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ABSTRACT

In environments containing multiple non-stationary sound sources,
it becomes increasingly difficult to recognise speech from its short-
time spectra alone. Long-context speech and noise models, where
phonetic patterns and noise events may span hundreds of millisec-
onds, have been found beneficial in such separation tasks. Thus far
the majority of work employing non-negative matrix factorisation to
long-context spectrogram separation has been conducted on small
vocabulary tasks by exploiting large speech and noise dictionaries
containing thousands of atoms. In this work we study whether the
previously proposed factorisation methods are applicable to more
natural speech and limited noise context while keeping the model
sizes practically feasible. Results are evaluated on the WSJ0 5k -
based 2nd CHiME Challenge Track 2 corpus, where we achieve ap-
proximately 4% absolute improvement in speech recognition rates
compared to baseline using the proposed enhancement framework.

Index Terms— Spectral factorisation, speech recognition, noise
robustness

1. INTRODUCTION

In conventional automatic speech recognition (ASR) it is common to
employ short-term spectral features as the input for back-end recog-
nition. A typical choice is computing mel-frequency cepstral coef-
ficients (MFCCs) from 25 ms frames with a 10 ms shift. Hidden
Markov models (HMMs), used to model temporal progression of
speech, search for most likely paths by observing transition proba-
bilities between two consecutive frames. Such short-term evaluation
has been found sufficient for clearly spoken speech in optimal con-
ditions. However, real-world speech recognition tasks rarely meet
these expectations.

Apart from the linguistic variation taking place in casual speech,
a major challenge for practical ASR is coping with signals corrupted
by recording hardware, transmission channels, and environmental
noise. The latter can be divided further into competing sources and
acoustic phenomena such as reverberation. Whereas many kinds of
constant channel errors and the effect of acoustic environment can
be addressed with static compensation methods, additive noise from
varying sources forms a greater obstacle. There is almost infinite
variation in the sounds encountered in everyday situations, includ-
ing semi-stationary background noise, sudden impacts, longer noise
events, and competing speech. Especially the last example illus-
trates how the spectro-temporal behaviour of noise sources can be
very close to actual target speech. Furthermore, in conditions falling
below a 0 dB signal-to-noise ratio (SNR), noise sources start to dom-
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inate several spectral regions, making the short-time spectrum unre-
liable as a feature space for classification.

It has been demonstrated that increasing the temporal context of
modelling units and observation windows is beneficial for discover-
ing spectro-temporal regions dominated by speech or noise. Context
of a few hundred milliseconds has been found relevant for speech
modelling and perception in statistical speech analysis [1], intelligi-
bility measurement [2] and direct observation of the auditory cortex
[3]. The significance of temporal context for robust ASR has re-
ceived further support in additive multi-source modelling with spec-
trogram factorisation, where the best results have been achieved by
using observation windows spanning 200–300 ms [4, 5, 6].

However, an inherent downside of context expansion is that the
modelling units become more specialised, and more units are re-
quired to cover the same event space than using a shorter context.
In the previously referred experiments and related work, separation
and classification quality were found to improve by using thousands
of atoms even for small vocabulary tasks like 11-word Aurora-2 [7]
and 51-word GRID/CHiME [6]. While early experiments have been
conducted on large vocabulary, it is not clear whether the approach
is viable for such tasks and eventually real world use.

To address this concern, we propose incorporating refined mod-
elling methods to our non-negative matrix factorisation (NMF)
framework. We apply long-context NMF to WSJ0-based 2nd
CHiME Challenge Track 2 data, where medium vocabulary speech
must be recognised from noisy mixtures ranging from +9 to -6 dB
SNR. The identity of the target speaker is also unknown, which was
not the case in the 1st CHiME Challenge involving difficult noise
conditions [8]. New methods aiming at considerable basis reduction
are compared to baseline results and large basis factorisation. In
Section 2 we give the basics of spectrogram factorisation. Section 3
introduces recent methods which help in model size reduction. The
experimental set-up is described in Section 4, whereafter results are
listed and discussed in Section 5. Finally we present conclusions
and ideas for future work in Section 6.

2. SPECTROGRAM FACTORISATION

By spectrogram factorisation we refer to techniques, where sound
sources are separated in spectral domain by factoring a spectrogram
matrix into its constituent parts. Furthermore, we concentrate on al-
gorithms which take into account the temporal continuity of signals,
that is, observe a context larger than individual frames. In earlier
work, promising results have been achieved by using non-negative
modelling. The motivation is that DFT resolution spectral magni-
tudes and features derived from them are mostly additive, thus non-
negative additive models produce a good estimate of source compo-
nent contribution.
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A common characteristic in previously proposed work is that
spectral modelling units and observation windows consist of T con-
secutive frames. A single spectrogram model, atom, is a B × T ma-
trix, where B is the number of spectral bands in the feature space.
Within a similarly sized observation window, the observed spectro-
gram Y is modelled as a sum

Ψ =
L

X

l=1

xlAl, (1)

where Ψ is the estimate of Y, L is the number of atoms (indexed by
l), As are atom spectrograms, and xs are their activation weights.
All spectral features and activation weights are non-negative. By as-
signing atoms into individual sources, in this case speech and noise,
it is possible to derive single source estimates such as Ψ

s for speech
and Ψ

n for noise by only including the chosen set’s atoms in sum-
ming. These estimates are then employed to separate the original
spectrogram into its components.

As the duration of an utterance, here denoted by Tutt frames, is
generally longer than an atom, we need a model to represent the
whole B × Tutt spectrogram as atom activations over time. Two
alternative models have been used extensively in earlier work:

1. A ‘sliding window’ method, where W = Tutt−T +1 overlap-
ping B × T windows are extracted from Y in 1 frame steps,
and factored individually [4]. The utterance spectrogram es-
timate Ψ is produced by averaging over window estimates,
hence as an average of up to T single-window factorisations
per frame. As atom and observation spectrograms can be vec-
torised and X solved from equation Ψ = AX, where Ψ is
BT ×W , A is BT ×L and X is L×W , we call the method
simply non-negative matrix factorisation (NMF) for short.

2. Non-negative matrix deconvolution (NMD), alternatively
called convolutive NMF (CNMF), where the crucial dif-
ference to previously described NMF is that the utterance
spectrogram estimate Ψ is produced jointly by all X entries
via convolutive reconstruction. No averaging takes place as
the overall spectrogram is a direct sum of timed activations.

Iterative update rules for determining X and A matrices are pre-
sented in detail in literature [9] and earlier work [4, 6]. Previous
experiments suggest that sliding window NMF has inherent robust-
ness against occasional mismatches and incorrect classification due
to its averaging, whereas NMD is better suited for small atom count
factorisation as its temporal model requires fewer shifted variants
of each sound event than NMF. Both models are considered in this
work with the focus being on NMD model reduction.

3. MODEL SIZE REDUCTION METHODS FOR
FACTORISATION OF NOISY SPEECH

The basis generation algorithms in previously cited works have often
relied on pseudo-random sampling of large amounts of exemplars
from training material or from the noise neighbourhood of utterances
to be recognised. The assumption is that given enough examples of
sources, most observed events can be modelled as their linear com-
bination. For abundant training data and model size, random sam-
pling was found as good as initial attempts of refined selection. Later
we have proposed informed speech basis reduction, replacing exem-
plars with state-centric templates, and noise basis reduction by NMD
modelling [6]. Still, constraints such as small vocabulary, simplified
grammar, or plentiful noise context were typically exploited in the
experiments. In this section we present alternative speech and noise

modelling methods, which produce compact bases for medium vo-
cabulary speech separation in difficult conditions.

3.1. Variable length atoms

The first recently introduced model extension allows the length of
atoms to vary within a basis. While in sliding window NMF the
atom duration T is practically forced by design to be a constant in
any single factorisation task, the same restriction does not apply to
NMD. By using variable atom length it is possible to exploit long
context and its benefits in separation whenever suitable, while also
maintaining shorter units which also appear in natural speech and
noise. Early experiments have been conducted on variable length
bases for two-speaker separation [10] and robust ASR for small vo-
cabulary [11], but the work presented here is among the first exam-
ples of variable length NMD modelling in semi-realistic ASR.

The convolutive utterance re-estimation formula for variable
atom length Tl becomes

Ψ =
L

X

l=1

Tl
X

t=1

Al,t

→(t−1)

Xl . (2)

Al,t is the tth frame column vector of atom l, Xl is the lth row
vector of X, and operator → shifts it right by t − 1 columns.

In this work we use strongly variable-length speech bases by
employing a basis acquisition algorithm similar to the one presented
for CHiME/GRID speech data [11]. The algorithm starts from the
longest permitted atom length T = Tmax, inspects the speech train-
ing data, and attempts to find length T segments matching to each
other. The measure used for match-finding is a combination of spec-
tral data and monophone annotations to take into account both spec-
tral and linguistic similarity. If a sufficiently large group of matching
segments (here called a cluster) is found, a speech atom is formed
by averaging the matching spectrograms. The corresponding areas
of training data are flagged as taken. Thereafter the algorithm con-
tinues searching for clusters, reducing the segment length by one
whenever the minimum cluster size requirement can no longer be
met at current length T . Consequently a basis of template atoms
is generated in a decreasing order of atom length and frequency of
occurrence in the training data.

3.2. Multi-stage factorisation with speaker-dependent bases

In WSJ0-based CHiME Track 2 data, training and test speaker iden-
tities form disjoint sets. In other words, no exactly matching speaker
model can be chosen for test factorisation, and no clues about test
speaker characteristics are initially available. However, it is obvious
that factorisation with a closely matching speaker model has a bet-
ter chance of capturing correct speech features among noises which
may include competing non-target speakers. Earlier it has been il-
lustrated how NMD can act as a speaker identifier, when multiple
speaker-dependent bases are used for factorisation and the relative
activation weights of each speaker’s atoms are observed [12].

Based on these findings, we propose a method which allows ap-
proximate speaker identification and basis selection by using multi-
stage factorisation. In the initial stage, a small number of atoms from
all training speakers are used, and relatively few NMD iterations
are computed. In each subsequent stage, speaker activity weights
are used for selecting the best matching bases, while more atoms
from the chosen speakers are introduced to factorisation. Eventually
the system will converge to a small set of training speakers, whose
speech profiles match best to the target speaker. The details for the
presented set-up are given in Section 4.4. By dynamic management
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Figure 1: Histogram of speech atom lengths from variable length
basis acquisition, ranging from 8 to 50 frames.

10 15 20 25 30 35 40 45 50

of the number and size of bases, it is possible to perform multi-
speaker modelling and semi-matched final factorisation, while the
amount of simultaneously active atoms remains low. For accelerated
basis set reduction, we use a group sparsity constraint, which favours
solutions where activations come from a small number of bases [12].

3.3. Pre- and online-adaptation of noise atoms

For acquisition of noise models, there are three important sources
whose availability and significance depends on the recognition task.
First, we may have fixed training material for pure noise. Second,
there is a varying amount of noise context surrounding target speech.
Finally, noise can be estimated from the utterance itself by capturing
features which do not match to any speech models. In previous work,
all three methods have been exploited [6, 7, 13, 14] with occasional
further extensions such as artificial noise atoms [15].

Previously we have achieved the best results by sampling large
exemplar bases randomly from training data [4] or semi-randomly
from the local context [6] according to availability. However, both
methods are prone to including a lot of redundancy or unneces-
sary, near-silent spectral data. Furthermore, exemplars sampled from
additive multi-source mixtures cannot model accurately the same
events appearing alone or in different combinations. Therefore in
this work we use methods based on NMD learning to acquire smaller
noise models with a higher efficiency.

Regardless of which data is used for noise learning, we apply
iterative NMD atom update rules described in literature [9, 16]. For
CHiME Track 2 data, we use two sources for noise atoms: first,
background training data which is first reduced to its loudest sec-
tions, and second, the ‘embedded’ utterances with 5 seconds of noise
context before and after. It has been found that to prevent overfit-
ting and fragmentation of learnt atoms into unusably small spectro-
temporal units, adaptation should be terminated earlier than the com-
monly employed amount of factorisation iterations for fixed bases.
Computationally the simplest way to implement this is to reduce the
number of iterations to approximately 20–30 (compared to 200–400
of earlier work), which can be achieved in long semi-supervised fac-
torisation by only performing a basis update after a certain interval
of activation update iterations.

4. EXPERIMENTAL SET-UP

A factorisation framework was designed for the 2nd CHiME Chal-
lenge medium vocabulary (Track 2) dataset [17]. Its speech data
consists of WSJ0 5k vocabulary utterances and is divided as follows:

• 7138 training utterances jointly from 83 speakers, both
‘clean’ (without additive noise) and mixed at a random SNR

Table 1: Statistics of speech bases used during multi-stage factori-
sation of the CHiME Track 2 evaluation set. For each stage, the
number of active speaker bases and their combined atom count is
reported as minimum, mean and maximum values.

Stage
Speakers Atoms

min mean max min mean max

1 83 83 83 4150 4150 4150

2 9 24.3 36 900 2427 3600

3 2 8.9 17 612 3023 5754

4 1 3.8 9 304 1305 3246

• 409 development test utterances jointly from other 10 speak-
ers and repeated at 6 SNRs

• 330 evaluation test utterances from other 8 speakers, 6 SNRs

Noisy utterances are mixed with non-stationary multi-source house-
hold noise at SNRs ranging from +9 to -6 dB in 3 dB steps. Noise
data contains natural room reverberation. For speech data, similar
impulse responses are simulated. All utterances are available with
5 seconds of noise context before and after the utterance. Approxi-
mately seven hours of pure noise data is also available for training.
Recognition is measured by HTK toolkit’s ‘Err’ word error rate.

4.1. Feature space

All factorisation experiments were conducted in monaural 40-band
mel-spectral magnitude space. Features were extracted from bin-
aural input signals with a frame length of 25 ms and frame shift
of 10 ms, and averaged in absolute magnitude value domain. Mel
bands were reweighted by a fixed equalisation curve derived from
2-normalisation of noisy 0 dB training utterances.

4.2. Speech bases

A variable-length speech basis was generated for each training
speaker similarly to the algorithm described for 1st CHiME chal-
lenge data [11]. The similarity measure for frame vectors consisted
of dot product between normalised, square root compressed mel
magnitudes augmented with delta features, and monophone labels
acquired from forced alignment using the baseline recogniser. Simi-
larity between frames i and j was computed as

cm(i, j) = cs(i, j) + cl(i, j), (3)

where the merged similarity cm is the sum of spectral vector dot
product cs and correlation of monophone labels cl, the latter rang-
ing from 0 to 0.06 depending on how closely monophones and their
substates matched in annotations. Sequences where all mutual frame
pairs produced at least 0.92 total similarity were considered for clus-
tering. A cluster was selected for atom construction if its source
segments covered at least 0.15% of the speaker’s noiseless train-
ing material. In other words, long segments were allowed to form
atoms with fewer matches than short segments. Atom lengths ranged
from 46 to 4 in clustering, whereafter the 2 preceding and following
frames were added to atoms as their content is implied by delta fea-
tures. Consequently the final length of speech atoms was between 8
and 50 frames (80–500 ms).

Figure 1 illustrates the distribution of speech atom lengths in
combined speech bases. We notice that large variation takes place,
reflecting the multitude of phonetic unit lengths appearing in nat-
ural speech. A large peak can be seen at length 50. Even longer
correlating segments could be found, but their value for factorisation
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Figure 2: Similarity of test speakers (y-axis) to training speakers (x-axis), measured as the amount of speaker-dependent basis activations in
the last stage of 9 dB test set factorisation. For each test identity, the sum of activations is normalised to unity. Similarity increases toward
black with the maximum intensity being 0.4. White-on-black identity names belong to male speakers, black-on-white to females.
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Evaluation set

becomes negligible thus they were truncated to the chosen maximum
value. Mean atom length was 22.2 frames, approximately matching
the previously favoured fixed contexts of 200–300 ms [4, 6, 13].

The number of atoms in the 83 speaker-dependent bases was
from 276 to 397 with a mean value of 344 and combined atom
count of 28579. Speakers with more variable pronunciation gen-
erated larger bases than very consistent ones. Because the cluster
size was defined as a percentage of available data, no notable dif-
ference was present between speakers with fewer or more training
utterances. By comparing the basis sizes to the 5000 word vocab-
ulary, it is clear that the typical unit modelled was shorter than a
complete word.

4.3. Noise bases

Two noise modelling methods were used: a fixed noise basis ac-
quired by NMD learning from background training material, and
online-adapted noise model from the embedded utterances.

For fixed basis acquisition, the seven-hour training material was
first reduced to its loudest 20% frames, measured by spectral magni-
tudes. From the remaining material, segments shorter than 5 frames
were removed, while the rest were padded by 10 frames before and
30 after, approximating the usual temporal decay profile of noise
events. Thereafter the segments were faded in and out with a 10-
frame transition, and concatenated into approximately five minute
blocks of significant noise events. Each block was factored with 25
iterations of NMD basis adaptation to produce atoms with a joint
duration of 10% of block length, that is, approximately 60 atoms of
length 50 frames per block. While no attempt was made to force
noise atoms into shorter or variable duration, in practice this often
happened due to some of the atoms modelling short-duration noise
events. The procedure as a whole generated 1729 fixed noise atoms.

Direct adaptation of noise atoms from embedded utterances fol-
lowed mostly similar principles, yet employed significantly fewer
atoms. The details are described in the next subsection.

4.4. Multi-stage factorisation

Training and test file factorisation was conducted using the ‘embed-
ded’ files with 5 seconds of noise context to both directions. After
feature extraction, the following bases were set up:

• Speech bases: for test files all 83 speaker-dependent bases,
for training files all except self

• A variable amount of randomly initialised adaptive noise
atoms, enough to cover 75% of embedded utterance duration

• Optionally, the fixed 1729-atom noise basis (See section 4.3.)

The motivation for given speech basis choices was to use a set of
bases disjoint from the target identity. For development and evalua-
tion sets this was automatically the case. For training utterances, the
true matching identity was left out to prevent oracle modelling.

The adaptive noise atom count was left slightly below the
amount required to cover all embedded utterance frames in order
to promote discovery of recurrent features. These atoms were re-
adapted from scratch for each utterance from its own context alone.
Training and evaluation were run with and without the fixed noise
basis to study whether the methods are applicable to entirely new
situations where pre-training of noise models is not an option.

For factorisation, variable-length NMD was used with gener-
alised Kullback-Leibler divergence as the spectral distance measure,
and L1 penalty as the sparsity constraint similarly to earlier work.
L1/L2 group sparsity penalty was induced on speech activations
as presented previously [12], with each speaker’s atoms forming a
group. Sparsity weights were defined by brief experimentation on
development utterances and set to 0.07, 0.1, 0.1 and 0.11 for speech,
groups, adaptive noise and fixed noise (respectively) when the latter
was used, and 0.08, 0.1 and 0.1 for the rest when not. All sparsity
values are proportional to the mean value of basis atom 1-norms.

Factorisation had four stages with basis pruning as follows:

1. All speech bases, 50 atoms per speaker, 50 iterations

2. Reduced set of bases, 100 atoms per speaker, 50 iterations

3. Further reduced set of bases, all atoms, 100 iterations

4. Final reduced set of bases, all atoms, 100 iterations

Each partial basis consisted of the first (longest) atoms of com-
plete speaker-dependent bases. Between stages, activation matrix
sums were calculated for each speaker dependent basis. A threshold
value was set 10–20% from the geometric mean toward the largest
value to remove all except the best matching identities. Activation
weights of remaining speech atoms were left as is, whereas newly
introduced atoms were given a small initial weight of 0.001. Noise
atoms or their activation were not changed between stages.
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Table 2: Results for CHiME Track 2 noise robust speech recognition, listed as word error rate (’Err’) over SNRs. Tables on the left and the
right show results for development and evaluation sets, respectively. First, the baseline results using provided ‘noise’ models are given. The
next lines show results for proposed enhancement using adaptive noise atoms only, and then for both adaptive and fixed noise atoms. Finally
reference results for large basis NMF are shown. Results are evaluated using provided and re-trained GMMs.

SNR (dB) 9 6 3 0 -3 -6 avg

Baseline (‘noise’) 44.34 49.05 55.71 59.89 67.43 73.17 58.27

Adapt. noise 44.03 48.91 55.04 58.35 65.97 71.19 57.25
only re-trained 42.93 48.24 53.76 57.53 64.71 70.92 56.35

Adapt. noise 44.19 47.25 53.27 56.53 63.93 69.47 55.77
+fixed re-trained 42.28 45.54 51.45 55.43 62.61 69.26 54.43

Large noise 43.33 46.75 51.66 56.51 64.61 69.28 55.36
NMF re-trained 39.13 44.18 47.65 52.29 60.56 66.23 51.67

(a) Development set

SNR (dB) 9 6 3 0 -3 -6 avg

Baseline (‘noise’) 41.73 45.32 51.06 58.42 63.09 70.43 55.01

Adapt. noise 42.59 45.19 49.71 56.53 61.76 66.75 53.76
only re-trained 40.30 44.44 48.70 54.04 60.34 66.90 52.45

Adapt. noise 41.60 44.16 50.29 54.80 60.34 66.34 52.92
+fixed re-trained 38.76 41.53 47.99 51.73 58.83 66.71 50.93

Large noise 42.35 44.35 48.81 54.01 60.17 65.18 52.48
NMF re-trained 37.40 39.14 43.51 50.94 55.58 61.85 48.07

(b) Evaluation set

Basic statistics of basis and atom counts in each stage are listed
in Table 1 for the test set (with the fixed noise basis enabled). No-
tably, the simultaneous speech atom count never exceeded 5754, and
the last stage employed on average 3.8 bases and 1305 atoms.

Figure 2 illustrates the convergence of different test speakers’ (y-
axis) factorisation toward matching training speaker bases (x-axis).
9 dB SNR experiments were used for the plot to minimise noise in-
terference. We can observe that even though approximately 40 dif-
ferent utterances were factorised per test speaker, the algorithm gen-
erally converged toward a spiky distribution of only a few matching
bases. The bases were also mostly from the same gender as the test
speaker, and the set was unique for each individual speaker. Com-
parison by listening confirmed that approximately similar speaker
profiles were generally found.

Speech and fixed noise activations were only permitted in the
actual utterance area, whereas adaptive noise activations were per-
mitted also in the noisy context to capture the immediate noise en-
vironment. As the adaptive basis size was generally below 30 atoms
and only updated every 10 iterations (of total 300), factorisation ef-
fort was mostly concentrated on the noisy speech, and the overall
complexity of the system remained comparable to previous small
vocabulary experiments.

4.5. Enhancement and recognition

The activation matrices acquired from NMD were used to generate
speech and noise spectrogram estimates as described in Sections 2
and 3.1. Mel spectrograms were mapped back to linear frequency
domain and used as a time-varying filter defined as Ψ

s/(Ψs + Ψ
n)

for the original noisy spectrograms [6].
Because the sparse NMD model with adaptive atoms occasion-

ally produces rapidly changing spectro-temporal behaviour with
heavy filtering in fully masked segments, it was found beneficial
to apply a 0.1 minimum value to the filter weight value normally
ranging from 0 to 1. Enhanced signals were recognised using the
CHiME HTK tools, both with the multi-condition noise trained
baseline models and models re-trained with enhanced training data.

For comparison, we also implemented a sliding window NMF
system employing considerably larger exemplar bases similarly to
earlier work. 10000 speech exemplars and 4000 noise exemplars
were sampled randomly from training material, whereafter approx-
imately 1000 noise exemplars were added from the context. Fea-
ture space, factorisation and enhancement followed generally simi-
lar principles to those presented for Aurora-2 and 1st CHiME data
[4, 6], and for applicable parts they matched the NMD setup.

5. RESULTS AND DISCUSSION

Results for speech recognition experiments are given in Table 2
as word error rates (HTK ‘Err’) per SNR, separately for devel-
opment and evaluation sets. The first row shows results using
baseline ‘noise’ models and unenhanced waves. The next rows list
results for proposed enhancement using adaptive noise only, and
for adaptive+fixed noise. The last rows list results for reference
NMF enhancement using large exemplar bases. Enhanced signals
were evaluated using the baseline ‘noise’ models, and with GMMs
re-trained from matching training set enhancement.

We observe that enhancement with the proposed approach gen-
erally yields improvement over the baseline already on the stan-
dard back-end models. Expectedly including a fixed noise basis ac-
quired from background training material provides further improve-
ment over just using noise adaptation from the embedded utterance.
Without back-end re-training, the proposed system with both noise
models is approximately comparable (2–3 % over baseline) to NMF
with large exemplar bases. In re-training, the gap increases so that
the improvements over unenhanced baseline are approximately 4%
and 7% for proposed and NMF factorisation, respectively.

The proposed framework is our first attempt to develop a
relatively lightweight factorisation and enhancement system for
medium-vocabulary speech recognition in difficult conditions. Com-
pared to the GRID-based 1st CHiME set [8], the new WSJ-based
corpus introduced several new challenges. The 5000 word vocab-
ulary with only limited training data available for each speaker re-
quires a different approach to generating speaker-dependent speech
bases. Furthermore, test identities coming from disjoint speaker sets
prevented selecting a perfectly matching speech model.

We investigated using several small speaker-dependent bases,
which complement each other concerning both vocabulary and
speaker characteristics. A clear benefit of (approximate) identity
matching is the ability to separate a target speaker from competing
speakers, which is more difficult with a speaker-independent basis
modelling all speakers simultaneously. From Figure 2 we see that
at least at high SNRs the algorithm was able to find similar speaker
profiles. An obvious problem of the method is that non-target speak-
ers have a good chance of activating an alternative set of bases, and
at < 0 dB even dominating the selection process. Currently this is
only prevented by vocabulary matching via long context atoms. Fur-
ther methods for correct selection could include spatial estimation
and preliminary decoding during the selection process.

In noise modelling, initial results suggest that a noise model
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adapted from a 5 second context only has a limited separation ca-
pability. Acquiring a comprehensive model beforehand improves
results significantly. However, the obvious problem is applying the
method to new noise environments. In a real-world system, continu-
ous noise model updating during pauses in speech would be prefer-
able in order to maintain a maximally good match. Such a system
for continuous NMD recognition has already been proposed [18].

With respect to model complexity and the goal of achieving fea-
sible basis sizes, we can observe that the proposed framework man-
aged to improve average speech recognition rates by approximately
4% (absolute) compared to the unenhanced baseline with an aver-
age basis size of 1305 final stage speech atoms, 1729 fixed noise
atoms, and generally less than 30 adaptive noise atoms – approxi-
mately 1/5th of the reference NMF basis size. While more atoms
were temporarily used for speaker selection, it must be noted that
in these experiments we always started from all 83 candidates for
each utterance. In practice, there is a lot of redundancy among the
models with some of them barely activating at all, and in real world
it rarely applies that speaker adaptation should be repeatedly started
from scratch. Therefore we expect that the multi-speaker basis sizes
could be easily reduced further. Regarding vocabulary size, already
the current bases modelled sub-word units of a vocabulary 15 times
larger than average atom count and covered a large part of common
linguistic units, hence the requirements for truly large vocabulary
should not be considerably greater.

6. CONCLUSIONS

We presented a spectrogram factorisation framework designed for
medium vocabulary speech recognition using long temporal context
yet compact bases. Several emerging or wholly novel ideas were
proposed, including variable length modelling, multi-stage factori-
sation with basis pruning, and two noise models used in conjugation.

With refined bases, it was found feasible to separate unknown
speaker’s speech from very noisy mixtures with models smaller
than were previously used for small vocabulary tasks with matching
speaker identity. Approximately 4% absolute reduction was ob-
tained in average word error rate in evaluation on the 2nd CHiME
Challenge Track 2 corpus. As several novel aspects were introduced
and combined for a new task with limited parameter tuning, we ex-
pect further improvements when their standalone and interoperation
characteristics becomes better understood. Nevertheless, already the
initial results appear promising regarding robust real-world speech
recognition with practically applicable factorisation model sizes.

7. REFERENCES

[1] O. Räsänen and U. K. Laine, “A method for noise-robust
context-aware pattern discovery and recognition from categor-
ical sequences,” Pattern Recognition, vol. 45, no. 1, pp. 606–
616, 2012.

[2] T. M. Elliott and F. E. Frédéric, “The Modulation Transfer
Function for Speech Intelligibility,” PLoS Computational Bi-
ololgy, vol. 5, no. 3, pp. e1000302, 2009.

[3] B. N. Pasley, S. V. David, N. Mesgarani, A. Flinker, S. A.
Shamma, N. E. Crone, R. T. Knight, and E. F. Chang, “Re-
constructing Speech from Human Auditory Cortex,” PLoS Bi-
ology, vol. 10, no. 1, pp. e1001251, 2012.

[4] J. F. Gemmeke, T. Virtanen, and A. Hurmalainen, “Exemplar-
based Sparse Representations for Noise Robust Automatic

Speech Recognition,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 19, no. 7, pp. 2067–2080, 2011.
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