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Model-based Speech Separation and Recognition

 Noise-robust Automatic Speech Recognition (ASR)

 Noise-robust Multi-talker ASR

 Signal Separation/Isolation/Analysis/Decomposition

Some Applications

Motivation

mobile 
computing

surveillance

signal re-composition/editing

acoustic forensics

robust audio search

artificial perception

enhanced 
hearing 



Model-based Speech Separation and Recognition

 Multiple sources of interference, including speech
– Computational explosion in the number of possible 

“acoustic states” of the environment

– This makes data acquisition difficult

– This makes statistical data analysis difficult

Why is Robust ASR hard?

PLACE GREEN WITH B 8 SOONLAY BLUE AT P ZERO NOWPLACE RED IN H 3 NOWPLACE WHITE AT D ZERO SOON

Audio demos: http://researcher.watson.ibm.com/researcher/view_project.php?id=2819
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4Combinatorial Considerations
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4Combinatorial Considerations
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5Factorial Models of Noisy Speech

BIN      WHITE      BY      Z      8      AGAINBIN      GREEN      WITH      A      2      SOONSET      GREEN      IN      F      2      NOWLAY      RED      WITH      C      1      PLEASE 

BIN      WHITE      BY      Z      8      AGAIN
SET      GREEN      IN      F      2      NOW

),|( nxyp

x dB

n
dB

Traffic Noise
Engine Noise

Speech Babble
Airport Noise

Car Noise
Music

Speech
Speech

Speech



Model-based Speech Separation and Recognition

6Exact Interaction:  signal with additive noise, log domain
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[1] Hershey, J. R., Rennie, S. J., & Le Roux, J. (2012). Factorial Models for Noise Robust Speech Recognition. 
Techniques for Noise Robustness in Automatic Speech Recognition, 311-345.
[2] Radfar, M. H. et al., (2012) “Nonlinear minimum mean square error estimator for mixture-maximisation
approximation,” Electron. Lett., vol. 42, no. 12, pp. 724–725.
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7Pascal Speech Separation Challenge:
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Mixture

2006: Factorial HMMs achieve super-human performance on the SSC. 

Tampere 

[3] Hershey, J. R., Rennie, S. J., Olsen, P. A., & Kristjansson, T. T. (2010). Super-human multi-talker speech 
recognition: A graphical modeling approach. Computer Speech & Language, 24(1), 45-66.
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8SSC Model
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9Beyond Two Sources

PLACE GREEN WITH B 8 SOON

LAY BLUE AT P ZERO NOW

PLACE RED IN H 3 NOW
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PLACE GREEN WITH B 8 SOONLAY BLUE AT P ZERO NOWPLACE RED IN H 3 NOWPLACE WHITE AT D ZERO SOON

0 dB

-7 dB

 Excellent separation using a variational posterior with 1K masks/frame

-7 dB

-7 dB

2009: New variational methods can separate data with trillions of states

[4] Rennie, S., Hershey, J., Olsen, P., Single Channel Multi-talker Speech Recognition: Graphical 
Modeling Approaches. IEEE Signal Processing Magazine, Vol. 27:6, November 2010.

Audio demos: http://researcher.watson.ibm.com/researcher/view_project.php?id=2819
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10Max Interaction: More than two speakers
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*If all masks are known, the sources can be independently inferred.

*
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11Max Interaction: New Variational Bound

¸
X

k

q(df ) log
p(yf ; df jfskg)

q(df )

log(p(yf jfskg)) = log(
X

df

p(yf ; df jfskg))

 If                                                 the bound is tight!
 Complexity of inference (i.e. #masks inferred) can be controlled
 Models of the sources are utilized to jointly estimate the   
masks and decode the sources
 Deep connections with CASA and MFT.

q(df ) = p(df jyf ; fskg)

[5] Rennie, S., Hershey, J., and Olsen P . "Hierarchical variational loopy belief propagation for multi-
talker speech recognition." ASRU, 2009. 
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12Two Speaker Results 



Model-based Speech Separation and Recognition

13Factorial RBMs for robust ASR

 Learn parts-based models

– Distributed states
• Compositional model 
• Better generalization

 Leverage known interactions

– Instead of learning the transformation 
from noisy speech to clean speech 
again and again

Motivation:
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14Review: Restricted Boltzmann Machines

 A Markov Random Field (MRF)
– Two layers, no connections between hidden layer nodes

– For binary hidden, Gaussian visible units:

– Form of conditional posterior of hidden units

log p(v; h) = ¡
VX
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(vi ¡ bi)
2
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15Review: Restricted Boltzmann Machines (cont’d)

– Form of conditional prior of a visible unit

– Can be represented as a mixture of        Gaussians

– Can be evaluated in time linear in the number of hidden 
units       since    

p(vijh) =
exp(¡(vi¡bi)
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vi
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16Factorial Hidden Restricted Boltzmann Machines

– Interaction Model describes how the visible 
units of multiple RBMs (two here) generate observed data

– Inference now intractable due to explaining away effects 

– One solution: variational methods 

– Choose surrogate posterior q that makes inference tractable 
(bound tight without structural assumptions on q)

p(yjvx; vn)

log p(y) = log
X

h;v

p(hx; vx)p(hn; vn)p(yjvx; vn)

¸
X

h;v

q(h;v) log
p(hx; vx)p(hn; vn)p(yjv)

q(h;v)

= Eq(vx;vn)[log p(yjv)] +
X

i=x;n

Eq(hi;vi)[log
p(hi; vi)

q(hi; vi)
] ´ L
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FHRBM Model : Factor Graph
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18FHRBMs for Robust ASR

– Speech RBM

– Noise RBM

– Interaction Model (log Mel power spectrum) 

– Assumed form of surrogate posterior q 

p(vx; hx)

p(vn; hn)
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[ this choice ignores 
phase interactions ]



Model-based Speech Separation and Recognition

19FHRBMs for Robust ASR
– Iteration:

1. Update context-dependent linear approx. of interaction

p(yjvx; vn) ¼
Y
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21FHRBMs for Robust ASR

– Iteration:
2. Update the variational parameters of source s

3. Toggle s (between s=x and s=n)
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[6] Rennie, S. J., Fousek, P., & Dognin, P. L, “Factorial Hidden Restricted Boltzmann Machines for noise 
robust speech recognition”. ICASSP 2012.
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22Deep FHRBMs for Robust ASR
– Updates readily generalize to use of deep belief 

network (DBNs) of RBMs

– Example: Source RBMs with two hidden layers

• Top Layer Variables 

• Variational distribution

• New update for first hidden layer

• Extension to use of source RBMs with more than two 
hidden layers straightforward…

ls = fls
1; ls

k; : : : ; ls
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24Experimental Results

 Task: Test time only noise compensation, noisy in-car 
speech data

 Recognizer: IBM embedded system (eVV)

 AM: 10K Gaussians, 865 CD states

 LM: task-specific grammars

 Training data: 786 hrs, ~10K speakers, C&C, dialing, 
navigation

 Test data: 206k words, well matched
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25Results (cont’d.)

 WER/SER Ranks



 DNA outperforms use of noise GMM on 
this task (diffuse evolving noise)

 FHRBM outperforms DNA, but not DNA 
with Condition Detection (CD)

 CD could be used with FHRBMs…

jµRBMx j = jµGMMx j
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26Results (cont’d.) – WER vs. (biased) SNR 
fMLLR off, SS off
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27Results (cont’d.) – WER vs. (biased) SNR 
fMLLR on, SS on
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28Thoughts

– Results/investigations quite preliminary
• Models

– DNA: (matched) quasi-stationary noise model, speech GMM
– FHRBM: no dynamics yet, tiny RBMs

• SNR estimates of each frequency band 
– DNA: estimated uniquely for every speech state for each frame
– FHRBM: single set of SNR estimates for each frame

• Initialization
– DNA: noise model initialized on first 10 frames
– FHRBM: only state posterior (feature layer not yet adapted)

– Need to evaluate FHRBMs on more general noise 
containing non-stationary & structured elements

– Need to explore model/inference procedures further: 
e.g. FHRBM a bootstrap for fast feed-forward system?
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29Direct Product Based Deep Neural Networks

Motivation:
 Resurgence of interest/success with DNNs for ML

– New algorithms, more data, better machines

 Still time-consuming to train
– Restricts neurons/layer, #layers utilized

Idea:
 Learn networks with connections that can be 

represented using sums of direct products
– Make it feasible to learn networks with millions of 

neurons
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30Direct Product DNNs

 Constrain the weight matrix W to be a sum of 
direct products

– Direct products: Kronecker, outer, “box” product
– Low rank W a DPDNN, Input layers are naturally 

Kronecker-structured for spliced input data
– A structured weight-tying strategy that

• Facilitates efficient matrix multiplication, storage
• Composes W from sets of “complete” bases: exact 

representation always possible

W =
X

i

Ai ¯ Bi;
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31Review

 The Kronecker Product (KP)

Interesting Facts:
 FFT can be expressed as a recursive factorization of 

the DFT matrix using KPs

 So can several combinatorial algorithms

 Any circulant Matrix can be diagonalized by DFT

W = A B =

µ
a11B a12B
a21B a22B

¶
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 Efficient Matrix Multiplication

– For M=N,  A, B square

– E.g. Multiplying a vector by 10K x 10K matrix requires only 
1 million rather than 100 million scalar multiplications.

 Efficient Storage
– For M=N, all A,B square

– A 1M x 1M matrix has only 2 million parameters, rather 
than 1 trillion

W =
X

i

Ai  Bi; Ai 2 RMi£Ni ; Bi 2 ROi£Pi

W 2 RM£N

(Ai  Bi)vec(Z) = vec(BiZAT
i )

O(N2) ! O(N3=2)

O(N2) ! O(2N)
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33Factoring Existing DBNs

 Recall

 If all A,B dims are independent of i, reduces to an 
SVD problem (Van Loan, 1992)

 Spliced features lead to Kron-structured W 

W =
X

i

Ai  Bi; Ai 2 RMi£Ni ; Bi 2 ROi£Pi

W = ~W = = UDV T

[7] Fousek, P., Rennie, S., Dognin, P., and Goel, V., “Direct Product Based Deep Belief Networks for 
Automatic Speech Recognition”. ICASSP 2013.
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34Learning/Inference

 Forward Pass

 Error Back-propagation

zj = ¾(xj) = ¾(W zj¡1 + bj)
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X
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= ¢
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i ¢j
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35Experiments
 50 hr English Broadcast News (EBN) task
 Training: 50 hours 1996/1997 EBN (5/50 Dev.)
 Test: 3 hrs EARS dev-04f set
 Acoustic Model

– Hybrid (NN fully replaces GMM)
– 2200 acoustic targets
– Features: 13 dim. PLP -> VTLN -> CMS ->             

splice ±4 frames -> 117 dim. input features
– Baseline:

• NN topology: 117 -> 1K -> 1K -> 2200
• NN training: Stochastic Gradient, CE (no pre-training)
• WER: 23.0%
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36Training DPDBNs

 Poor Man’s Trainer:
– Enforce Kronecker structure via periodic SVD during 

training (first layer only)

– Not effective

W =
X

i

Ai  Bi;

W 2 R1024£117

Bi 2 R1024£13

Ai 2 R1£9
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37Training DPDBNs

 By Projected Gradient
– Project full gradient onto representation

– Pros: easy, correct, sub-routine of existing trainer

– Cons: no training speedup, can’t train large W
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38Results

Trend: For fixed #params, DPDNNs outperform standard DNNs.
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39Current/Future Work

 Native DPDBN Trainer
– Operational, experimentation in progress

• Currently training 100K by 100K weight matrices

 Generalization of estimation framework
– to non-uniform direct products of non-uniform size, and 

transformations thereof

 Test interactions
– RELU, dropout, input noisification,…

 Investigate on composite data
– Factorizations correspond to independence 

assumptions…
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40Scalar-Matrix Function Optimization 
 The Anatomy of the Hessian

[8] Chin, G., Nocedal, J., Olsen, P., Rennie, S., “Second Order Methods for Optimizing Convex Matrix Functions”, 
IEEE Transactions on Audio, Speech, and Language Processing, Special Issue on Large-scale Optimization, 
Vol. 20, No. 6, 2013.
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41Scalar Matrix Function Optimization

 Efficiently Solving the Covariance Selection Problem
– Problem: infer a sparse (L1-regularized) inverse covariance 

matrix that maximizes the probability of a dataset

– Approach: Iteratively apply Newton-like algorithms on locally 
quadratic approximations to the objective
• Efficient inference by exploiting sparsity & structure of Hessian 

– Applicability: recently shown that covariance selection can be 
used to infer the structure of more general networks         
(e.g. discrete)

[9] Olsen, P., Oztoprak, F., Nocedal, J., Rennie, S., Newton-Like Methods for Sparse Inverse Covariance
Estimation, NIPS 2012.
[10] Loh, P., Wainwright, M., “No voodoo here! Learning discrete graphical models via inverse covariance 
estimation”, NIPS 2012.
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42Closing Remarks

 Questions to ponder
– The evolving role of models that can “explain away”

phenomena
• Are feed-forward representations sufficient?

– The known and still poorly understood limitations of current 
neural networks
• More teaching, less tuning

– The increasingly important role of optimization methods in 
machine learning and signal processing
• Help the machine help itself

– The role of separation and robustness research in ASR
• Commercial systems are now very good, but the NN revolution 

is blurring the distinction between core and robust ASR.
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Thank-you.


