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ABSTRACT 

 
Improving the robustness of speech recognition systems to 
cope with adverse background noise is a challenging 
research topic. Extraction of noise robust acoustic features is 
one of the prominent methods used for incorporating 
robustness in speech recognition systems. Prior studies have 
proposed several perceptually motivated noise robust 
acoustic features, and the normalized modulation cepstral 
coefficient (NMCC) is one such feature which uses 
amplitude modulation estimates to create cepstrum-like 
parameters. Studies have shown that articulatory features in 
combination with traditional mel-cepstral features help to 
improve robustness of speech recognition systems in noisy 
conditions. This paper shows that fusion of multiple noise 
robust feature streams motivated by speech production and 
perception theories help to significantly improve the 
robustness of traditional speech recognition systems. Key-
word recognition accuracies on the CHiME-2 noisy-training 
task reveal that utilizing an optimal combination of noise 
robust features help to improve the accuracies by more than 
6% absolute across all the different signal-to-noise ratios.  

Index Terms— Robust speech recognition, Modulation 
features, Articulatory features, Noise robust speech 
processing, Robust acoustic features, key word recognition. 
 

1. INTRODUCTION 
 

Speech recognition in the presence of highly non-
stationary noise is a challenging problem. There are many 
approaches that incorporate noise-robustness to automatic 
speech recognition (ASR) systems, including those based on 
1) the feature space 2) the model space, and 3) missing 
feature theory. The approaches based on the model space 
and the marginalization based missing feature theories add 
robustness by adapting the acoustic model to reduce the 
mismatch between training and testing conditions. The 
feature-space approaches achieve the same by generating 
cleaner features for the acoustic model. Feature-space 
approaches can be classified into two subcategories. In the 
first subcategory, the speech signal is cleaned by using 
speech enhancement algorithms. (e.g., spectral subtraction, 
computational auditory scene analysis etc.). In the second 

subcategory, noise-robust acoustic features are extracted 
from the speech signal and used as input to the ASR system. 
Some well-known noise-robust features include power 
normalized cepstral coefficients (PNCCs) [1], fepstrum 
features [2] and perceptually motivated minimum variance 
distortion-less response (PMVDR) features [3]. Previous 
studies [4] have also revealed that articulatory features when 
used in combination with traditional acoustic features (e.g., 
mel-frequency cepstral coefficients or MFCCs) improve 
recognition accuracy of ASR systems.  

In this paper we combine traditional cepstral features, 
perceptually motivated robust acoustic features and 
production-motivated articulatory features. The extracted 
features were deployed in the baseline small-vocabulary 
ASR system provided by the 2nd CHiME Challenge [5]. For 
our experiments we extracted a perceptually motivated 
feature: the Normalized Modulation Cepstral Coefficient 
(NMCC) [6] that analyzes speech using its estimated sub-
band amplitude modulations (AMs). A detailed explanation 
of the NMCC feature is given in section 2. In addition, to 
the NMCC features, we explore the Vocal Tract constriction 
Variable (TV) trajectories [4] extracted from speech using a 
pre-trained artificial neural network. The estimated TVs 
have demonstrated significant noise robustness when used 
in combination with traditional cepstral features [4]. A 
detailed description of the TVs is given in section 3. Apart 
from these features, we have also used the traditional 
MFCCs (13 coefficients) along with their velocity (Δs), 
acceleration (Δ2s) and jerk (Δ3s) coefficients resulting in a 
52D feature set. 

The results obtained from different combinations of 
NMCC, TV and MFCC features show that the fusion of all 
the features provides better recognition accuracies compared 
to each individual feature. Section 4 describes the different 
combination of features that we have explored in our 
experiments. 

The baseline system provided by the 2nd CHiME 
Challenge [5] was used as the speech recognizer. We also 
experimented with the parameters of the hidden Markov 
model (HMM) to arrive at the best configuration for our 
features. We present the model tuning steps in section 5 of 
the paper. The accuracy of the recognition results for the 
various features extracted are presented in section 6.  
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2. NMCC FEATURES 
 
The Normalized Modulation Cepstral Coefficient (NMCC) 
[6] is motivated by studies [7, 8] showing that amplitude 
modulation (AM) of the speech signal plays an important 
role in speech perception and recognition. NMCC uses the 
nonlinear   Teager’s   Energy   Operator   (TEO),   Ψ,   [9, 10], 
which assumes  that  a  signal’s  energy  is  not  only  a  function  
of its amplitude, but also of its frequency. Considering a 
discrete sinusoid x[n], with A =   constant   amplitude,   Ω   =  
digital frequency, f = frequency of oscillation in hertz, fs = 
sampling frequency in hertz and θ = initial phase angle: 
 

 𝑥[𝑛] = 𝐴𝑐𝑜𝑠[𝛺𝑛 + 𝜃];   𝛺 = 2𝜋 (𝑓 𝑓௦)⁄  (1) 
 

If Ω ≤  π/4  and  is  sufficiently  small,  then  Ψ  takes  the  form 
 

     𝛹{𝑥[𝑛]} = {𝑥ଶ[𝑛] − 𝑥[𝑛 − 1]𝑥[𝑛 + 1]} ≈ 𝐴ଶ𝛺ଶ (2) 
 

where   the   maximum   energy   estimation   error   in   Ψ will be 
23% if   Ω   ≤  𝜋 4⁄ , or 𝑓 𝑓௦⁄ ≤   1 8⁄ . The study discussed in 
[11]   used   Ψ to formulate the discrete energy separation 
algorithm (DESA), and showed that it can instantaneously 
separate the AM/FM components of a narrow-band signal 
using  
 

 𝛺௜[𝑛] ≈    𝑐𝑜𝑠ିଵ ቄ1 − అ(௫[௡])ାఅ(௫[௡ାଵ])
ସఅ(௫[௡]) ቅ  (3) 

 

       |𝑎௜[𝑛]| ≈ ට అ{௫[௡]}
ଵି[ୡ୭ୱ  (ఆ೔[௡])]మ

     (4) 

 
Where Ωi[n] and |ai[n]| denote the instantaneous FM signal 
and the AM signal, respectively, in the ith channel of the 
gammatone filterbank. Note that in (2) 𝑥ଶ[𝑛] −
𝑥[𝑛 − 1]𝑥[𝑛 + 1] can be less than zero if 𝑥ଶ[𝑛] <
𝑥[𝑛 − 1]𝑥[𝑛 + 1], while 𝐴ଶ𝛺ଶ  is strictly non-negative. In 
[6], we proposed to modify (2) into 
 

   𝛹{𝑥[𝑛]} = |{𝑥ଶ[𝑛] − 𝑥[𝑛 − 1]𝑥[𝑛 + 1]}| ≈ 𝐴ଶ𝛺ଶ (5) 
 

which now tracks the magnitude of energy changes. Also, 
the AM/FM signals computed from (3) and (4) may contain 
discontinuities [12] (that substantially increase their 
dynamic range), for which median filters have been used. In 
order to remove such artifacts from the DESA algorithm, a 
modification was proposed in the AM estimation step in [6] 
followed by low-pass filtering. 

The steps involved in obtaining the NMCC features are 
shown in Fig. 1. At the onset, the speech signal is pre-
emphasized (using a coefficient of 0.97) and then analyzed 
using a 25.6 ms Hamming window with a 10 ms frame rate. 
The windowed speech signal 𝑠௪[𝑛] is passed through a 
gammatone filterbank (using the configuration specified in 
[13].) with 50 channels spaced equally between 200 Hz to 
7000 Hz in the ERB scale. The AM time signals 𝑎௞,௝[𝑛] are 
then obtained for each of the 50 channels, where the total 
AM power of the windowed time signal for the kth channel 
and the jth frame is given as 
            𝑃௞,௝஺ெ = 𝑎௞,௝் 𝑎௞,௝  (6) 

 

The resulting AM power is then power normalized, bias 
subtracted (as explained in [6]) and then compressed using 
the 1/15th root, followed by the Discrete Cosine Transform 
(DCT) from which only the first 13 coefficients (including 
C0) were retained. These 13 coefficients along with their  Δs,  
Δ2s  and  Δ3s resulted in a 52D NMCC feature set. 
 

 
Figure 1: Flow-diagram of NMCC feature extraction from 

speech. 
 

3. ARTICULATORY FEATURES 
 

Previous studies [9, 10] have demonstrated that Artificial 
Neural Networks (ANNs) can be used to reliably estimate 
vocal tract constriction variable (Tract Variables also known 
as TV) trajectories [14] from the speech signal. TVs (refer 
to [14] for more details) are continuous time functions that 
specify the shape of the vocal tract in terms of constriction 
degree and location of the constrictors. Once trained, ANNs 
require low computational resources compared to other 
methods in terms of both memory requirements and 
execution speed.  

An ANN has the advantage that it can have M inputs 
and N outputs; hence, a complex mapping of M vectors into 
N different functions can be achieved. In such architecture, 
the same hidden layers are shared by all N outputs, 
endowing the ANN with the implicit capability to exploit 
any correlation that the N outputs may have amongst 
themselves. The feed-forward ANN used in our study to 
estimate the TVs from speech were trained with back 
propagation using a scaled conjugate gradient (SCG) 
algorithm. To train the ANN model for estimating TVs, we 
need a speech database containing ground truth TVs. 
Unfortunately, since no such database is available at present, 
we   used   Haskins   Laboratories’   Task   Dynamic   model,  
(popularly known as TADA [17]) along with HLSyn [18] to 
generate a database containing synthetic speech along with 
articulatory specifications. From the CMU dictionary [19] 
111,929 words were selected and their Arpabet 
pronunciations were input to TADA, which generated their 
corresponding TVs (refer to Table 1) and synthetic speech. 
Eighty percent of the data was used as the training set, 10% 
was used as the development set, and the remaining 10% 
was used as the test set. Note that TADA generated speech 
signals at a sampling rate of 8 kHz and TVs at a sampling 
rate of 200 Hz.  

The input to the ANN was the speech signal 
parameterized as Normalized Modulation Cepstral 
Coefficients (NMCCs) [1], where 13 cepstral coefficients 
were extracted (note that the deltas were not generated from 



67

these 13 coefficients) using a Hamming analysis window of 
20 ms with a frame rate of 10 ms. These  NMCC’s  are  used  
as input features to the ANN model for estimating the TVs. 
They are different from the ones used for speech recognition 
given a different analysis window used. Note that telephone 
bandwidth speech was considered, where 34 gammatone 
filters spanning equally between 200 Hz to 3750 Hz in the 
ERB scale was used to analyze the speech signal. The TVs 
were downsampled to 100 Hz to temporally synchronize 
them with the NMCCs. The NMCCs and TVs were Z-
normalized and scaled to fit their dynamic ranges into [-
0.97, +0.97]. It has been observed [15] that incorporating 
dynamic information helps to improve the speech-inversion 
performance.  In this case, the input features were 
contextualized by concatenating every other feature frame 
within a 200 ms window. Dimensionality reduction was 
performed on each feature dimension by using the DCT and 
retaining the first 70% of the coefficients, resulting in a final 
feature dimension of 104. Hence, for the TV estimator, M 
was 104 and N was 8 for the eight TV trajectories.  

Initial experiments revealed that using temporally 
contextualized TVs as features provided better ASR 
performance than using the instantaneous TVs, indicating 
that the dynamic information of the TVs contributes to 
improving ASR performance. A context of 13 frames i.e., 
~120 ms of temporal information was used to contextualize 
the TVs. To reduce the dimension of the contextualized 
TVs, the DCT was performed on each of the eight TV 
dimensions and their first seven coefficients were retained, 
resulting in a 56D feature set. We name this feature the 
modulation of TVs (ModTVs) [16]. 
 

4. FEATURE COMBINATIONS 
 
The MFCCs used in all our experiments (except the baseline 
system, which used the HTK implementation of MFCCs 
[HTK-MFCC])   were   obtained   from   SRI’s   Decipher® front 
end. Various combinations of the 52D MFCCs, 52D 
NMCCs and 56D ModTV features were experimented with. 
First, the MFCCs were combined with ModTVs to produce 
a 108 dimensional feature set. Then the dimensionality of 
the resulting feature was reduced to 42 for the noisy training 
setup using principal component analysis (PCA). The PCA 
transformation matrix was created such that more than 90% 
of the information is retained within the transformed 
features.  

The PCA transformation matrix was learned using the 
training data and note that as per the 2nd CHiME challenge 
rules we have not exploited the fact that the same utterances 
were used within the clean and noisy training sets. These 
features were named as the MFCC+ModTV_pca.  We also 
combined the 56D ModTV features with the 52D NMCC 
features and performed PCA on top of it and named it as 
NMCC+ModTV_pca, but the results from this experiment 
didn’t  show  any   improvement   in  recognition  accuracy  over  
the MFCC+ModTV combination. 

We then explored a 3-way combination of NMCC, 
MFCC and ModTV features followed by PCA transform, 
that yielded 60D NMCC+MFCC+ModTV_pca feature. 
Note that in this case we observed that up to 60 dimensions 
after doing PCA transform retained more than 90% of the 
information. 

Finally, we explored a combination of NMCC, MFCC 
and ModTV with utterance level mean and variance 
normalization that resulted in a 124D feature set after PCA 
transformation. In this case we noticed that 124 dimensions 
retained 90% of the information for the training datasets 
after PCA transformation. We name this feature as 
NMCC+MFCC+ModTV _mvn_pca. Figure 2 shows a block 
diagram representing all the feature combinations. The 
results obtained using these combination features is given in 
Table 1. 

 
Figure 2: Block diagram showing the feature combinations 

5. EXPERIMENTS AND RESULTS 
 
 5.1. Experiment settings 

The data used in our experiments were obtained through 
the Track 1 of the 2nd CHiME Challenge. The dataset 
contained reverberated utterances recorded at 16 kHz 
sampling rate mixed with highly non-stationary background 
noise as described in [5]. The utterances consist of 34 
speakers reading simple 6-word sequences of the form 
<command:4><color:4><preposition:4><letter:25><number
:10><adverb:4>, where the numbers in brackets indicate the 
number of choices at each point [5]. The letters and numbers 
are the keywords in the utterances and the performance of 
the system was evaluated based on the recognition accuracy 
of these keywords. 

We explored different features and their combinations as 
input to the whole-word small vocabulary ASR system 
distributed with the 2nd CHiME Challenge [5]. The baseline 
system used 39D MFCCs (after cepstral mean removal) 
obtained from HTK frontend [5]. The baseline recognizer 
uses whole word left-to-right hidden Markov models 
(HMMs) containing 51 words. The HMMs allowed no skips 
over the states and used 7 Gaussian mixtures per state with 
diagonal covariance matrices. The number of states for each 
word was based on 2 states per phoneme assumption and 
more details on the system topology are provided in [5].  

Since the dimensionality of our input features varied 
from that used in the baseline system, we tuned the system 
configuration using the development set, by changing the 
number of states per phoneme, number of Gaussians per 
state, and the number of iterations for HMM parameter re-
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estimation. The number of Gaussians was varied from 2 to 
13. The number of iterations was varied from 4 to 8.  
 
5.2. Results for Development set 
We performed experiments on the development set in a 
systematic fashion in order to discover the best performance 
of the different feature sets. First, we conducted experiments 
using the baseline system provided with the 2nd CHiME 
challenge [5]. The keyword recognition accuracy results 
obtained for all the features from this experiment are 
provided in Table 1. After identifying the best feature sets, 
we tuned the system by varying the number of Gaussians 
from 2 to 13. Using the best tuned models for each feature 
set, we evaluated the test set results.  

 Initially, we tried the individual features: ModTVs 
(56D), MFCC (52D) and NMCC (52D) as input to the 
baseline HMM recognition system and observed that the 
NMCC feature provided the most improvement in 
recognition accuracy followed by the MFCC (52D) feature 
set. We also observed that the ModTVs by themselves were 
not showing any improvement in recognition accuracies 
over the baseline. The NMCC features by themselves 
demonstrated on an average 1.36% absolute improvement of 
the key word recognition accuracy over the baseline system. 

As a next step we tried 2-way fusion, where we 
explored the following feature combinations: (1) 
MFCC+ModTV and (2) NMCC+ModTV. Both of these 
combinations yielded 108D features but they were reduced 
to 42D using PCA as discussed before. From these 
experiments we observed that adding the ModTVs to the 
MFCCs showed substantial improvement in performance, 
where the recognition accuracies were even better than the 
individual NMCC system. Unfortunately, the ModTVs 
didn’t   fuse   well   with   the  NMCCs. This might be because 
ModTVs were extracted using NMCCs instead of MFCCs 
as input to the ANN model as shown in Figure 2. We 
believe that the MFCC-ModTV fusion benefited from the 
amount of complimentary information they capture, whereas 
the TVs in reality being a non-linear transformation of 
NMCCs did not posses much complementary information 
compared to the NMCCs; hence their fusion 

(NMCC+ModTVs) did not do so well compared to the 
individual NMCC system.  

As a final step, we fused the three features: NMCC, 
ModTVs and MFCCs together and performed PCA on top 
of it to produce a 60D feature set and this fusion gave an 
average improvement of around 1.45% absolute over the 
baseline system. This showed that even though NMCCs by 
themselves   didn’t   fuse   so  well  with   the  ModTVs,   a   3-way 
combination yielded the best recognition accuracy compared 
to the individual feature based systems and 2-way fusion 
based systems.  

Note that we did not implement any utterance-level 
mean and variance normalization across all of the feature 
dimensions in any of the fusion strategies discussed above. 
Hence to observe if such normalization helps to further 
improve the recognition accuracies, we remade the 3-way 
combination followed by utterance level mean and variance 
normalization followed by PCA transform. At this step we 
observed that 90% of the information resided in the top 124 
dimensions, hence we generated a 124D feature set from 
this mean-variance normalized 3-way fused feature set. 
Results on the development set showed an average 2.17% 
absolute improvement of the recognition accuracies over the 
baseline. 

After evaluating the feature sets on the baseline system, 
we selected the best performing features namely – NMCC,  
MFCC+ModTV_pca, NMCC+MFCC+ModTV_pca and 
NMCC+MFCC+ModTV_mvn_pca. We then tuned the models 
for each of these feature set by varying the number of 
Gaussians from 2 to 13 and the number of parameter re-
estimation iterations from 4 to 8. The results obtained by 
varying the number of Gaussians in the mixture for the 
NMCC+MFCC+ModTV_pca feature are shown in table 3. 
The keyword recognition accuracies using the tuned models 
for the development sets of the selected features are shown 
in Table 3. Note that the tuned parameters for each of the 
features presented in Tables 3 and 4 are not the same. 
However for the sake of brevity we are providing the 
parameters for only the best system. For the others, the 
tuned parameters were very similar (if not same) to the best 
system. 

 
Table 1: Keyword recognition accuracy in percent for the development set with noisy trained models using the baseline 

system having 7 Gaussian mixtures per state. 
 

Features -6dB -3dB 0dB 3dB 6dB 9dB Average 

Baseline MFCC (39D) [HTK-MFCC] 49.67 57.92 67.83 73.67 80.75 82.67 68.75 

MFCC (52D) 47.50 55.00 65.92 73.08 79.58 82.75 67.31 

ModTV (56D) 16.00 19.42 20.83 25.33 30.50 32.50 24.09 

NMCC (52D) 51.17 59.25 68.58 75.42 81.75 84.50 70.11 

MFCC+ModTV_pca (42D) 51.42 60.50 69.83 76.08 81.08 84.83 70.62 

NMCC+ModTV_pca (42D) 43.92 52.92 59.58 69.92 75.83 77.67 63.30 

NMCC+MFCC+ModTV_pca (60D) 50.58 60.08 69.00 76.75 81.08 83.75 70.20 

NMCC+MFCC+ModTV_mvn_pca (124D) 53.33 60.92 67.33 75.67 82.50 84.00 70.62 
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Table 2: Keyword recognition accuracy in percent for the development set with noisy trained models by tuning the number of 
Gaussians per mixture per state. [Results are for NMCC+MFCC+ModTV_pca feature set] 

 

 
 
 
 
 
 
 
 
 
 

 
Table 3: Keyword recognition accuracy in percent for the development set with noisy trained models after tuning 

 
 
 
 
 
 
 
 
 

 
Table 4: Keyword recognition accuracy in percent for the test set with noisy trained models after tuning 

 
 
 
 
 
 
 
 
 

 
5.3. Results for the Test set 
 
Using the models tuned on the development set for each 
feature,   we   evaluated   the   corresponding   feature’s   test   set  
results. Table 4 shows the keyword recognition accuracy for 
the test set using the tuned acoustic models trained with 
noisy speech data. The NMCC feature gave an average of 
5% absolute improvement in accuracy over the baseline. 
The MFCC+ModTVs_pca feature provided an average of 
5% absolute improvement in accuracy over the baseline, 
indicating that the acoustic models trained with NMCC and 
MFCC+ModTV had similar performance. The NMCC + 
MFCC + ModTVs_pca feature gave an average of 6% 
absolute improvement over the baseline, indicating that the 
three way feature combination offered the best performance. 
Finally, the mean and variance normalized features 
NMCC+MFCC+ModTVs_mva_pca provided an average of 
7% absolute improvement in keyword recognition accuracy 
over the baseline and this setup gave the best performing 
results from our experiments for the 2nd CHiME challenge. 

 

6. CONCLUSIONS 
 
Our experiments presented a unique combination of 
traditional acoustic features, perceptually motivated noise 
robust features and speech production based features and 
showed their combination gave the best keyword 
recognition accuracy compared to their individual 
performance.  NMCC was found to be the best performing 
single feature for the given key-word recognition task and 
its performance was further improved when combined with 
the MFCCs and ModTVs.  The success in the 3-way 
combination of the features lies in their mutual 
complementary information. Our experiments mostly 
focused on the front-end feature exploration with no 
alteration of the backend recognizer, except HMM 
parameter tuning. In the future, we want to explore 
enhanced acoustic modeling schemes which can further 
improve the recognition accuracies. Many researchers have 
hypothesized that the combination of perceptual, production 
and acoustic features will result in a superior front end for 

Number of Gaussians -6dB -3dB 0dB 3dB 6dB 9dB Average 

2 53.08 62.58 72.33 78.67 85.50 86.25 73.06 

3 53.92 64.25 73.00 79.83 86.42 87.17 74.09 

5 53.00 62.50 71.25 78.08 82.75 85.00 72.09 

7 50.58 60.08 69.00 76.75 81.08 83.75 70.20 

11 47.58 57.00 66.08 73.67 78.17 80.83 67.22 

13 45.92 55.33 64.75 71.75 76.92 80.58 65.87 

Features -6dB -3dB 0dB 3dB 6dB 9dB Average 

Baseline MFCC (39D) [HTK-MFCC] 49.67 57.92 67.83 73.67 80.75 82.67 68.75 

NMCC (52D) 56.08 62.75 71.5 78.5 84.17 86.58 73.26 

MFCC+ModTV_pca (42D) 53.17 63.00 71.00 79.92 85.25 87.33 73.27 

NMCC+MFCC+ModTV_pca (60D) 53.92 64.25 73.00 79.83 86.42 87.17 74.09 

NMCC+MFCC+ModTV_mvn_pca (124D) 58.08 65.00 74.42 81.00 85.58 86.58 75.11 

Features -6dB -3dB 0dB 3dB 6dB 9dB Average 

Baseline MFCC (39D) [HTK-MFCC] 49.33 58.67 67.50 75.08 78.83 82.92 68.72 

NMCC (52D) 54.42 64.58 73.08 80.08 82.92 87.92 73.83 

MFCC+ModTV_pca (42D) 53.67 63.67 72.50 79.83 84.00 87.33 73.50 

NMCC+MFCC+ModTV_pca (60D) 55.75 64.08 73.17 81.25 84.83 87.83 74.48 

NMCC+MFCC+ModTV_mvn_pca (124D) 57.75 65.42 75.08 82.25 85.75 87.33 75.59 
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speech recognition systems. The experiments presented here 
support this hypothesis with data. 
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