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Model-based Speech Separation and Recognition

Motivation

= Noise-robust Automatic Speech Recognition (ASR)
= Noise-robust Multi-talker ASR

= Signal Separation/Isolation/Analysis/Decomposition

Some Applications

surveillance

mobile | acoustic forensics
computing

signal re-composition/editing ~ artificial perception

robust audio search
enhanced

hearing




Model-based Speech Separation and Recognition

Why Is Robust ASR hard?

= Multiple sources of interference, including speech

— Computational explosion in the number of possible
“acoustic states” of the environment

— This makes data acquisition difficult

— This makes statistical data analysis difficult

Audio demos: http://researcher.watson.ibm.com/researcher/view project.php?id=2819
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Combinatorial Considerations g
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Combinatorial Considerations 1
p(s’) W ps™) W pis™) W
| I |
n °
st S sN

B - functions of @ Inference: O(  js"))

connected variables



Model-based Speech Separation and Recognition

Factorial Models of Noisy Speech
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[1] Hershey, J. R., Rennie, S. J., & Le Roux, J. (2012). Factorial Models for Noise Robust Speech Recognition.
Techniques for Noise Robustness in Automatic Speech Recognition, 311-345.

[2] Radfar, M. H. et al., (2012) “Nonlinear minimum mean square error estimator for mixture-maximisation

approximation,” Electron. Lett., vol. 42, no. 12, pp. 724-725.
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Pascal Speech Separation Challenge: 7

2006: Factorial HMMs achieve super-human performance on the SSC.
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[3] Hershey, J. R., Rennie, S. J., Olsen, P. A., & Kristjansson, T. T. (2010). Super-human multi-talker speech
recognition: A graphical modeling approach. Computer Speech & Language, 24(1), 45-66.
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SSC Model

LM to acoustic state
model:
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Beyond Two Sources

2009: New variational methods can separate data with trillions of states

N PAXCE RREHNPANHRNDBRE

= Excellent separation using a variational posterior with 1K masks/frame

PLACE WHITE AT D ZERO SOON

0dB
R PLACE RED IN H 3 NOW -7dB
R LAY BLUE AT P ZERO NOW 7 dB

PLACE GREEN WITH B 8 SOON -7 dB

Audio demos: http://researcher.watson.ibm.com/researcher/view project.php?id=2819

[4] Rennie, S., Hershey, J., Olsen, P., Single Channel Multi-talker Speech Recognition: Graphical
Modeling Approaches. IEEE Signal Processing Magazine, Vol. 27:6, November 2010.
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Max Interaction: More than two speakers 10
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Max Interaction: New Variational Bound "
- £ _k < - £ _k
log(p(y¢jfs™g)) = log(  p(yr;dgejfs™g))
df
> - dejFsk
. 0(dg) 10g p(Yr ;J s)
. q(d¢)

<1t q(de) = p(dejys; FSQ) the bound is tight!
= Complexity of inference (i.e. #masks inferred) can be controlled

» Models of the sources are utilized to jointly estimate the
masks and decode the sources
» Deep connections with CASA and MFT.

[5] Rennie, S., Hershey, J., and Olsen P . "Hierarchical variational loopy belief propagation for multi-
talker speech recognition." ASRU, 2009.
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Two Speaker Results 12
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Factorial RBMs for robust ASR 13
Feature representation
Motivation: 2o - N :T' o
AR BE]  3rd layer
= Learn parts-based models “Objects”
— Distributed states
« Compositional model
- Better generalization 2nd layer
“Object parts”
= Leverage known interactions
— Instead of learning the transformation 1st layer
from noisy speech to clean speech “Edges”

again and again

Pixels



Model-based Speech Separation and Recognition

Review: Restricted Boltzmann Machines 14

= A Markov Random Field (MRF)
— Two layers, no connections between hidden layer nodes

— For binary hidden, Gaussian visible units:
X (Vi i bi)2 X XX
I _
IZ%?I ajhj + !ijVihj 1 Z
! i=1 i=1j=1

logp(v;h) = i

— Form of conditional posterior of hidden units

PV'

i exp(a; + .. Yis V3
1+ exp(aj + i—1 !ijVi)
X

— sig(aj + !ijVi)
=1
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Review: Restricted Boltzmann Machines (cont’d) 15

— Form of conditional prior of a visible unit

- i i bi 2 P
b _ exp( I(\/23/4'1i2 =+ }_Izl Lijvihy)
p(VIJ ) N (Vi ibi)2 + PH

v PG 5=+ =g Nijvihg)

X
= N(vithi +%  Vijhy;%);
j=1

— Can be represented as a mixture of 27 Gaussians

— Can be evaluated in time fnear in the number of hidden
units H since p(hjv) = ~; p(hjjv)
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Factorial Hidden Restricted Boltzmann Machines 16
— Interaction Model P(YJV*; V") describes how the visible
units of multiple RBMs (two here) generate observed data
— Inference now intractable due to explaining away effects

— One solution: variational methods

>
logp(y) =log  p(h*;v*)p(h™; v™)p(yive;v™)
h;v
X X« yX N.,,N :
2% i) log ATV IR V(YY)
n a(h; v)
’ > iy
_ : p(h';v'). _
— Eq(vX;v'“)[IOg p(yIv)] + - Eq(hi;vi)[log C](hi;Vi)] L

— Choose surrogate posterior g that makes inference tractable
(bound tight without structural assumptions on q)
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FHRBMSs for Robust ASR 18

— Speech RBM  p(v*; h*)

— Noise RBM p(v"™; h")

— Interaction Model (log Mel power spectrum)
p(Yjviv™) = Ny 9(ve); A);  ve = [vf Vil

£
_ X n [ this choice ignores
g(ve) = log(exp(ve) + exp(vr)) phase interactions ]

— Assumed form of surrogate posterior g

Xy X n.,,MN\ — Y X. /N v X Wq n
qa(h™; v hsvt)y = alve;ve)  acthy)  achy)
f j=1 k=1
Y Y N hs LS
= N1 Of) (°he)3(1 § %)™t

T s=x;nj=1
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FHRBMs for Robust ASR 19
— Iteration:
1. Update context-dependent linear approx. of interaction
Y "
PIViV™) s N(ye;9(3e) + (Ve i 2)" de; AD);
f _
de = [dv;< dv?]T — @Tgf_ B Likelihood, p(y|x,n)
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Joint Prior, p(x,n)
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Posterior, p(x,nly)
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FHRBMSs for Robust ASR o

— Iteration:
2. Update the variational parameters of source s

a) A2 —(3/is + d2e (A )i2)il

S
Vg

] _ Pys . o
0) tvg = A\Z/;(3/4\/'§2(bv;°: + 3/4\2/2 j=1 !?j hj?’) + dvii (Agc) .zygc)

Influence of source’s network Influence of data

— - A0 — A 2
Ye = YF 1 gv% 1v$ Af = Af + gv$ 3/“fgv$

) ope = siglas + Lo, 15 1ye)
hj J f=1 ~fj Vf

3. Toggle s (between s=x and s=n)

[6] Rennie, S. J., Fousek, P., & Dognin, P. L, “Factorial Hidden Restricted Boltzmann Machines for noise
robust speech recognition”. ICASSP 2012.
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Deep FHRBMs for Robust ASR 22

— Updates readily generalize to use of deep belief
network (DBNs) of RBMs

— Example: Source RBMs with two hidden layers

- Top Layer Variables MER | DARRE N

Q Q

- Variational distribution q(1®) = "~ q(lR) =

* New update for first hidden layer

P s

ohJ?’ — Sig<af + o !%1v? + ®j = 1 B3 ° IS)

Influence of layer below Influence of layer above

» Extension to use of source RBMs with more than two
hidden layers straightforward...
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Speech RBM

Top Layer (8 Units)
Top Layer (3 Units)

Middle Layer (8 Units)

Features (24 dim)
Features (24 dim)

hidden unit



Model-based Speech Separation and Recognition

Experimental Results 2

= Task: Test time only noise compensation, noisy in-car
speech data

= Recognizer: IBM embedded system (eVV)
= AM: 10K Gaussians, 865 CD states
= LM: task-specific grammars

= Training data: 786 hrs, ~10K speakers, C&C, dialing,
navigation

= Test data: 206k words, well matched
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Results (cont’d.)

Algorithm Speech Model Noise Model

DNA (CD) GMM Gaussian Process
FHRBM RBM RBM
SNM GMM Fixed Gaussian

= WER/SER Ranks '+ 2 |3

“JOrBM*] = J0cMMX]
= DNA outperforms use of noise GMM on
this task (diffuse evolving noise)

= FHRBM outperforms DNA, but not DNA
with Condition Detection (CD)

= CD could be used with FHRBMSs....

Algorithm WER/SER (%)
MMI (B1) 134377 B
Bl + SNM 1.70/5.06

Bl + DNA 181 1.27/4.04

Bl + FHRBM 2 1.20/3.51 2
B1 + DNA-CD 1 1.09/3.19 2
MMI+SS (B2) . 1.18/3.41 .
B2 + SNM 1.76/5.27

B2 + DNA 1.34/4.24

B2 + FHRBM 2 1.18/3.48 &
B2 + DNA-CD 21.10/3.17 &
MMI+fMLLR (B3) 1.08/3.00 31
B3 + SNM 1.25/3.59

B3 + DNA 21.06/3.04

B3 + FHRBM 2 1.03/2.95 ?
B3 + DNA-CD 1.0.93/2.59 [t
MMI+IMLLRSS (B4) 2 1.002.79 2
B4 + SNM 1.26/3.56

B4 + DNA 1.02/3.03

B4 + FHRBM 310.99/2.82 [

B4 + DNA-CD i 0.95/2.67

1
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Results (cont’d.) — WER vs. (biased) SNR

WER

Per-SNR word errors. fMMI| model, fMLLR off, SS off
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Results (cont'd.) — WER vs. (biased) SNR 21

Per-SNR word errors. fMMI model, fMLLR on, SS on
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Thoughts 2

— Results/investigations quite preliminary

*  Models
— DNA: (matched) quasi-stationary noise model, speech GMM

— FHRBM: no dynamics yet, tiny RBMs
SNR estimates of each frequency band
— DNA: estimated uniquely for every speech state for each frame
— FHRBM: single set of SNR estimates for each frame
* Initialization
— DNA: noise model initialized on first 10 frames
— FHRBM: only state posterior (feature layer not yet adapted)

— Need to evaluate FHRBMs on more general noise
containing non-stationary & structured elements

— Need to explore model/inference procedures further:
e.g. FHRBM a bootstrap for fast feed-forward system?
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Direct Product Based Deep Neural Networks 2

Motivation:

= Resurgence of interest/success with DNNs for ML
— New algorithms, more data, better machines

= Still time-consuming to train
— Restricts neurons/layer, #layers utilized

ldea:

= Learn networks with connections that can be
represented using sums of direct products

— Make it feasible to learn networks with millions of
neurons
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Direct Product DNNs 30

= Constrain the weight matrix W to be a sum of
direct products

W = Aj - Bi;
I
— Direct products: Kronecker, outer, “box” product

—Low rank W a DPDNN, Input layers are naturally
Kronecker-structured for spliced input data

— A structured weight-tying strategy that

 Facilitates efficient matrix multiplication, storage

« Composes W from sets of “complete” bases: exact
representation always possible
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Review 31

= The Kronecker Product (KP)

1

_ _ allB algB
W=ABE _(61215 ax;B

Interesting Facts:

= FFT can be expressed as a recursive factorization of
the DFT matrix using KPs

= S0 can several combinatorial algorithms

= Any circulant Matrix can be diagonalized by DFT
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Kronecker Product DNNs 22
X W 2 R|\/| £N

W = - Ai X Bh Ai 2 RMiENi; Bi 2 ROiEPi
|

» Efficient Matrix Multiplication

(Ai ® Bj)vec(Z) = vec(B;ZA)

—For M=N, A, Bsquare O(N?) ¥ O(N3%2)

— E.g. Multiplying a vector by 10K x 10K matrix requires only
1 million rather than 100 million scalar multiplications.

» Efficient Storage
— For M=N, all AB square O(N?) T O(2N)

— A 1M x 1M matrix has only 2 million parameters, rather
than 1 trillion
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Factoring Existing DBNs a3
= Recall
W= Ai®Bj; A; 2 RMiENi. g, 2 ROIEP;

|
» [f all A,B dims are independent of I, reduces to an
SVD problem (Van Loan, 1992)

W = W = =UDV'

» Spliced features lead to Kron-structured W

[7] Fousek, P., Rennie, S., Dognin, P., and Goel, V., “Direct Product Based Deep Belief Networks for
Automatic Speech Recognition”. ICASSP 2013.
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Learning/Inference 34

= Forward Pass

Xj = vec(B;zJ 1AT) + b;

I
= Error Back-propagation

11 = %(Xj51) CW T 45
> _
=% (xj;1)¢  vec(B{ ¢1A)

I
°E W gziiy, U

- - _aNT
OA; Lo @B; = GiAz
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Experiments *

= 50 hr English Broadcast News (EBN) task
= Training: 50 hours 1996/1997 EBN (5/50 Dev.)
= Test: 3 hrs EARS dev-04f set

= Acoustic Model
— Hybrid (NN fully replaces GMM)
— 2200 acoustic targets

— Features: 13 dim. PLP -> VTLN -> CMS ->
splice 4 frames -> 117 dim. input features

— Baseline:

* NN topology: 117 -> 1K -> 1K -> 2200
* NN training: Stochastic Gradient, CE (no pre-training)
* WER: 23.0%
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Training DPDBNSs

= Poor Man’s Trainer:

— Enforce Kronecker structure via periodic SVD during

training (first layer only)

— Not effective

W =

W 2
A; 2
B; 2

36

<
Ai ® Bi; terms %FAcc | %WER
i 1 34.1 24.3
R1024£117 2 33.7 | 25.0
Q1£9 3 34.0 24.5
L024£13 all (baseline) | 35.0 23.0
=)
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Training DPDBNSs

* By Projected Gradient

37

— Project full gradient onto representation

— Pros: easy, correct, sub-routine of existing trainer

— Cons: no training speedup, can't train large W

L1 Topology FAcc | WER | L1 Param. Reduction
[1024,117] (base) | 35.0 | 23.0 | 1

1x[32*9, 32*13] 32.8 [ 25.0 | 170

2X[32*9, 32*13] 329 | 249 | 85

3x[329, 32*13] 332 | 24.6 | 57
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Results 38
Standard DNN DPDNN

Topology PR PR | FAcc | WER || Topology PR PR | FAcc| WER
L1/L2/L3 L1/L2/L3 | DNN L1/L2/L3 L1/L2/L3 | DNN

(740,117) 1.4 1.5 |32.7 |26.4 ||5x(32*32, 9"13) 27 1.5 [33.7 |24.8
(740,740) (1.9 10x(32*32,32*32) |49

(2220,740) (1.4 (2220,1024) 1

(280,117) [3.7 4.7 |31.2 |27.7 || 5x(32*32, 9*13) 27 47 |131.9 [26.9
(280,280) |13.4 10x(32732,32*32) |49

(2220, 280) | 3.7 10x(2220%1,32*32) | 3.2

FlBe 1) |Z56 10.3 | 28.8 |31.2 || 5x(32*32, 9"13) 27 10.3 | 29.8 | 29.1
(1.35,185) |57.3 20x(32"32,32*32) |25

(2220, 135) | 7.6 4x(2220*1, 32*32) | 7.9

(2k, 117) 05 0.75 | 34.7 |23.5 || 5x(64*64, 9"13) 11 1.5 |350D |285
(1K, 2K) 05 10x(64764,64"64) |25

(2220, 1k) [1.0 (2220,1024) 1

Trend: For fixed #params, DPDNNSs outperform standard DNNSs.
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Current/Future Work 39

= Native DPDBN Trainer

— Operational, experimentation in progress
* Currently training 100K by 100K weight matrices

= Generalization of estimation framework

— to non-uniform direct products of non-uniform size, and
transformations thereof

» Test interactions
— RELU, dropout, input noisification,...

* [nvestigate on composite data

— Factorizations correspond to independence
assumptions...
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40

Scalar-Matrix Function Optimization

* The Anatomy of the Hessian

Theorem: Any scalar-matrix function f(X) formed using trace(),
log det(), ()7, and arithmetic operations (+, —, * and ()~!) has a
Hessian of the form:

F1(X) = ZA @ B + Z A X B; + Z vec(Aj)vec' (B;),

i=ki+1 i=ko+1

This allows the Hessian to be efficiently utilized...

ki ko k
f"(X)vec(C) = vec ( g B,CA' + E B.C'A' + E A,-trace(CTB,-)) :
=l i=ki+1 i=ka+1
[8] Chin, G., Nocedal, J., Olsen, P., Rennie, S., “Second Order Methods for Optimizing Convex Matrix Functions”,

IEEE Transactions on Audio, Speech, and Language Processing, Special Issue on Large-scale Optimization,
Vol. 20, No. 6, 2013.
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Scalar Matrix Function Optimization “

» Efficiently Solving the Covariance Selection Problem

— Problem: infer a sparse (L1-regularized) inverse covariance
matrix that maximizes the probability of a dataset

P* = arg max log det(P) — trace(SP) — \|[vec(P)||;.
P>0

— Approach: Iteratively apply Newton-like algorithms on locally
guadratic approximations to the objective

« Efficient inference by exploiting sparsity & structure of Hessian

— Applicability: recently shown that covariance selection can be
used to infer the structure of more general networks
(e.qg. discrete)
[9] Olsen, P., Oztoprak, F., Nocedal, J., Rennie, S., Newton-Like Methods for Sparse Inverse Covariance
Estimation, NIPS 2012.

[10] Loh, P., Wainwright, M., “No voodoo here! Learning discrete graphical models via inverse covariance
estimation”, NIPS 2012.
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Closing Remarks @

» Questions to ponder
— The evolving role of models that can “explain away”
phenomena
» Are feed-forward representations sufficient?

— The known and still poorly understood limitations of current
neural networks

* More teaching, less tuning

— The increasingly important role of optimization methods in
machine learning and signal processing

* Help the machine help itself
— The role of separation and robustness research in ASR

« Commercial systems are now very good, but the NN revolution
IS blurring the distinction between core and robust ASR.
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43

Thank-you.



