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ABSTRACT

In this work we extend a previously proposed NMF-based technique
for speech enhancement of noisy speech to exploit a Hidden Markov
Model (HMM). The NMF-based technique works by finding a sparse
representation of specrogram segments of noisy speech in a dictionary
containing both speech and noise exemplars, and uses the activated
dictionary atoms to create a time-varying filter to enhance the noisy
speech. In order to take into account larger temporal context and con-
strain the representation by the grammar of a speech recognizer, we
propose to regularize the optimization problem by additionally mini-
mizing the distance between state emission probabilities derived from
the speech exemplar activations, and a posteriori state probabilities
derived by applying the Forward-Backward algorithm to the emission
probabilities. Experiments on Track 1 of the 2nd CHiME Challenge,
which contains small vocabulary speech corrupted by both reverbera-
tion and authentic living room noise at varying SNRs ranging from 9
to -6 dB, confirm the validity of the proposed technique.
Index Terms: speech enhancement, exemplar-based, noise robust-
ness, Non-Negative Matrix Factorization, Hidden Markov Models

1. INTRODUCTION

These days, there is an increasing attention for Automatic Speech
Recognition (ASR), in no small part thanks to applications such as
voice search on smart-phones, navigation and home automation. Con-
sequentially, there is a growing demand for robust ASR: ASR which
functions adequately even in noisy, reverberant environments. Un-
fortunately, the performance of conventional ASR systems degrades
rapidly when the speech signal is corrupted by noise.

The reason why ASR performance drops with increasing levels
of noise, is that the observed acoustic features no longer match the
acoustic models learned during training. All robust ASR approaches
proposed over the last few decades aim to resolve this mismatch.
Many of these methods, however, are only effective when speech
is corrupted by stationary noise [1, 2], or rely on statistical models
of the corrupting noise [3, 4]. Some methods achieve impressive
performance when a detailed model of the noise is available [5], but
their performance on modeling unseen noise environments is limited.
For an overview, we refer the reader to [6].

A relatively new method based on compositional models for
speech, i.e. models which describe the magnitude spectra of complex
sounds as being composed of a purely additive combinations of spec-
tral atoms, has proven to be adept at separating the target speech from
interfering sounds such as noise [7, 8], other speakers [9, 10], mu-
sic [11–13] and even reverberation [14]. For noise-robust automatic
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speech recognition (ASR), such compositional models really excel
when the atoms also model temporal context [15,16]. Due to its close
relation to Non-negative Matrix Factorization, we will refer to this
class of models as ‘NMF’. In NMF, we obtain the weights with which
the dictionary atoms combine by minimizing the distance between
the representation and the weighted sum of dictionary atoms.

In this work, we propose using even more knowledge of the target
speech, in the form of Hidden Markov Models (HMMs). Although
HMMs are the cornerstone of virtually every speech recognition
system, its use in noise robust ASR techniques based on speech
enhancement is limited. For the compositional model, recently a
model called the Non-negative HMM (NHMM) was proposed [17].
In this model, there are multiple dictionaries, each corresponding to
a specific HMM state, and an observation is modeled as a weighted
sum of dictionary reconstructions – each of which is in turn modeled
by a weighted sum of dictionary atoms. A HMM transition matrix
governs the sequence of dictionaries which can be activated.

In the NHMM, the HMM is learned from data, and for appli-
cations such as source separation a factorial HMM is used. While
shown to be effective a speaker separation task [17], the approach
has some drawbacks for an application to noise robust ASR: First,
the use of a factorial HMM leads to an exponential increase in com-
putational complexity which requires solutions such as approximate
inference [18]. Moreover, the use of a factorial HMM requires de-
tailed knowledge of the corrupting noise - which is often not available,
leading to poor generalization. Finally, as pointed out already in [17],
finding the weights of the HMM state posteriors converges much
faster than finding the weights with which dictionary atoms combine.
As a result, NMF-based methods, which typically need hundreds of
iterations to converge, tend to converge to sub-optimal state weights
too quickly.

As an alternative perhaps more suited to noise robust ASR, we
propose the use of HMM-regularized NMF, an extension of NMF
in which the cost function to be minimized is augmented with a
term that describes the distance between state emission probabilities,
and the a posteriori estimates obtained after applying the Forward-
Backward algorithm. Building on our earlier work on exemplar-
based speech recognition, we use dictionaries with speech and noise
atoms extracted directly from the training data (the exemplars). The
speech exemplars are associated with HMM states through a forced
alignment of the reverberated training data, and the dictionary atom
activations serve as evidence for the states corresponding with the
atoms. We then use the HMM of the back-end speech recognizer to
obtain a posteriori state estimates.

This approach offers several advantages. Since in this frame-
work the noise exemplars are not constrained by an HMM, we avoid
the exponential complexity of the factorial HMM approach. Also,
the method extends to atoms modeling multiple states provided the
calculation of state emissions is defined accordingly. Finally, since
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the HMM contribution is a expressed as a regularizer, we can grace-
fully tune its influence using a regularization weight. In comparison
to another recently introduced method that regularizes NMF by an
HMM [19], we propose a simpler solution which allows formulating
the algorithm as matrix operations, yielding a more efficient imple-
mentation.

We evaluate the performance of the proposed speech enhance-
ment method using Track 1 of the 2nd CHiME challenge [20]. Rather
than trying to achieve the best possible recognition accuracies, we aim
at exploring to what extend the use of HMM regularization can im-
prove a speech enhancement approach to noise robust ASR working
with unadapted acoustic models.

The rest of the paper is organized as follows. The NMF-based
speech enhancement method is described in Section 2. The proposed
HMM-regularization approach is outlined in Section 3. The experi-
mental setup, such as a description of the 2nd CHiME challenge data,
the implementation details of the speech enhancement technique and
the speech recognition system are described in Section 4. Automatic
speech recognition results with different distance measures, exemplar
sizes, and regularization weights are presented in Section 5. We finish
with a general discussion and our conclusions in Section 6.

2. NMF-BASED NOISE ROBUST ASR

In this section we briefly describe the baseline system of [21], in
order to make the paper self-contained and to introduce the necessary
notation. For brevity, and due to its relation to Non-negative Matrix
Factorization (NMF), we will refer to this method as ‘NMF’.

2.1. Exemplar-based representation of noisy speech

The noise robust ASR technique operates on fixed-size magnitude
Mel-spectra, each a B ⇥ T noisy speech spectrogram matrix, with B

Mel-frequency bands and T time frames. We assume noisy speech
is a linear addition of underlying clean speech and noise magnitude
spectrograms. To simplify the notation, the time frames (columns)
of each spectrogram are stacked into the noisy speech, clean speech
and noise speech vectors y, s and n, respectively, each of length
D = B · T

We model s as a sparse, non-negative linear combination of
example speech spectrograms exemplars, which are extracted from
the training data. The exemplars are denoted as as

j , with j = 1, . . . , J
denoting the exemplar index. Accordingly, the noise spectrogram is
modeled using K noise exemplars: an

k, with k = 1, . . . ,K.
We then write:
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with x

s and x

n sparse representations of the underlying speech and
noise, respectively.

In order to decode utterances of arbitrary lengths, we adopt a
sliding time window. In this approach, we represent a noisy utterance
as W fixed-size, overlapping speech segments, each of length T . We
write the analog of (4) as the NMF problem Y ⇡ AX, with Y a

matrix with the multiple y vectors as it columns and X containing
the corresponding x sparse representations as its columns.

2.2. Finding exemplar weights

In order to obtain X, we minimize the cost function:

dKL(Y,AX) + ||⇤⌦X||1 s.t., X � 0 (5)

where dKL is the generalized Kullback-Leibler (KL) divergence
and the second term a sparsity inducing L-1 norm of the activations
weighted by element-wise multiplication (operator ⌦) with the spar-
sity penalty matrix ⇤, defined for each activation entry. In this work,
speech and noise exemplars are weighted differently, but the weights
are otherwise the same for all exemplars and observations.

The cost function (5) is minimized using a multiplicative updates
routine:

X X⌦
A

T( Y
AX )

A

T
1+⇤

. (6)

Here, matrix divisions are element-wise. 1 is an all-ones matrix of
dimensions D ⇥W .

2.3. Speech enhancement

For maximum independence of the speech recognizer, we will use
a speech enhancement approach. Let us denote speech exemplar j
spectrum and noise exemplar k spectrum in frame t as as

j,t and a

n
k,t,

respectively.
The model for the clean speech spectrum, and model for the noise

spectrum are given as

s̃t =
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For each noisy speech segment (column of matrix Y), we cal-
culate clean speech estimates s̃t and noise estimates ñt as described
above. For the entire utterance, the segment-wise estimates are av-
eraged over the overlapping windows, to get a single clean speech
and noise estimate per each frame t. The spectral estimates of speech
and noise averaged over windows are denoted with vectors ŝt and n̂t,
respectively.

We design a DFT-domain filter magnitude response vector ht for
each frame t as

ht =
B

†
ŝt

B

†
ŝt +B

†
n̂t

, (9)

with the matrix division acting element-wise. B

† denotes the
MoorePenrose pseudo-inverse of the Mel-matrix B, which maps
the Mel magnitude vectors to the DFT domain

Element-wise multiplication between the complex DFT vector
of noisy speech in frame t and the corresponding filter magnitude
response above is calculated to obtain an enhanced complex spectrum.
The enhanced spectrum is transformed into time domain by taking
inverse DFT together with the original phases. Frames are combined
using weighted overlap-add to obtain the whole enhanced signal.
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3. HMM-REGULARIZED NMF

In order to constrain the speech exemplar activations to those more
likely to conform to a Hidden Markov Model (HMM) of speech, we
propose regularizing the NMF cost function (5) with the distance
between state emission probabilities corresponding to the representa-
tion and a posteriori state estimates, obtained by using the Forward-
Backward algorithm. The Forward-Backward produces non-zero
probabilities only for those state sequences that the HMM is able to
generate, and higher probabilities for more likely state sequences.

3.1. State probability calculation

We create a Q⇥W emission probability matrix P, where each entry
Pqw denotes the emission probability of HMM-state q (1 . . . Q) in
window w (1 . . .W ). The emission probabilities are being generated
by the linear model [15]

P = [Ms
M

n]X = MX (10)

with M

s and M

n mapping speech and noise exemplars to states,
respectively. The application of (10) is followed by normalizing the
sum over states within each window to unity.

In this work, Mn is an all-zero matrix of dimension Q⇥K. Mn

is created by counting for each exemplar in the dictionary, in how
many frames each state is activated according to a forced alignment
with a GMM/HMM-based recognizer. Note that this constitutes a
departure from our recent work, in which we modeled the state ac-
tivations of frames within exemplars, and a return to the original
formulation in [8]. This is necessary in order to have a time di-
mensionality which matches the spectral representation that is being
optimized.

The a posteriori state matrix P̂ is then constructed by applying
the Forward-Backward algorithm to the emission probabilities. The
initial state and transition probabilities are equal to the word-based
HMM speech recognizer back-end. Given the strict grammar of the
CHiME/GRID task (cf. Section 4), a single large transition matrix
was constructed which encodes state transitions both within words
and between words. In order to simplify the calculations, the columns
of P̂ are normalized to sum to unity.

3.2. Finding exemplar weights

In order to obtain X, we propose minimizing the cost function:

dKL(Y,AX) + ||⇤⌦X||1 + d(P̂,P) s.t., X � 0 (11)

with d(P̂,P) either the KL divergence or the Euclidean distance
between the state emission and a posterior probabilities.

We use iterative algorithms where X is initialized with ones
and iteratively updated. In order to minimize the cost function (11)
with a KL-divergence between state estimates, we propose using the
multiplicative update:
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with  a constant weighing the contribution of the HMM regulariza-
tion. As before, the leftmost 1 is an all-ones matrix of dimensions
D ⇥W , whereas the rightmost 1 is an all-ones matrix of dimensions
Q⇥W . After each iteration P and P̂ are recalculated as described

Table 1: Speech recognition accuracies using the original noisy fea-
tures and the enhanced speech using the baseline NMF system. The
acoustic models of the recognizer are trained on clean speech, rever-
berated speech, and noisy speech, respectively. The best results for
each system and each SNR are highlighted

SNR (dB) -6 -3 0 3 6 9

Baseline
clean 11.83 12.33 16.50 17.50 21.75 23.50
reverberated 32.08 36.33 50.33 64.00 75.08 83.50
noisy 49.67 57.92 67.83 73.67 80.75 82.67

NMF
clean 16.42 16.58 21.67 23.25 27.92 27.83
reverberated 68.00 72.25 80.92 86.75 89.08 90.50
noisy 62.58 68.17 74.58 78.75 81.92 83.25

in Section 3.1. Since P̂ changes every iteration, convergence may not
be guaranteed, but in practice the update was stable.

For minimization of the cost function (11) with a Euclidean
distance between state estimates, we propose using the multiplicative
update:
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T
1+⇤+  (MT

P)
. (13)

The matrix 1 is again an all-ones matrix of dimensions D ⇥W . As
for the KL-divergence, after each iteration P and P̂ are recalculated
as described in Section 3.1.

The multiplicative update rules (12) and (13) can be derived by
multiplying X with the ratio between the negative and positive parts
of the gradient [22].

4. EXPERIMENTAL SETUP

4.1. Database & speech recognition

Track 1 of the 2nd CHiME Speech Separation and Recognition Chal-
lenge [20] is based on the small vocabulary GRID corpus [23], in
which 34 speakers read simple command sentences. These sentences
are of form verb-colour-preposition-letter-digit-adverb. There are 25
different ‘letter’ class words and 10 different digits. Other classes
have four word options each. When doing automatic speech recog-
nition, the recognition accuracy is the percentage of correctly recog-
nized letter and digit keywords.

CHiME utterances simulate a scenario, where sentences are spo-
ken in a noisy living room. The original, clean speech utterances are
reverberated according to the actual room response, and then mixed
to selected noise sections, which produce the desired SNR mixture
level for each noisy set. The noisy sets have target SNR levels of 9, 6,
3, 0, -3 and -6 dB.

For modeling/training, there are 500 reverberated utterances per
speaker, and six hours of background noise data. The development
and test sets consist of 600 utterances at each SNR level. The de-
velopment, evaluation and training data are all available in a strictly
endpointed format, but also as embedded signals within a longer noise
context. All data is stereophonic and has a sampling rate of 16 kHz,
however, we only consider monaural signal processing by averaging
the two channels.

For speech recognition experiments, we used the HTK recogni-
tion setup provided by the CHiME challenge organizers. This setup
includes three acoustic models, trained on clean, reverberated and
noisy data respectively.
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Table 2: Speech recognition accuracies as a function of regularization weight  and distance measure used in HMM-regularisation. The
exemplar sizes is T = 20. The reported accuracies are averages over SNRs {�6, ..., 9} of the development set, using the reverberated baseline
acoustic model. The best result for each distance measure size is highlighted. Dashed values were not evaluated.

 0 0.005 0.01 0.05 0.1 0.2 0.5 0.8 1 1.5 2
KL-divergence 81.25 81.43 81.54 81.72 81.58 - 80.24 - 76.24 - -

Euclidean distance 81.25 - 81.26 - 81.43 81.57 81.87 81.86 81.85 81.51 81.18

Table 3: Speech recognition accuracies as a function of regular-
ization weight , for exemplar sizes T 2 {1, 5, 10, 20}. HMM-
regularization uses Euclidean distance. The reported accuracies are
averages over SNRs {�6, ..., 9} of the development set, using the re-
verberated baseline acoustic model. The best result at each exemplar
size is highlighted.

 0 0.01 0.1 0.5 1
T = 1 60.27 60.85 65.97 69.90 70.15
T = 5 73.60 73.61 75.01 76.36 75.82
T = 10 79.10 79.11 79.61 80.24 79.75
T = 20 81.25 81.26 81.43 81.87 81.85

4.2. Speech enhancement

The speech enhancement setup of the small vocabulary track em-
ployed methods first described in the 2011 CHiME workshop [24]
and later refined to a form which is also used in this work [21]. A
speech basis comprising 5000 exemplars was generated for each
speaker by pseudo-random sampling of training data and selective
reduction with word frequency equalization. A matching speaker-
dependent basis was always used for factorization as the identity of
target speakers was known. For a noise model, 5000 exemplars were
sampled from the noise context of each test utterance individually.
All factorization took place in a 40-band monaural Mel magnitude
domain, where the bands were normalized by applying an equaliza-
tion curve acquired from training speech. Temporally the model used
25 ms frames with 10 ms shift, and exemplar size (window length)
of 20 frames. We do not retrain the acoustic models on the enhanced
speech signals.

4.3. HMM-regularization

For the HMM-regularization, we used a ‘burn-in’ period of 20 itera-
tions in which we use update rule (6), followed by 280 iterations of
update rule (12) or (13).

5. EXPERIMENTS

5.1. Baseline & acoustic model

In the 2nd CHiME challenge, three baseline acoustic models are
provided, corresponding to training the speech recognizer of clean,
reverberated and noisy speech features. Since in this work, we do not
consider retraining the acoustic model, we first evaluate the perfor-
mance of the baseline NMF system with each acoustic model. We
use an exemplar size of T = 20, the best performing setting in the
first CHiME challenge [24].

The results in Table 1 show that on the unprocessed noisy features,
the best results are obtained using the ‘noisy’ acoustic model, except
for 9 dB SNR, for which the ‘reverberated’ acoustic model scores best.
With the baseline NMF method, a substantial increase in performance
is observed both at high and low SNRs. Interestingly, all the best

results are now obtained with the reverberated model, due to the
effectiveness of the front-end in reducing the mismatch with the
reverberated speech used during training. In the remainder of this
work, we will use the reverberated acoustic model to evaluate the
effectiveness of the proposed NMF techniques.

5.2. HMM-regularization distance measure

In Section 3 we proposed two approaches for HMM-regularization:
either measuring the mismatch between posterior and a posteriori
state estimates using a KL-divergence, or using the Euclidean distance.
In this experiment, we first investigate the effectiveness of the two
distance measures for a large number of regularization weights .

From the results in Table 2 we can observe that both distance
measures serve to improve the average performance when compared
to the baseline NMF system (here indicate by  = 0). Although
the differences are small, it seems the Euclidean distance offers a
better performance than the KL-divergence. More importantly, the
Euclidean distance measure is far more robust against varying values
of , which should improve generalization.

An explanation for the poorer performance of the KL-divergence
can probably be found in the asymmetry of the KL-divergence: over-
estimates of small values in P̂ are not penalized as much as under-
estimates of larger values. With most of the probability mass of
P̂ centered on a few states, however, this may not provide enough
constraints for consistent improvements. In contrast, the Euclidean
distance is symmetric and penalizes both under- and overestimates
equally. In the remainder of this work, we will only report on experi-
ments with the Euclidean distance measure.

Another observation we can make from Table 2 is that the over-
all improvement rather limited - from 81.25% average accuracy to
81.87% for  = 0.5 with the Euclidean distance measure. This
triggered us to investigate the performance of the proposed technique
at other exemplar sizes than T = 20, detailed in the next Section.

5.3. Exemplar size

In order to test with multiple exemplar sizes, we must first establish
whether the optimal regularization weight  = 0.5 is valid for other
exemplar sizes. To that end, in Table 3 we show the average accuracy
as a function of exemplar size T 2 {1, 5, 10, 20} for various values
of . From Table 3, we can conclude that HMM-regularization
improves the results for all exemplar sizes, and that the optimal value
for the regularization weight is fairly constant at  ⇡ 0.5.

Moreover, we can observe that for small exemplar sizes, the
benefit of HMM-regularization is far bigger than for larger exemplar
sizes. To study this in more detail, we display the full development
set results for each exemplar size with  = 0.5 in the left panel of
Table 4. Here, we can observe that for T = 1, the use of HMM-
regularization improves the accuracy at -6 db SNR from 38.50% to
49.25%, comparable to the use a noisy acoustic model in the speech
recognizer (which yields 49.67% at -6 dB SNR). Additionally, the
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Table 4: Speech recognition accuracies using the original noisy features and the enhanced speech, for exemplar sizes T 2 {1, 5, 10, 20}. The
left table shows the results on the development set, and the right table the results on the test set. HMM-regularization uses Euclidean distance
with a regularization weight of  = 0.5.

(a) Development set

SNR (dB) -6 -3 0 3 6 9

Baseline
reverberated 32.08 36.33 50.33 64.00 75.08 83.50
noisy 49.67 57.92 67.83 73.67 80.75 82.67

T = 1
NMF 38.50 45.17 55.17 64.83 75.75 82.17
NMF-HMM 49.25 55.42 67.50 76.50 83.75 87.00

T = 5
NMF 55.92 60.25 71.25 79.67 85.83 88.67
NMF-HMM 58.17 65.08 74.67 82.42 88.08 89.75

T = 10
NMF 63.50 69.42 77.92 84.83 88.75 90.17
NMF-HMM 63.92 71.83 79.33 86.08 89.50 90.75

T = 20
NMF 68.00 72.25 80.92 86.75 89.08 90.50
NMF-HMM 69.08 73.58 81.50 87.33 89.42 90.33

(b) Test set

SNR (dB) -6 -3 0 3 6 9

Baseline
reverberated 32.17 38.33 52.08 62.67 76.08 83.83
noisy 49.33 58.67 67.50 75.08 78.83 82.92

T = 1
NMF 37.17 42.58 52.17 63.25 74.92 82.25
NMF-HMM 49.67 55.17 66.50 76.08 82.58 88.83

T = 5
NMF 53.67 61.25 71.50 79.08 85.17 89.58
NMF-HMM 58.25 66.42 74.75 83.17 87.50 91.25

T = 10
NMF 63.00 72.33 78.42 85.00 90.08 91.08
NMF-HMM 64.42 73.08 80.42 85.75 90.42 92.25

T = 20
NMF 67.25 75.92 81.08 86.42 90.67 92.00
NMF-HMM 67.00 77.00 81.83 87.00 91.17 92.42

accuracy at high SNRs also improved substantially, from around 83%
to 87.00%.

At the same time, we can observe that for larger exemplar sizes
the gains are diminishing. Further investigation showed that this is
probably because most errors in the CHiME small vocabulary task
are due to confusions between words, not between word-class (such
as letters, digits, etc.). It can be observed that when using a long
temporal context, the majority of the selected exemplars at a partic-
ular observation window correspond to the correct class. As such,
the potential benefit of HMM-regularization in penalizing unlikely
exemplar activation sequences is limited.

5.4. Test set evaluation

As a final experiment, we evaluate the baseline NMF system and the
proposed HMM-regularized NMF approach on the test set for the
exemplar sizes T 2 {1, 5, 10, 20}. The results in the right panel of
Table 4 shows the same trends as for the development set: The use
of HMM-regularization virtually always improves the results, but
the gain is much larger at smaller exemplar-sizes than for the best
performing, large exemplar sizes.

6. DISCUSSION AND CONCLUSIONS

We can conclude that the HMM-regularization that was proposed in
this paper is indeed effective, but much more so for small exemplar
sizes than for the exemplar-sizes that are generally employed these
days for NMF-based noise robust ASR. This once again underlines
the importance in modeling long temporal context in noise robust
ASR, but also shows that for this task, the long temporal context is
adequately handled by the exemplars themselves.

This also puts to the question the effectiveness of related models
which model individual time frames combined with a HMM [17, 19].
Given the computational demands of running Forward-Backward
at every iteration — not investigated exhaustively in this paper but
estimated to be as expensive as a regular NMF iteration with the
current parameter settings —, the use of dictionary atoms that span
a longer temporal context than a single frame seems an attractive
alternative.

Interestingly, while an evaluation on the CHiME dataset seemed
like a best-case scenario for the HMM-regularization technique, due
to its constrained grammar, it may in fact not represent an adequate
test case as it turned out most errors were not, in fact, due to selecting
the wrong word-classes but due to within-word-class confusions. On
more challenging and less constrained tasks, it is possible that HMMs
do provide useful constraints, if not at the level of consecutive time
frames, then at the level of subsequent exemplars.

In future work, we plan on a thorough comparison with related
models such as the NHMM, investigation of HMM structures defined
at larger timescales, and evaluation on more complex tasks such as
CHiME-WSJ.
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