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1. ABSTRACT

This paper addresses the problem of automatic speech recog-
nition (ASR) in the presence of room reverberation, speaker
movements and highly non-stationary background noise on
the basis of binaural microphone recordings. Investigations
are conducted for Track 1 of the 2nd CHiME Speech Sepa-
ration and Recognition Challenge, posing a small-vocabulary
task that requires the recognition of a short keyword control
sequence. In order to cope with the severely noisy record-
ings, we extend our beamforming approach with observation
uncertainties from the first CHiME challenge by adding a
second, parallel feature extraction based on a binaural time-
frequency mask. The output signals of both front-ends, the
beamformer and the binaural speech enhancement, are fed
to separately trained recognition models. Finally, a late fu-
sion by recognizer output voting error reduction (ROVER)
is applied to combine the separate recognition outputs into
a jointly optimal transcription. Based on this multi-stage ap-
proach, a relative keyword error rate reduction of more than
55 % is achieved compared to the best baseline result of the
2nd CHiME Challenge.

Index Terms— automatic speech recognition, binaural
speech processing, cepstral smoothing, time-frequency mask

2. INTRODUCTION

A major challenge to truly ubiquitous use of voice control is
still posed by the varying, reverberant noise condition preva-
lent in everyday living environments [1, 2].

Superdirective beamformers, blind source separation and
the multi-channel Wiener filter are three popular spatial sam-
pling schemes that allow for an effective speech enhancement
when many microphone channels are available [3, 4]. Consid-
ering the binaural recordings of the challenge, however, basic
beamforming techniques will only allow for moderate SNR
gains. Source separation methods do allow for great gains in
signal quality, but the best-performing strategies are typically
complex and well-attuned to the task, see, e.g., [5, 6].

The following paper suggests low-complexity alterna-
tives, which are still in tune with the binaural nature of the
recordings. It extends our approach from the one used in the

2011 PASCAL CHiME Speech Separation and Recognition
Challenge [7], where delay-and-sum beamforming was cou-
pled by observation uncertainty techniques, with a binaural
front-end. The utilized front-end is based on time-frequency
masking, utilizing the inter-aural phase and level differences.
Both techniques, the delay-and-sum beamformer and the bin-
aural front-end, are used in parallel, and recognition outputs
are fused by a subsequent late-integration approach, merging
the recognition outputs and their associated confidences, to
produce one unified recognition hypothesis.

The following description will mainly focus on the newly
implemented binaural front-end, which is described in detail
in Section 3. Section 4 gives some brief details on the CHiME
database and the training method used to obtain the front-end
parameters for this dataset. After describing the relevant fea-
tures of the recognition system in Section 5, we present re-
sults on Track 1 of the CHiME dataset and draw conclusions
in Sections 6 and 7, respectively.

3. BINAURAL SPEECH ENHANCEMENT

A special version of the multi-channel Wiener filter, which
mimics some of the human capability for auditory scene anal-
ysis [8], offers a low-complexity and efficient means for en-
hancing the binaural mixture available in the 2nd CHiME
Challenge. Its effectiveness results from the exploitation of
the inter-aural transfer function. Based on inter-aural phase
and level differences — IPD and ILD, respectively, — al-
most every direction of sound incidence has a unique and
frequency-dependent identifier. From a continuous analysis
of the IPD and ILD in a suitable transform domain, such as the
short-time Fourier transform (STFT), an amplitude weighting
function is generated by comparing the binaural parameters
of the noisy mixture signal with reference binaural parame-
ters that were obtained in a preceding training phase, which is
discussed detailed in Sec. 3.1.

Exploiting the statistics of binaural parameters has shown
to result in considerable gains of noise suppression, even in
difficult acoustic environments [9, 10, 11]. Generally, there
are two methods of including the statistics of the binaural sig-
nal. One is histogram-based, the other estimates the parame-
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ters of distributions using a Gaussian Mixture Model (GMM).
Although the GMM is an efficient approach to handle the
abundant data of changing acoustic scenes, histogram-based
statistical filtering often allows for higher SNR gains and was
therefore chosen for the task at hand [12].

3.1. Derivation of the Binaural Processor

Let s!(n) be the band-limited noisy mixture at a sampling
frequency fs = 16 kHz at the left input of the binaural speech
processor. Using a Hann window hn, the signal is partitioned
into overlapping frames with a frame shift ∆p. Subsequently,
the STFT of the signal is calculated with an FFT

S!
d,m =

ND−1∑

n=0

s!m∆p+nhne
−j2πd n

ND , (3.1)

where d, m and ND are the frequency index, the frame in-
dex and the FFT length, respectively. The noisy mixture at
the right input is calculated in the same way, which results
in Sr

d,m. Thereafter, the power spectral densities (PSD) are
estimated. This is done through a modulus and recursive first
order filtering method, known as Welch’s averaging method
[13]. For the signals at the left and right ear, the Welch
method is computed as

[
Φ!

d,m

Φr
d,m

]
= α

[
Φ!

d,m−1

Φr
d,m−1

]
+ (1− α)

[
|S!

d,m|2

|Sr
d,m|2

]
, (3.2)

where the smoothing factor α is given by

α = exp(−∆p/(τfs)), (3.3)

with τ being the time constant. Furthermore, the cross power
spectral density is calculated as

Φ!r
d,m = αΦ!r

d,m−1 + (1− α)S!
d,mS̄r

d,m, (3.4)

in order to infer binaural temporal differences. Here, S̄r is the
complex conjugate of Sr. Subsequently, the IPD is computed
by

∆ϕd,m = ∠
(
Φ!r

d,m

)
, (3.5)

where the symbol ∠ denotes the angle in radians and the ILD
is found via

∆Ld,m = 10 log10
Φ!

d,m

Φr
d,m

. (3.6)

For generating bivariate distributions of both directional
fine-structure parameters, the binaural feature vector is de-
fined as

∆d,m = [∆ϕd,m ∆Ld,m] . (3.7)

Noise suppression in the binaural speech processor is
based on the posterior estimate of the target given a binaural
feature vector at each time-frequency bin

Pd(φt|∆d,m) =
Pd(∆d,m|φt)Pd(φt)∑
φ Pd(∆d,m|φ)Pd(φ)

, (3.8)

with φ being the source azimuth and φt ∈ T, which denotes
a set of target directions of the direct sound and room reflec-
tions. Harding et al. showed that this equation can be approx-
imated by the division of two histograms

Pd(φt|∆d,m) ≈

{
H t

d(∆d,m)
Ha

d
(∆d,m) , if Ha

d(∆d,m) > ζ

0, else
,

(3.9)
where H t

d and Ha
d are the histograms of the labeled target sig-

nal and of the noisy mixture, respectively [9]. ζ is a threshold
to prevent faulty estimations from insufficient statistical data
and numerical noise. Consequently, after the division of these
distributions, the filter gain can be read from a look-up table
by using ∆d,m.

A soft mask is obtained as a basis for weighting the STFT
representation of the noisy mixture signal. For the next steps
it is convenient to express the soft mask as

M
e
d,m = max (Pd(φt|∆d,m), A) , (3.10)

where A is a flooring parameter that allows for balancing the
trade-off between noise suppression and signal distortion.

3.2. Post-Processing of Weighting Mask

It is intuitive that the mask of Eq. (3.10) tends to result in a
certain degree of non-stationary signal artifacts that are com-
monly referred to as musical noise. Previous studies have
shown that a temporal smoothing of spectral masks in the
cepstral domain reduces the effect of musical noise [14, 15]
by which the perceived signal quality can be improved sig-
nificantly. We found that a moderate smoothing of the mask
results in improved ASR performance for the specific task of
the challenge. The cepstral transform of the mask reads

M
e,c
q,m =

1

NQ

NQ−1∑

n=0

ln
[
M

e
n,m

]
e
j2πq n

NQ , (3.11)

where q denotes the cepstral index and NQ is the total number
of cepstral coefficients. Then, a first-order recursive smooth-
ing is applied frame-wise to the cepstral representation of the
mask

M̃
e,c
q,m = βq M̃

e,c
q,m−1 + (1− βq)M

e,c
q,m, (3.12)

where βq is a quefrency dependent smoothing constant that is
separately adjusted for different regions in the cepstrum. The
smoothing constants βq should be chosen such that those re-
gions that are crucial for speech intelligibility are not distorted
by the temporal smoothing [15, 11]. The smoothing constants
have been determined empirically on the development set so
as to optimize the ASR performance. For fs = 16 kHz and
NQ = 512, their respective values are given by

βq =






0, q ∈ [0, 7] ∪ [505, 511]
0.5, q ∈ [8, 15] ∪ [497, 504]
0.9, q ∈ [16, 496]

. (3.13)
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Here, the smoothing constants have been set to zero for the
lower cepstral coefficients in order to maintain the spectral
envelope of M e

n,m [14]. The smoothed mask of Eq. (3.12)
is transformed back to the frequency domain by applying the
inverse transform of Eq. (3.11)

M̃
e
d,m = exp




NQ−1∑

q=0

M̃
e,c
q,me

−j2πd q
NQ



 . (3.14)

3.3. Application of Mask and Resynthesis

The smoothed version of the weighting mask of Eq. (3.14)
is multiplied with the STFT representation of the noisy input
signal

[
Š!
d,m

Šr
d,m

]
= M̃

e
d,m

[
|S!

d,m|ej∠(S
!
d,m)

|Sr
d,m|ej∠(S

r
d,m)

]

, (3.15)

so the original phase is left unchanged. Here, Š!
d,m and Šr

d,m

denote the STFT representations of the noise-suppressed out-
put signal for the left and the right channel, respectively. As a
final processing step, the waveform of the output signal is re-
constructed through an inverse STFT, which is then used for
the subsequent ASR.

4. EXPERIMENTAL SETUP

4.1. Description of the Database

Our evaluation is based on Track 1 of the 2nd CHiME Chal-
lenge and a full description of the challenge set-up is given in
[16]. As in the first CHiME Challenge [7], the clean speech
signals originate from the Grid corpus [17], which consists of
34 different speakers. The clean speech signals have been fil-
tered with a set of binaural room impulse responses (BRIRs),
computed from the recordings of an artificial head, in order
to simulate room reverberation and speaker movements. In
a last step, the filtered speech signals have been mixed with
highly non-stationary background noise, which was recorded
in a family living room. The mixing procedure has been de-
signed to yield six different SNR conditions between -6 dB
and 9 dB without rescaling the signal amplitudes. More de-
tails about the mixing process can be found in [7]. The chal-
lenge provides two datasets that can be used for training and
tuning, i.e., a training set, consisting of 500 signals from each
of the 34 speakers, and a development set, consisting of a total
of 600 signals. Both sets include the aforementioned mixture
signals and, separately, both the corresponding reverberated
and noisy signals. A third dataset, the test set, may only be
used for a final evaluation of the system.

4.2. Training the Binaural Processor

For calculating the a-posteriori probability of target presence
for each time frame and frequency, as defined in Eq. (3.9), fea-
ture histograms for the target speech as well as for the noisy

Table 1. Training parameters of the binaural processor.

ND NQ ∆p τ A ζ ξ
512 512 128 8 ms 0.02 5 -8 dB

mixture need to be generated. As a means to train the clas-
sifier in a supervised fashion, Harding et al. suggested the
following ideal binary mask definition for labeling the data

M
b
d,m =

{
1, if 10 log10

Φs
d,m

Φn
d,m

> ξ

0, else
, (4.16)

where Φs and Φn are the PSD of the speech signal and the
noise signal, respectively, and ξ is a local SNR threshold that
categorizes speech and noise [9]. One-channel signals of
speech and noise are generated by summing both ear signals,
prior to the calculation of Φs and Φn.

Accordingly, the ideal binary mask is applied to isolate
binaural features that correspond to dominant portions of the
target signal and these directional parameters (training fea-
tures) are binned into the target histograms H t

d. Histograms
of the noisy mixture, Ha

d, on the other hand, are directly
binned from the mix of binaural training features. Bivariate
histograms were sampled with a grid of 100 × 100 bins.
The parameter ranges were ±π and ±40 dB for ∆ϕ and ∆L,
respectively.

In order to derive values for Eq. (4.16), the reverberated
speech signals of the training set have been mixed with ran-
domly chosen segments of the long-term noise recordings that
were provided in addition to the premixed signals. Here, the
raw reverberated speech signals have been used to produce
new mixture signals at the same SNR levels as they were
provided by the challenge. The mixing has been realized
by rescaling the amplitudes of the respective noise segments
to the desired level, where the SNR has been defined as in
[18]. We have generated speaker-dependent histograms for
all available speakers, each composed from 500 utterances.
Then, a final histogram look-up table has been obtained by
averaging these speaker-dependent distributions. The same
binaural speech processor, tuned on this set, has been used
throughout all the experiments. Algorithmic parameters, used
in the training of the binaural speech processor are summa-
rized in Table 1.

5. KEYWORD RECOGNITION

5.1. Speech Recognition System

The JASPER System, introduced in [19], has been used for the
majority of the experiments. It has been successfully evalu-
ated on this task in the context of the first CHiME challenge,
where its properties were already described in detail [20].

Regarding recognition there are no large differences be-
tween JASPER and HTK which both operate in a token pass-
ing framework. The main differences are the topology, where
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silence models are added at the beginning and end of each
sentence and where three states are used per phoneme, the
initialization, which occurs per speaker, rather than adapting
from a speaker-independent initial model, and the implemen-
tation of Baum-Welch training. Output density functions are
typically represented by Gaussian mixture models with full
covariance matrices, and a mixture-split follows the direction
of the first eigenvector with an adaptable split distance. Re-
peated iterations of EM training are subsequently used to find
optimal parameters for the density functions. After two it-
erations of mixture splitting and parameter optimization, the
three-component full-covariance model is projected onto a di-
agonal model and optimized in a final round of EM iterations.
This training strategy has proven advantageous compared to
the standard HTK training approach in [20], and was again
helpful on the current data set.

5.2. Mixed training

To reduce the mismatch between models and noisy data, a
mixed training set was created by augmenting the provided
training set. New samples were obtained as a weighted sum
of samples from the noise-only database and the reverberated
data set for various SNRs. This has given a sevenfold increase
in the available amount of training data for mixed training, as
compared to the provided isolated training set.

5.3. Feature Extraction

Throughout recognition, the prevalent MFCC features are
used, arriving at 39-dimensional feature vectors xm com-
posed of the 13 static MFCCs and their delta and acceleration
values, calculated as in [20].

Differences exist only in the various pre-processing meth-
ods that are used to estimate the features for the JASPER back-
end from the binaural signal.

The first system, abbreviated by BP for “Binaural Pro-
cessing” in the following, uses the described binaural proces-
sor. It computes a two-channel time-domain signal from the
binaural processing front-end, sums the two channels, and
calculates 39-dimensional MFCC features from this time-
domain representation. A slightly modified system, referred
to as BP+LDA, additionally projects the 39-dimensional
MFCCs onto a lower-dimensional subspace by means of a
linear discriminant analysis (LDA) as further explained in
Section 5.4.

The third system is used without modification from [21].
Referred to as “Beamforming + Uncertainty Propagation”, or
in short “BF+UP”, in the following, it uses a delay-and-sum
beamformer instead of the binaural processor to extract fea-
tures and their associated uncertainties in the STFT domain.
Subsequently, it transforms these features into the MFCC do-
main by means of uncertainty propagation. Finally only the
39-dimensional MFCCs are passed to the recognizer back-
end, because the propagated uncertainties were found not to
be very informative for this particular dataset.

5.4. Linear discriminant analysis

The full-covariance models at the intermediate training stages
also allow the use of a LDA as a final feature extraction stage.
When using LDA, after having trained a full-covariance
single-component hidden Markov model (HMM), we find
the maximally discriminative projection matrix for the data,
the so-termed LDA matrix W, by a generalized eigenvector
decomposition. As a result, the transformed data

x
′

m = Wxm (5.17)

possesses the maximal ratio between inter- and intra-class co-
variance. Here, as we perform LDA on the basis of single-
mixture full-covariance models, the term class is equivalent
to one HMM state, so that we actually maximize discrimina-
tion between the HMM states of the transformed data model.
In the following experiments, this projection was onto 37-
dimensional feature vectors x′

m, the same dimensionality that
been used in the initial CHiME challenge. While this LDA
was not successful in directly enhancing the recognition per-
formance here – unlike in the first CHiME challenge [21] – it
did provide improvements when used as one more alternative
system in the context of late integration, as described in the
next section.

5.5. Late integration of recognizer outputs

During the experiments, numerous results, in form of word
graphs with associated scores, have been produced by the
recognition systems for different features. To combine these
multiple speech recognition outputs into a single one, we em-
ploy Recognizer Output Voting Error Reduction (ROVER)
[22] in the final step. The fusion enables us to achieve a lower
error rate than any of the individual systems alone.

6. RESULTS

Results for the development and test set data are shown in
Table 2. Whereas the first block gives results for the standard
HTK configuration, including the official do-nothing baseline
for the system trained on the isolated set, the other parts show
the JASPER results, obtained for noisy and mixed training.
The final two blocks, once for the development and once for
the test set, contain the results for the ROVER combination of
different JASPER outputs.

The results indicate that an exclusive use of the binaural
processor yields an average accuracy increase of 8.1 % for
the provided reference HTK system. Especially for negative
SNRs, the benefit of signal preprocessing becomes clearly
visible where the accuracy can be improved by more than
12 %. Employing the JASPER system for ASR shows an im-
provement of the results as compared to HTK-based recog-
nition. A significant performance gain is achieved for mixed
JASPER training, where a late fusion of different system con-
figurations by the ROVER scheme yields a further improve-
ment of approximately 2 % for both evaluation sets.
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Table 2. Keyword recognition accuracy in percent evaluated on the development and test set for varying SNRs, and their
respective averages. Best results are marked in bold. Systems are trained either on the isolated data set (“isolated”) or on the
augmented data set (“mixed”) for mixed training. The results for the first two systems, BASELINE and the reference HTK
system trained with the binaural processor (BP), are shown for comparison. The remaining results are all for different JASPER

systems. One system (BF+UP) uses the delay-and-sum beamformer front-end together with uncertainty propagation. There are
two systems that use the binaural processor either alone (BP) or in conjunction with a linear discriminant analysis (BP+LDA).
The last group of results belongs to a combination of the aforementioned systems (ROVER). Superscript numbers indicate
which systems are used for the recognizer output voting error reduction in the late integration scheme.

-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB average training set method

d
ev

el
o
p
m

en
t

se
t

49.67 57.92 67.83 73.67 80.75 82.67 68.75 isolated BASELINE
63.67 70.25 75.92 81.67 84.00 85.42 76.82 isolated HTK BP

68.33 73.67 79.42 82.25 85.42 87.42 79.58 isolated JASPER BP 3)

64.75 69.50 77.58 83.00 85.67 86.00 77.75 isolated JASPER BF+UP

72.08 78.75 82.92 88.42 91.67 92.17 84.33 mixed JASPER BP 1)

68.67 77.33 83.17 88.50 91.67 92.08 83.57 mixed JASPER BF+UP 2)

71.25 77.67 83.00 88.33 90.50 92.25 83.83 mixed JASPER BP+LDA 4)

72.17 79.33 84.42 89.08 92.75 92.50 85.04 mixed ROVER 1,2

74.33 79.83 85.25 88.58 92.58 92.41 85.50 both ROVER 1,2,3

75.00 80.67 85.83 90.00 92.76 93.50 86.29 both ROVER 1,2,3,4

te
st

se
t

71.58 75.33 81.58 86.83 88.00 88.17 81.92 isolated JASPER BP
66.08 72.58 80.83 82.58 86.42 86.50 79.16 isolated JASPER BF+UP

75.33 78.17 85.08 88.83 91.25 92.83 85.24 mixed JASPER BP
71.67 76.42 85.17 88.17 91.42 92.92 84.30 mixed JASPER BF+UP
72.17 77.83 84.83 89.33 91.83 92.33 84.72 mixed JASPER BP+LDA

74.83 79.17 87.58 89.08 92.50 94.00 86.19 mixed ROVER 1,2

77.08 80.08 86.33 90.08 92.50 93.42 86.58 both ROVER 1,2,3

76.58 80.08 87.25 90.42 93.17 93.75 86.87 both ROVER 1,2,3,4

7. CONCLUSIONS

The use of a binaural front-end has proven advantageous
when faced with the task of reducing the influence of highly
reverberant and non-stationary noise, as they occur in typical
living environments. On the CHiME challenge data, such a
binaural processing stage provides clear improvements rel-
ative to the uncertainty-of-observation-based beamforming
strategy introduced previously, especially when only the pro-
vided training set of isolated, noisy utterances is used.

A further clear improvement of performance is possible
when additional, artificial training data is used, generated by
adding noise from the considered environments to the clean
speech recordings. In this – the mixed training – scenario, the
binaural front-end and the uncertainty-of-observation-based
beamformer are closer in performance, pointing towards the
conclusion that mixed training reduces the influence of the
applied preprocessing.

The best overall performance for this task can again – as
with the first CHiME challenge – be achieved when the dif-
ferent front ends are combined by a final stage of late fusion,
using the ROVER approach. On the considered dataset, fus-

ing results from four slightly different versions, three of them
based on the binaural and one on the beamforming front-end,
leads to the optimal overall performance. In this way, the
average keyword error rate can be reduced from originally
31.3 % without preprocessing or mixed training to 13.7 %
with the discussed combination of approaches.
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