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ABSTRACT

In this paper, we address the small vocabulary track (track 1)
described in the CHiME 2 challenge dedicated to recognize utter-
ances of a target speaker with small head movements. The ut-
terances are recorded in a reverberant room acoustics corrupted
with highly non-stationary noise sources. Such adverse noise sce-
nario imposes a challenge to state-of-the-art automatic speech
recognition systems. We developed two individual front ends for
the output of the delay-and-sum beamformer: (i) a model-driven
single-channel speech enhancement stage which combines the
knowledge of the speaker identity modeled by a trained vector
quantizer with a minimum statistics based noise tracker, and (ii)
a single-channel source separation stage which employs models
of the target speaker as well as the background noise as code-
books. Our perceived signal quality and separation results aver-
aged on the CHiME 2 development set justify the effectiveness
of both strategies in terms of recovering the target speech signal.
Also, our best results on keyword recognition accuracy show 20%
improvement over the provided baseline results on the develop-
ment and test sets.

Index Terms— Single-channel source separation, Model-
driven speech enhancement, Automatic speech recognition.

1. INTRODUCTION

The 2nd ‘CHiME’ Speech Separation and Recognition Challenge
is the third challenge on automatic speech recognition (ASR)
robustness contests. The first round of the speech separation
and recognition challenge presented in [1] focused on separating
co-channel speech mixture composed of two speakers with-
out background noise or reverberation. The second challenge
in [2, 3], called 1st CHiME challenge addressed the problem of
recognizing speech of a target speaker in reverberation corrupted
with realistic noise sources recorded in a domestic room. The 2nd

CHiME challenge tries to be more realistic and proposes two dif-
ferent tracks: the small vocabulary and the medium vocabulary.

This work was partially funded by the European project DIRHA (FP7-
ICT-2011-7-288121) and by the K-Project AAP in the COMET (Compe-
tence Centers for Excellent Technologies) programme with joint support
from speech processing solutions Vienna, BMVIT, BMWFJ, Styrian Busi-
ness Promotion Agency (SFG), and the Government of Styria ("Abt. 3:
Wissenschaft und Forschung" as well as "Abt. 14: Wirtschaft und Inno-
vation"). The programme COMET is managed by the Austrian Research
Promotion Agency (FFG).

In this paper, we focus on the small vocabulary track (track 1),
which is very similar to the first CHiME challenge, but now small
movements of the head are allowed.

To improve the recognition accuracy of the target speech
utterance, it is important to remove signal impairments in spa-
tial domain as well as in spectral-temporal domain. For spatial
filtering, in this paper, we apply a simple delay-and-sum (DS)
beamformer. On the other hand, to address spectral-temporal
filtering, we employ a single-channel enhancement and a single-
channel separation algorithm to remove the undesired signal
components from the noise corrupted speech signal.

The single-channel signal enhancement or separation solu-
tions are limited in their performance mainly due to the following
reasons: To estimate the additive noise, state-of-the-art speech
enhancement methods (e.g. [4–7]) rely on the assumption that
the corrupting noise is slowly varying in its second order statistics
compared to speech. For the scenario in this challenge, however,
the speech signal undergoes several impairments including room
reverberation and corruption by highly non-stationary and un-
predictable background noise or even other competing speakers.
Therefore, noise estimation alone is not able to track such fast
changes accurately. Furthermore reverberation will introduce
some biases, leading to over- or under-estimation of noise. Some
preliminary enhancement results justifying the limited perfor-
mance in such adverse noise scenarios are provided in [8].

On the other hand, single-channel source separation (SCSS)
techniques have been employed to improve the speech recogni-
tion accuracy of co-channel speech mixtures [1, 9–13]. Model-
driven SCSS techniques achieve large improvements in terms of
ASR [1, 9] as well as perceived signal quality [10, 11]. However,
their successful performance is usually reported for co-channel
speech mixtures without background noise or reverberation. Fur-
thermore, sufficient source-specific data is required for model
training as these methods rely on a pre-trained model of the
interfering sources, which is applied during separation; In the
CHiME 2 challenge, however, both background noise and rever-
beration exist and a variety of noise types may occur.

In this paper, we study two systems to address the small
vocabulary track in the CHiME 2 challenge: (1) a model-driven
single-channel speech enhancement (MD-SCSE) system, which
combines a vector quantization (VQ)-based target speaker model
together with a minimum statistic noise tracker, and (2) a SCSS
algorithm presented in [14], which employs a speaker-dependent
model of the target speaker and a general model for noise. Both
models are trained in the log-mel spectral domain, in contrast
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Fig. 1. Block diagram of the proposed front-ends used for robust
speech recognition. An initial step of beamforming is combined
with single-channel source separation and single-channel speech
enhancement

to commonly used short-time Fourier transform (STFT) fea-
tures [1, 10]. The two approaches are individually used as
front-ends to provide enhanced signals. Mel-frequency cepstral
features (MFCCs) are then extracted and ASR is performed.

The paper is structured as follows: In the following section
we present the signal processing front-end composed of a delay-
and-sum (DS) beamformer, single-channel source separation,
and a model-driven single-channel speech enhancement. Section
3 provides details about the experimental setup, the database,
feature extraction and about the automatic speech recognition
engine. Section 4 reports separation and enhancement results ob-
tained by the proposed front-ends averaged on the development
set. Furthermore, we report ASR results on the development and
test sets. Section 5 concludes on the paper.

2. FRONT-END SIGNAL PROCESSING

The strategies used as front-ends to enhance the binaural noisy
input speech signal are displayed in Figure 1. The proposed sys-
tem block diagram is composed of three steps: 1) DS beamformer,
2) single-channel speech separation, and 3) model-driven single-
channel speech enhancement.

2.1. Delay-and-Sum Beamformer

For spatial filtering, the delay-and-sum beamformer is used,
which provides the sum of the left and right microphone signals.
Similar to previous CHiME challenge, the time-delay was set to
zero to maintain the simplicity. The beamformer output is given
by:

x =
xL + xR

2
, (1)

where xL = {xt
L
}Tt=1 and xR = {xt

R
}Tt=1 are the left and right time-

domain microphone signals is the time frame index and T as the
total number of samples. The DS beamformer output is passed
either to MD-SCSE or SCSS, described in the following.

2.2. Single-channel Source Separation

For the rest of the paper, we neglect the time index t in our no-
tation, as we process the signal at a frame-level basis. Lowercase
letters are used for time-domain samples. Capital boldface letters

denote the magnitude spectrum of the STFT vectors at each time
index. Symbols ·̃ and ·̂ are used to refer to actual mel-spectra
and estimated magnitude, respectively. The unknown clean tar-
get speech signal and interfering noise signal are represented by
s and n, respectively.

We use model-based SCSS for separating the observed noisy
speech to find estimates for the unknown speech and noise com-
ponents. In particular, we use the factorial VQ model proposed
by Roweis [14]. This model is based on the MIXMAX model [15],
i.e., the log-magnitude DFTs of two sources can be approximated
by the element-wise maximum of their respective single-source
log-magnitude DFT, i.e., log (X) ≈ max(log (S), log (N)), where
X = {X}Dd=1 denotes the short-time magnitude spectrum of the
signal mixture at each time frame t, d is the frequency index, and
D denotes the total number of frequency bins. This approxima-
tion is based on the sparse nature of speech in time-frequency
representations where each bin of a mixture spectrogram is dom-
inated by a single source.

The factorial max-VQ model requires a codebook for each
source. The sample vectors for learning the codebooks of each
speaker and the noise are extracted from the STFT of both the
clean reverb speaker signals and the noise signals, i.e., we per-
form SCSS in a speaker dependent manner. The 1024-point STFT
is computed for time frames of 32 ms using a Hamming win-
dow. The frame-overlap is 10ms and zero padding is applied.
We use the max-VQ model in the log mel-frequency domain, i.e.,
the magnitude spectra calculated at different frames are trans-
formed into the log mel-domain. The log mel-domain speech and
noise frames are denoted by S̃ and Ñ, respectively. Separating
speech signals in the log mel-domain rather than in the log STFT
domain, reduces the size of the binary mask while the influence
on the separation performance is limited. In [10], it was shown
that a transformation of higher resolution at low frequency on
the selected features achieves a better separation performance.
The codebooks for speaker i, !i, and the noise " are obtained
by the K-means algorithm [16] using the log-mel spectrogram
data (i.e. reverberated single speaker data and noise data). Each

codebook !i consists of K codevectors, i.e., !i =
{

S̃i
k

}K=500

k=1
,

where each codeword entry is composed of 26 mel-filter-bank co-
efficients [17].

For separation of the two sources the best combination of
codebook vectors is determined leading to the minimal !2-norm
for each frame and speaker i, i.e.

{k∗

1,k∗

2} = arg min
k1,k2

∥

∥

∥
X̃ − max

(

S̃i

k1
, Ñk2

)
∥

∥

∥

2

2
, (2)

where X̃ is the actual mel-spectra of the output of the beam-
former x. The search space for separation of two sources is
#
(

K2
)

. In [13], we introduced the iterated conditional modes
(ICM) algorithm to dramatically reduce the computational costs
for codebook vector selection by almost two orders of magni-
tude. Once we have found the optimal indices {k∗

1, k∗

2} for all
t, we use the corresponding codevectors as approximation of
the log-mel speaker and noise spectrum denoted by S̃k∗

1
and

Ñk∗

2
, respectively. These approximations enable to compute a

continuous mask in mel-domain. However, we convert S̃k∗

1
and

Ñk∗

2
to magnitude spectrum representations Ŝk∗

1
and N̂k∗

2
, using

a conversion from mel-domain to frequency domain [18] and
derive a softmask in frequency domain (more details on softmask
estimation is given in Section 2.4). This mask is applied to the
noisy signal for recovery of the target speech signal.
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2.3. Model-driven Single-Channel Speech enhancement

Here, we combine the noise estimate obtained by the minimum
statistics (MS) noise tracker [19], with the minimum mean
square error (MMSE) speech estimate derived from a pre-trained
codebook for the target speaker. The idea to use these compo-
nents together has already been presented in [8] under the name
of model-driven speech enhancement and was shown to achieve
effective noise reduction performance on the SiSEC 2011 chal-
lenge (as a subset of CHiME 1 challenge) [20]. More recently, the
extension of the idea for binaural scenario was shown to achieve
reasonable performance on the full development set of CHiME 1
compared with several other participants [21].

We train codebooks on the clean reverberated speech dataset
of each speaker, in order to capture the spectral characteristics
of the target speaker in the noisy signal. For each speaker, 600
utterances of the training set, were used to train the speaker
models in the amplitude spectrum domain. In the following,
the speaker model is denoted by $S = {Sr}

R
r=1, where r is the

codebook index. A VQ with R = 2048 centroids is used to model
the target speaker.

For noise estimation The minimum statistics (MS) noise
tracker [19] is used to obtain estimates for the power spectral
density of the stationary part of the background noise denoted
by E{N̂2

MS,d}. This noise estimate is then used to perform the
voice activity detection (VAD) based on the a posteriori SNR

estimate γd =
X2
d

E{N̂2
MS,d}

, with a decision threshold of 0 deci-

bels. For the speech absence region, we select the attenuation
level of Gd,min = −15 decibels as often used in speech enhance-
ment [22]. The minimum statistics approach has the advantage
of getting updated even in speech presence regions [19]. The
first six frames in each sentence are assumed to be noise only, to
initialize the noise estimate. This choice achieved the best results
over the CHiME scenario.

For MMSE speech estimation, the speech frames detected by
the VAD are passed for further analysis, by the speaker codebook.
To this end, we select a subset of M most likely codevectors
after sorting their !2-norm distortion measure in the magnitude
spectrum domain defined as

r∗ = arg min
r

E{‖W(X − Ŝr)‖2
2}

︸ ︷︷ ︸

d

, (3)

where Ŝr refers to the r-th codevector in the speaker codebook.

We define d = {er}
R
r=1 where er =

∑D

d=1 Wd(Xd − Sr,d)
2 as

the distance metric used to find the optimal codevector r∗, and
Wd =

√
γd is the weighting function based on the a posteriori

SNR. For each r-th codevector, we also define αr = P(Sr|X) as the
probability of selecting the r-th codevector, which is calculated as
αr =

er
∑R

r=1 er
, where

∑

r
αr = 1.

These M codevectors are considered as potential candidates
to reconstruct the unknown speech spectrum. The role of γk is to
emphasize on the dominance of the target speech spectral compo-
nents according to the estimated a posteriori SNR. This weighting
essentially converts the traditionally used least squares (LS) dis-
tance metric to a weighted least squares (WLS) metric, in the con-
text of model-based speech enhancement. Previous study in [23]
shows that a WLS distance metric is more robust to noise, as it
finds better codewords entries compared to an unweighted met-
ric here, a correct codevector refers to the one calculated for the
clean signal scenario which provides the upper-bound of a model-
driven speech enhancement method [23]. The MMSE speech esti-

mate is approximated by the truncated weighted sum of the most
likely (M < R) speech spectra,

ŜMMSE =

M
∑

m=1

αrm S̃rm , (4)

where rm with m ∈ [1,M] denotes the index of the M most likely
speech spectra in the speech codebook where αrm = erm

∑M
r=1 erm

.

Here, we found M = 5 suffices.

2.4. Softmask Signal Reconstruction

The speech and noise estimates obtained from either the single-
channel source separation or the model-driven single-channel
speech enhancement algorithms are used to form a square root
Wiener filter as an estimate for the a priori SNR

ĜW
d =

Ŝd
√

Ŝ2
d
+ τN̂2

d

, (5)

where τ is the over subtraction factor. For SCSS, we select Ŝ =
Ŝi
k∗

1
and N̂ = N̂k∗

2
, while for the enhancement scenario we select

Ŝ = ŜMMSE and N̂ = N̂MS. Previous studies show improved speech
enhancement and robust speech recognition by choosing 1.3 <
τ < 2 for low SNR scenarios [6]. τ = 1.7 for the enhancement
algorithm leads to the best result while τ = 1 is used for SCSS. To
re-synthesize time signals, the softmask mask is multiplied with
the original noisy spectrogram and the inverse STFT followed by
an overlap-and-add procedure is applied. The phase of the noisy
signal is used for reconstruction.

3. EXPERIMENTAL SETUP

The recognition system have been evaluated using the 2012 2nd

CHiME challenge track 1 (small vocabulary) database [3]. The
challenge consists of recognizing the keywords digits and letters,
from the GRID sentences uttered by a target speaker in a rever-
berant noisy environment. In the test stage, only the Isolated-Test
(and not the Embedded) utterances of the database has been con-
sidered. In the training stage both the Reverberated and the Noisy
(and not the Clean) set with 17000 utterances from 34 different
speakers (18 males and 16 females) have been employed to train
our models. Also we have employed the Isolated-Development and
Noise data provided by the organizers to tune some parameters of
our system.

Both the front end (FE) and the back-end (BE) have been
derived from the recognition system provided by the organiz-
ers. The FE takes the single-channel enhanced signal of the two
proposed methods presented in Section 2, and obtains mel fre-
quency cepstrum coefficients (MFCCs) using 16 kHz sampling
frequency, frame shift and length of 10 and 32 ms, D=1024 fre-
quency bins, 26 Mel channels and 13 cepstral coefficients. The
same parameter setup has been used in the enhancement meth-
ods described in Section 2. Delta and delta-delta features with
a window length of 5 (half length 2) are also appended, ob-
taining a final feature vector with 39 components. The same
parametrization is used by the organizers. We applied cepstral
mean normalization (CMN) to obtain MFCC feature vectors. The
BE model employs word level left-to-right HMMs with the follow-
ing parametrization: 7 component-gaussian-mixtures/state with
diagonal covariance matrices and the same language model as
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Input SNR (dB) -6 -3 0 3 6 9

PESQ
Noisy (Baseline) 1.58 1.76 2.03 2.26 2.50 2.74
MMSE-LSA [4] 1.04 1.27 1.55 1.83 2.08 2.34

Cepstral smoothing [5] 1.25 1.27 1.85 2.18 2.46 2.71
MD-SCSE 1.69 1.82 2.10 2.46 2.53 2.75

SCSS 1.79 1.90 2.06 2.25 2.42 2.58

SDR (dB)
Noisy (Baseline) -6.28 -3.93 -1.56 1.04 3.65 5.97

MD-SCSE -1.71 -0.36 1.62 3.05 4.34 5.36
SCSS -0.48 0.64 2.46 3.94 5.02 5.79

SIR (dB)
Noisy (Baseline) -6.28 -3.93 -1.56 1.04 3.65 5.91

MD-SCSE 2.39 3.78 6.57 8.86 11.17 13.98
SCSS 3.43 4.46 6.99 9.45 11.65 14.12

Table 1. PESQ and BSS EVAL results results obtained by the pro-
posed FEs. The results are averaged on the development set of
CHiME 2 and are grouped according to six SNR levels. Bold face
numbers highlight the best performance achieved for each SNR
condition.

the organizers. The number of states per word is selected as de-
scribed by the organizers. Each speaker-dependent (SD) model
is created as the organization explains, by retraining an initial
speaker-independent (SI) model by using only the 500 utterances
corresponding to each speaker.

It is important to point out two modifications made to the
baseline system of the organization which have helped to improve
the performance of the results. First, we introduced a floor value
on the log-mel representation in the FE. Second, we use a floor
value for the state-variance of the Gaussian mixtures in the BE.
Retraining our models is only possible when this variance floor is
established. By means of a small subset of the development set,
we have set these two floors to -15.00 log-mel-units and to 0.01
times the global mean variance of the training set, respectively.

4. RESULTS

4.1. Quality Metrics

We first report the speech quality results obtained by our FEs.
The evaluation criteria used are perceptual evaluation of speech
quality (PESQ) [24] and the metrics in the blind source separa-
tion evaluation (BSS EVAL) toolkit [25], often used to measure
the perceived signal quality and blind source separation perfor-
mance. The PESQ and the BSS EVAL results are reported in Ta-
ble 1. The results in terms of signal-to-distortion ratio (SDR) and
signal-to-interference ratio (SIR) are reported in decibels. All re-
sults are averaged over the development set grouped according
to the signal-to-noise ratios. For a fair comparison, the beam-
former output is used as the input signal to the speech enhance-
ment methods studied here. From these results, the following
observations are made: Higher SIR and SDR results are obtained
by SCSS compared to MD-SCSE, while improved PESQ results
are observed for the MD-SCSE method, especially for high SNRs.
Some audio wave files are available1. Both strategies, achieve a
significant improvement in terms of noise reduction, compared to
the selected state-of-the-art speech enhancement methods [4, 5].
Further comparison of the proposed MD-SCSE with the standard
noise reduction technique as vector Taylor series (VTS) based ap-
proach [26] showed an average improvement of 1.24 decibels in
SDR.

1http://www2.spsc.tugraz.at/people/pmowlaee

4.2. ASR Results

Tables 2 and 3 show the keyword recognition accuracy (WAcc)
in percent for the proposed systems for the development and test
sets of track 1 (small vocabulary) in the CHiME 2 challenge. A
full description of the challenge is provided in [27]. The results
are reported for clean reverberated and noisy training and for
speaker-independent (SI) and speaker-dependent (SD) recogni-
tion. In Table 3, comparing the Organizers Baseline (56.89 % on
average) with the proposed TUGraz Baseline (63.26) result, we
can see an improvement of 6.39 %. This improvement is mainly
due to the log-mel representation floor (applied in the FE) and
the state-variances floor (applied in the BE).

The next improvements are obtained by applying the front
ends: MD-SCSE and SCSS. For SI and SD recognizers, with
clean reverberated training, MD-SCSE improves the performance
64.15% and 65.51%. Other improvement is obtained by the
SCSS (SI) system and later by the (SD) system which reaches up
to 69.84% and then to 70.31% with clean reverberated training
and with SI and SD models, respectively. This improvement is due
to the capacity of the SCSS system to enhance the reverberated-
noisy signal at different SNRs. Especially, at low SNRs, the
single-channel source separation strategy shows large improve-
ments with respect to the baseline results. This can be explained
by the previous findings on the high capability of model-driven
SCSS algorithms in separating co-channel speech mixtures [1].
We conjecture that one reason is that the noise at low SNRs
mainly consists of another competing speaker or has in general
some harmonic structure, and therefore a model-driven SCSS can
improve ASR performance by canceling the spectral components
of the interfering signal. The previous SCSS result can be even
more improved, if noisy training and speaker dependent (SD)
models are used. In this case the system reaches a performance
of 74.00% for MD-SCSE and 77.66% for SCSS. This last result
achieved by SCSS is our proposed best results for the CHiME 2
Challenge.

5. CONCLUSION

In this paper, we addressed the issue of robust speech recogni-
tion in multisource reverberant environments as described in the
CHiME 2 recording setup. Here, we studied the performance of
two front ends applied on the output signal of a delay-and-sum
beamformer: a single-channel source separation and a model-
driven single-channel speech enhancement method. The pro-
posed single-channel front-end processing methods demonstrate
promising improvements across different input signal-to-noise ra-
tios, both in signal quality related measures and in ASR perfor-
mance. On average, our best proposed system led to 8.5 dB im-
provement in signal-to-interference ratio with 3 dB improvement
in signal-to-distortion ratios, compared to the noisy input signal.
Our best recognition performance improved the baseline results
from 56.89 % to 77.66 % word recognition accuracy averaged
over all SNRs.

The two ideas presented in this work were earlier developed
in [8, 12, 21]. However, in this study we we particularly presents
the performance of such systems for a multisource reverberant
scenario. In our proposed approaches, we have neither employed
more sophisticated features such as relative spectral transform-
perceptual linear prediction (RASTA-PLP) and cepstrum third-
order normalization (CTN) nor any important tuning of our pa-
rameters, using the development set. Further improvements of
current ASR results are expected by combining the proposed ap-

http://www2.spsc.tugraz.at/people/pmowlaee
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Final results (Development set) -6dB -3dB 0dB 3dB 6dB 9dB Average

Clean reverberated training

Baseline (Organizers) 32.08 36.33 50.33 64.00 75.08 83.50 56.88
TUGraz Baseline (SI) 40.92 46.17 57.75 66.58 75.58 81.92 61.48

MD-SCSE (SI) 45.33 47.08 59.17 70.17 78.00 83.17 63.82
SCSS (SI) 53.08 54.92 65.50 74.17 79.83 85.33 68.80

TUGraz Baseline (SD) 38.92 47.25 57.33 69.83 81.08 87.33 63.62
MD-SCSE (SD) 42.00 50.42 61.08 73.83 81.17 88.67 66.20

SCSS (SD) 48.25 52.83 66.67 76.33 83.67 88.67 69.40
Noisy training

Baseline (Organizers) 49.67 57.92 67.83 73.67 80.75 82.67 68.75
TUGraz (SI) 54.17 59.42 67.08 76.25 79.50 82.58 69.83

MD-SCSE (SI) 56.33 61.50 68.92 76.50 80.58 83.58 71.23
SCSS (SI) 59.17 65.00 70.75 75.58 80.17 82.75 72.23

TUGraz Baseline (SD) 53.92 61.83 71.92 78.25 83.17 85.58 72.44
MD-SCSE (SD) 54.92 63.08 71.92 77.42 84.08 85.33 72.79

SCSS (SD) 62.00 66.83 75.25 80.83 85.00 86.25 76.02

Table 2. Keyword recognition accuracy obtained by the best methods for speaker-dependent (SD) and speaker-independent (SI) recog-
nition and for clean reverberated and for noisy training, reported on the development set. Bold face highlights the best performance
achieved for each SNR condition.

Final results (Test set) -6dB -3dB 0dB 3dB 6dB 9dB Average

Clean reverberated training

Baseline (Organizers) 32.17 36.33 50.33 64.00 75.08 83.50 56.89
TUGraz Baseline (SI) 39.33 44.58 54.42 66.75 75.83 82.92 60.63

MD-SCSE (SI) 41.92 50.62 58.42 69.67 77.05 84.25 64.15
SCSS (SI) 53.08 56.83 66.42 76.25 80.83 85.67 69.84

TUGraz Baseline (SD) 37.92 44.17 59.50 70.42 80.42 87.17 63.26
MD-SCSE (SD) 38.58 48.17 61.50 73.08 82.75 89.00 65.51

SCSS (SD) 48.25 54.75 67.25 77.83 84.33 89.50 70.31
Noisy training

TUGraz Baseline (SI) 54.33 60.75 68.42 75.77 79.83 83.42 70.42
MD-SCSE (SI) 55.67 60.42 68.92 75.42 80.42 82.58 70.57

SCSS (SI) 58.83 64.00 71.75 77.75 81.67 84.58 73.09

TUGraz Baseline (SD) 55.0 64.00 71.5 77.58 81.08 85.08 72.37
MD-SCSE (SD) 55.83 66.17 73.50 79.17 83.75 85.42 74.00

SCSS (SD) 63.67 68.92 76.00 83.92 85.25 88.25 77.66

Table 3. Keyword recognition accuracy obtained by the best methods for speaker-dependent (SD) and speaker-independent (SI)
recognition for clean reverberated and for noisy training reported on the test set. Bold face highlights the best performance achieved
for each SNR condition.

proaches with ROVER fusion [28], integrating more robust fea-
tures, improving the noise estimation by means of the pitch [29,
30], and employing a better tuning of some of the parameters
(e.g., τ in softmask estimation for signal reconstruction).
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