset

– Approach: Iteratively apply Newton-like algorithms on locally 
quadratic approximations to the objective
• Efficient inference by exploiting sparsity & structure of Hessian 

– Applicability: recently shown that covariance selection can be 
used to infer the structure of more general networks         
(e.g. discrete)

[9] Olsen, P., Oztoprak, F., Nocedal, J., Rennie, S., Newton-Like Methods for Sparse Inverse Covariance
Estimation, NIPS 2012.
[10] Loh, P., Wainwright, M., “No voodoo here! Learning discrete graphical models via inverse covariance 
estimation”, NIPS 2012.
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42Closing Remarks

 Questions to ponder
– The evolving role of models that can “explain away”

phenomena
• Are feed-forward representations sufficient?

– The known and still poorly understood limitations of current 
neural networks
• More teaching, less tuning

– The increasingly important role of optimization methods in 
machine learning and signal processing
• Help the machine help itself

– The role of separation and robustness research in ASR
• Commercial systems are now very good, but the NN revolution 

is blurring the distinction between core and robust ASR.
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Thank-you.


