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ABSTRACT

We present a highly efficient, data-based method for monaural feature
enhancement targeted at automatic speech recognition (ASR) in rever-
berant environments with highly non-stationary noise. Our approach
is based on bidirectional Long Short-Term Memory recurrent neural
networks trained to map noise corrupted features to clean features.
In extensive test runs, enhanced features are evaluated with gradu-
ally refined recognition back-ends, reaching from simple maximum
likelihood (ML) trained recognisers to state-of-the-art ASR using
discriminative training and model adaptation techniques. In the re-
sult, consistent improvements over the baseline ASR systems on both
the small and medium vocabulary tasks of the 2nd CHiME Speech
Separation and Recognition Challenge demonstrate the efficacy of
the proposed method, achieving up to 52 % relative reduction of word
error rate with respect to the multi-condition ML training baselines.

Index Terms— Long Short-Term Memory, recurrent neural net-
works, feature enhancement

1. INTRODUCTION

Decoding of speech in unfavourable acoustic conditions, especially in
reverberated environments with interfering noise sources, is still a ma-
jor challenge for today’s automatic speech recognition (ASR) systems
despite decades of research on this topic. Robustness of ASR systems
can be addressed at different stages of the recognition process [1]
– popular techniques comprise front-end speech enhancement, such
as by microphone array processing or speech de-noising techniques,
as well as improvements in the back-end by model adaptation or
improved ASR architectures taking into account additional sources
of information, such as neural networks. ‘In between’ one can also
address noise-robust features – a popular expert crafted feature extrac-
tion scheme is RASTA-PLP [2] – or feature enhancement, defining
a mapping from noisy to noise free speech features. An example
for a data-based, non-parametric technique for feature enhancement
is histogram equalisation [3]. Furthermore, feature enhancement
by recurrent neural networks has been considered [4]. In particular,
bidirectional Long Short-Term Memory (BLSTM) recurrent neural
networks (RNNs) have been employed in [5] for feature enhancement
in highly non-stationary noise, by mapping noisy cepstral features to
clean speech cepstral features, and have been shown to outperform
traditional RNNs on this task.

In this contribution, we apply the methodology from [5] to the
small vocabulary and the medium vocabulary ASR tasks of the 2nd
CHiME Speech Separation and Recognition Challenge [6]. A major
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focus thereby is the interaction between feature enhancement and
speech recognisers. In particular, we investigate the performance gain
by using feature enhancement on top of refined speech recognition
back-ends, comprising multi-condition training as well as more ad-
vanced adaptation techniques such as speaker adaptive transforms, as
well as discriminative training with noisy data. Furthermore, we eval-
uate feature enhancement both in a ‘plug-and-play’ fashion, where
enhanced cepstral features are used without modification of the back-
end, and contrast this with the performance of using models re-trained
with enhanced features. Both of these points have not been addressed
in our earlier work [5] which only considered re-trained models and
maximum likelihood (ML) recogniser training. In the following,
we will first outline our feature enhancement methodology before
describing the experimental setup and presenting the results on the
CHiME Challenge data.

2. EVALUATION DATABASE

The small vocabulary task of the 2nd CHiME Challenge [6] consists
of reverberated and noisy utterances from the Grid corpus resem-
bling command-and-control utterances with a fixed grammar and a
vocabulary size of 51. Utterances have been convolved with real
room impulse responses measured in a domestic environment, and
overlaid with realistic noise recorded from the same environment
at signal-to-noise ratios (SNRs) from -6 to 9 dB, in steps of 3 dB.
A closed set of 34 speakers is used for training, development, and
testing in the small vocabulary task. The medium vocabulary task is
created in a similar way, using the same noise corpus but the speaker
independent development and evaluation test sets of the Wall Street
Journal corpus (WSJ-0) with 5 k vocabulary size and disjoint sets of
84, 10, and 8 training, development, and test speakers. For both tasks,
the same utterances are used at all SNRs in the development and
test sets. The training sets comprise a randomly selected subset of
utterances for each SNR. In the small vocabulary task, the training set
has 17 000 utterances while the development and test sets consist of
6⇥600 = 3 600 utterances. In the medium vocabulary task, there are
7 138 training, 6⇥ 409 = 2 454 development, and 6⇥ 330 = 1 980
test utterances. While the Challenge data is stereophonic, in our
study we only consider monaural signal processing since we are espe-
cially interested in use cases such as multimedia information retrieval,
where multi-channel audio with specified microphone placement is
usually not available.

3. METHODOLOGY

Our feature enhancement approach is based on BLSTM recurrent
neural networks that are trained to map cepstral features of noisy

jon
The 2nd CHiME Workshop on Machine Listening in Multisource Environments              Vancouver, Canada, June 1st, 2013

jon




87

speech to the corresponding features of noise free1 speech, exploiting
the context-sensitivity of the BLSTM technique. We have shown
that the BLSTM architecture outperforms standard RNNs by a large
margin on the feature enhancement task [5].

The basic architecture of Long Short-Term Memory (LSTM)
networks was introduced in [7]. The underlying principle can be seen
as an extension of conventional RNNs that enables the modelling of
long-range temporal context for improved sequence labelling. LSTM
networks are able to store information in linear memory cells over a
longer period of time and can learn the optimal amount of contextual
information relevant for the regression or classification task. An
LSTM hidden layer is composed of multiple recurrently connected
subnets (so-called memory blocks). Every memory block consists
of self-connected memory cells and three multiplicative gate units
(input, output, and forget gates). Since these gates allow for write,
read, and reset operations within a memory block, an LSTM block can
be interpreted as (differentiable) memory chip in a digital computer.
Further details on the LSTM principle can be found in [8].

Standard RNNs have access to past but not to future context.
To exploit both, past and future context, RNNs can be extended to
bidirectional RNNs (BRNN), where two separate recurrent hidden
layers scan the input sequences in opposite directions [9]. The two
hidden layers are connected to the same output layer, which therefore
has access to context information in both directions. Bidirectional
modelling can also be applied within an LSTM framework, which
results in BLSTM. In the context of feature enhancement, BLSTM
has been shown to outperform LSTM modelling at the expense of
on-line capability [5].

4. EXPERIMENTS

4.1. Network Training

For each of the small and medium vocabulary tracks, a feature en-
hancement BLSTM network is trained on the task to map the official
noisy training sets of the Challenge data to the corresponding re-
verberated training set. Only the isolated utterances are used. In
our experiments, we use 39 cepstral mean normalised mel-frequency
cepstral coefficients (MFCCs) exactly corresponding to the features
employed by the Challenge baseline. In particular, the stereophonic
signals are down-mixed to monophonic audio by averaging channels.

Our feature enhancement network has one input node for each
noise corrupted input feature vector component and one output node
for each regression target representing the noise free feature vector.
In particular, the networks also predicts delta and acceleration coeffi-
cients, and can use the predicted deltas and accelerations as additional
context information. Prior to network training, we compute the global
means and variances of the reverberated and the noisy training set
feature vectors and perform mean and variance normalisation of the
network training targets and the network inputs accordingly. This
normalisation was found necessary in order to ensure that cepstral,
delta and acceleration coefficients are in similar order of magnitude
for calculating the gradient of the error function in network training.

For the sake of consistency, the hyperparameters of the network
and the training parameters are set exactly as in our previous study
on conversational speech recognition in noise (yet without reverbera-
tion) [5]; no parameter tuning on the CHiME 2013 data is involved.
The applied networks have three hidden layers consisting of 78, 128,
and 78 memory blocks. Each memory block contains one memory
cell. We train the networks through gradient descent with a learning

1In this paper, we do not consider de-reverberation – hence, the enhanced
features are not ‘clean’ in the sense of ‘de-reverberated’.

rate of 10�5 and a momentum of 0.9. The gradient descent algorithm
minimises the root mean squared error (RMSE) on the training data,
across all six SNRs. Hence, the network is required to generalise
to various levels of noise. Zero mean Gaussian noise with standard
deviation 0.1 is added to the input activations in the training phase in
order to further improve generalisation. Prior to training, all weights
are randomly initialised in the range from -0.1 to 0.1. Input and out-
put gates use hyperbolic tangent activation functions, while the forget
gates have logistic activation functions. We use an early stopping
strategy: In the training phase, we evaluate the overall error on the
development set after every fifth epoch. More precisely, we compute
the total RMSE of the enhanced noisy development features with re-
spect to the ground truth reverberated development features. We abort
training as soon as no improvement on the development set can be ob-
served during 30 epochs. The network that achieved the best RMSE
on the development set (with the mean taken across all six SNRs) is
chosen as the final network. For the speaker-dependent small vocab-
ulary recognition task, we also consider speaker-dependent feature
enhancement networks. These are derived from the generic speaker-
independent network, by running additional training epochs on only
the data from only one specific speaker, and using early stopping as
above, but evaluating the cost function only on the development data
of this single speaker.

4.2. Feature Enhancement

Enhanced features are generated by simply presenting the frame-
wise noisy MFCCs to the trained network and computing the output
activations in a forward pass. Due to the normalisation of the training
targets, the output activations are (approximately) mean and variance
normalised, which does not match the features used to train the
baseline models. Thus, to be able to use the enhanced features in a
‘plug-and-play’ fashion, i.e., without any recogniser modification, the
global mean and variance normalisation is reverted after obtaining
the enhanced MFCC features, to foster compatibility with the means
and variances of the trained recognition models. More specifically,
each enhanced feature vector is multiplied component-wisely with
the corresponding variances of the reverberated training set, and the
mean feature vector of the reverberated training set is added.

An example of the resulting features is presented in Figure 1. We
depict the first MFCC of the utterance 050c0101 from the develop-
ment set of the medium vocabulary task, at SNRs of -6, 0, and +6 dB:
once as extracted from the noisy waveform, once as enhanced by the
BLSTM, and once the ‘ground truth’ MFCC extracted from the cor-
responding reverberated, but noise free waveform. Only the interval
[0 s, 3 s] is displayed for illustration. Note that the shapes of the noisy
MFCC contours differ strongly among SNRs, since various noise seg-
ments have been used for mixing the noisy utterances. It can be seen
that the BLSTM is able to reconstruct the noise free MFCC to some
degree, even at -6 dB SNR. The RMSEs of the BLSTM enhanced
MFCC contours, with respect to the noise free contour, are 3.58, 2.02,
and 2.92 at -6, 0, and +6 dB in the displayed interval of the example
utterances, while the noisy contours correspond to RMSEs of 7.17,
4.84, and 4.53. The higher RMSE of the enhanced MFCC at +6 dB
can be explained by the presence of an interfering speaker (who is not
present at lower SNRs – note that noise segments differ among SNRs
in the CHiME corpus [6]). The behaviour of the BLSTM enhanced
MFCC at the start of the utterance (interval [0 s, 0.6 s]) is interesting,
as it is much smoother than the reverberated MFCC. In this interval,
there is no speech, but rather well audible vocal noise (breathing) of
the target speaker, which is apparently filtered out by the BLSTM as
well.
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Fig. 1: Results of BLSTM based enhancement of the first MFCC of utterance 050c0101, female speaker 050, WSJ-0 speaker independent 5 k
vocabulary development set. Noisy MFCC 1 at SNR 2 {�6, 0,+6} dB in CHiME noise [6] vs. noise free and enhanced MFCC.
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4.3. Speech Recognition Evaluation

For a more systematic (task-based) evaluation of feature enhancement,
we conduct ASR experiments using a sequence of gradually refined
recognisers. In line with the Challenge evaluation setup, we use word
accuracy (WA, measured on the 35 letter and digit keywords) for the
small vocabulary task, while we give word error rates (WER) for the
medium vocabulary task. Note that in the small vocabulary task there
are no insertion or deletion errors due to the fixed grammar decoding.

4.3.1. Baseline models

We evaluate the performance of the enhanced features using the
baseline models provided by the Challenge organisers, as well as
re-trained models using enhanced features. The baseline training and
decoding setups provided by the Challenge organisers are used for
easy reproducibility – only exchanging the set of feature files that is
used. Both official baselines are implemented using HTK [10]. The
baseline training procedures, however, differ between the small and
medium vocabulary ASR tasks.

For the small vocabulary ASR task, the baseline setup performs
HMM training ‘from scratch’, using either reverberated or noisy
features. Thus, we evaluate our features in this setup by training
on the reverberated and noisy training sets, respectively, using the
training set features processed by the BLSTM.

For the medium vocabulary ASR task baseline, pre-trained clean
models are used (based on the original WSJ corpus), which are then re-
trained using Maximum Likelihood (ML) training. First, re-training
is performed using reverberated features, yielding the baseline re-
verberated acoustic models. Then, another re-training step is done
to provide the baseline reverberated and noisy acoustic models. For
adapting these models to the enhanced features, the re-training steps
are repeated using enhanced features. Manifold other re-training
configurations (such as starting from the pre-trained clean model and
training using enhanced features) can be thought of, and these were
evaluated as well – they resulted in slightly different results (in the
order of 1 % absolute average WA difference on the development set)
and are not reported here for the sake of clarity.

4.3.2. Discriminatively trained / adapted models

For the medium vocabulary ASR task, we perform further experi-
ments using the speech recognition system described in [11]. This

system is based on the Kaldi speech recognition toolkit [12]. It uses
state-of-the-art ASR techniques such as linear discriminant analysis
(LDA), maximum likelihood linear transform (MLLT), speaker adap-
tive training (SAT) and discriminative training (DT) with boosted
model-space or feature-space maximum mutual information (MMI)
estimation for training with noisy data. Context-dependent triphone
models are first trained with reverberated data using ML training.
Then, ML training is continued with noisy training data, using LDA,
MLLT and SAT. After that, boosted MMI discriminative training
(boosting factor 0.1) is performed using noisy features, including
feature-space and model-space components.

First, experiments are conducted using the reverberated models.
Then, models are trained on enhanced reverberated features of the
training set instead of unprocessed reverberated features, and their
performance is evaluated on the enhanced features of the noisy de-
velopment and test sets. Finally, the above mentioned ML and DT
methods are applied to the reverberated models, using noisy features
of the training set. Either unprocessed noisy features or enhanced
noisy features are used for these steps. For evaluation on the noisy
development and test sets, the corresponding features (unprocessed
or enhanced) are used.

Language model weights employed during decoding are opti-
mised by using the development set. All other training and decoding
parameters exactly correspond to the ones used in [11] for the sake of
transparency.

5. RESULTS

5.1. Small Vocabulary ASR

Table 1 shows the results obtained on the development and test sets
of the 2nd CHiME Challenge, small vocabulary track. We report
the mean accuracy across the six SNRs (-6 to 9 dB in 3 dB steps)
on the development set, and the detailed accuracies per SNR on
the test set. By simply ‘plugging’ the enhanced features into the
reverberated acoustic models, we already obtain a large improvement
(25.8 % absolute, 44 % relative increase in average WA on the test
set to 83.3 %). Results can be significantly2 improved by considering

2When we speak of significant differences, we mean statistical significance
according to a simple z-test, using the significance level ↵ = .05. As a rule
of thumb in the ranges of WA observed in our experiments on the small
vocabulary task, results have to differ by 1.5 % absolute WA on average across
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Table 1: CHiME 2013 development and test set (small vocabulary track): (Key)word accuracies (% WA) using feature enhancement (FE),
baseline reverberated and noisy recognisers, and matched condition recogniser trained with noisy features processed by feature enhancement.
SI/SD: speaker-(in)dependent networks for feature enhancement.

WA [%] Devel Test Test
Mean SNR [dB] Mean

-6 -3 0 3 6 9
Reverberated acoustic models

Baseline 56.9 32.2 38.3 52.1 62.7 76.1 83.8 57.5
+ FE (SI) 83.1 71.6 78.3 83.1 86.7 89.3 91.1 83.3
+ FE (SD) 84.7 75.2 79.4 85.8 88.5 89.6 90.8 84.9

+ re-training 84.8 74.8 78.7 86.0 88.3 90.0 92.3 85.0
Reverberated + noisy acoustic models

Baseline 68.8 49.3 58.7 67.5 75.1 78.8 82.9 68.7
+ FE (SI) 76.8 66.8 72.0 77.2 79.5 81.9 83.0 76.7
+ FE (SD) 77.2 69.5 72.7 78.2 80.3 82.7 83.9 77.9

+ re-training 84.9 74.9 78.6 86.2 88.3 89.8 92.3 85.0

speaker-dependent re-training of the networks (84.9 % average WA
on test). Using enhanced reverberated features in model training
does not significantly improve the results any further (85.0 % average
WA on test). These figures are similar to those reported in [13] for
BLSTM-based multi-stream ASR on the previous CHiME data set.

Considering noisy acoustic models, baseline accuracies are higher
(68.7 % average WA), yet the improvement by using feature enhance-
ment is smaller (up to 77.9 % average WA) – thus being significantly
below the result using reverberated models. Especially for higher
SNRs, feature enhancement does not significantly improve over the
baseline. We believe that this can be attributed to training with only
noisy data, resulting in larger model variances – note that the en-
hanced features have the variances of the reverberated training data,
generating a mismatch. In fact, when training models from scratch
using enhanced noisy features, the above-mentioned performance
drop is avoided (85.0 % average WA, best result on the test set). In-
terestingly, these ‘matched condition’ models behave very similarly
to the noise-free models coupled with feature enhancement.

5.2. Medium Vocabulary ASR

Results on the medium vocabulary (5 k) test set are shown in Table 2.
In a ‘plug-and-play’ setup using the baseline reverberated acoustic
models, average WER is halved from 73.70 % up to 46.01 %. Re-
training using enhanced reverberated features significantly3 decreases
the error rate on the development set, but not on the test set. For
the noisy baseline model, average WER decreases from 55.01 %
to 48.16 % without re-training (similarly to the small vocabulary
results, this stays below the performance with the reverberated model).
Average WER is significantly reduced to 42.97 % with re-training
using enhanced reverberated and noisy features.

Finally, we perform experiments with the Kaldi ASR system.
With the acoustic models trained only on reverberated data, an av-
erage WER of 68.23 % is achieved, which is already better than the
baseline reverberated models. Using enhanced reverberated features
for training and evaluating on enhanced noisy features, the average
WER is halved to 37.43 %. Notably, this result is better than the
best result obtained with the official baseline recognition system and

SNRs, and by 4 % absolute WA per SNR to be significantly different.
3According to a z-test with ↵ = .005, treating the number of words as

sample size.

re-training (42.97 %, cf. above), probably owing to the system being
tuned more towards less noisy conditions. Re-training models with
noisy data and the described ML and DL techniques (whereby MMI
including feature-space components was used) results in an average
WER of 34.85 % without using feature enhancement, in accordance
with the results reported by [11]. Feature enhancement leads to
an additional relative WER reduction by 23.3 %, yielding 26.73 %
average WER, which is our best achieved result. Note that when
combining feature enhancement with DT, model-space adaptation
(MMI) performed better than feature-space adaptation (fMMI). Over-
all, the relative improvements by feature enhancement are similar on
development and test data.

6. CONCLUSIONS

We have demonstrated the efficacy of data-based cepstral domain fea-
ture enhancement for noise-robust ASR in challenging environments.
Furthermore, improvements by advanced ASR model training have
been shown to be complementary to the enhancement of ASR fea-
tures by the proposed method. In the small vocabulary task, feature
enhancement improves the test set WA (averaged over 6 SNRs) to
85.0 %, compared to the averaged WA of 68.7 % achieved with the
baseline noisy acoustic models. For the medium vocabulary task, an
average WER of 26.73 % is achieved, whereby the baseline system
yields an average WER of 55.01 %. The improvements by the pro-
posed method are all the more noticeable since it is fully monaural.
Note, however, that this is not an official competition result in the
Challenge, because learning a mapping between noisy and clean fea-
tures was not allowed as per the Challenge guidelines. An advantage
of the proposed method over monaural Mel or Fourier domain feature
enhancement by non-negative matrix factorisation [14, 15] is that
most of the computational complexity involved is shifted to a training
phase, while evaluation can be done very efficiently – in contrast to
typical NMF approaches involving little to no model pre-training but
considerable effort in model evaluation.

The experiments in this study were focussed on the CHiME 2013
evaluation, involving non-stationary noise, yet from similar noise
sources in training and test. Future work will hence concentrate
on model generalisation, for example by joint speech and noise es-
timation in the given framework, as well as joint speech activity
detection and context-sensitive de-noising in noisy acoustic streams.
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Table 2: CHiME 2013 development and test set (5 k medium vocabulary track): Word error rates (% WER) using feature enhancement (FE),
baseline reverberated and noisy recognisers, and recognisers re-trained with enhanced features.

WER [%] Devel Test Test
Mean SNR [dB] Mean

-6 -3 0 3 6 9
Reverberated acoustic models

Baseline 72.56 87.97 83.19 78.05 71.87 65.23 55.91 73.70
+ FE 52.41 62.26 54.47 48.14 41.96 36.80 32.45 46.01

+ re-training 50.97 64.26 55.99 48.03 41.45 36.86 32.71 46.55
Reverberated + noisy acoustic models

Baseline 58.27 70.43 63.09 58.42 51.06 45.32 41.73 55.01
+ FE 54.51 62.04 54.59 50.31 44.74 40.26 37.01 48.16

+ re-training 47.62 56.86 50.25 45.08 39.25 34.56 31.81 42.97
Kaldi ASR system (reverberated model, maximum likelihood training)

Baseline 71.82 85.97 80.29 74.22 66.00 56.51 46.39 68.23
+ FE + re-training 42.97 56.45 46.25 38.13 32.32 27.83 23.63 37.43

Kaldi ASR system (reverberated + noisy model, discriminative training)
Baseline 40.96 55.22 44.14 37.29 29.63 23.24 19.60 34.85

+ FE + re-training 32.94 42.67 33.92 27.50 21.78 18.38 16.16 26.73

Furthermore, other feature representations such as modulation spec-
trum based features (e.g., RASTA-PLP) will be investigated. Finally,
we will also address feature space de-reverberation using context-
sensitive BLSTM modelling.
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