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ABSTRACT

In this work, we present a missing feature reconstruction based au-
tomatic speech recognition (ASR) system in which masks are es-
timated by binary classification of features generated by Gaussian-
Bernoulli restricted Boltzmann machines (GRBMs). The system is
evaluated on Track 1 of the 2nd CHiME challenge data. Overall,
the best performance is achieved when the reconstructed speech fea-
tures are recognized with a discriminatively trained matched condi-
tion model.

Index Terms— Noise robust, speech recognition, mask estima-
tion, GRBM, discriminative training

1. INTRODUCTION

Missing data methods for noise robust ASR assume that the noise
corrupted speech can be divided into reliable, speech-dominated,
and unreliable, noise-dominated, components which can be indi-
cated with so called spectrographic masks. A common way to es-
timate masks, and the way used in this work, is to train a binary
classifier on a set of features computed for each time-frequency (TF)
unit of the noisy speech signal. Given the mask, the unreliable com-
ponents can then be, for example, reconstructed by the respective
clean speech estimates. Some of the previous studies have solved
the mask estimation problem by training the classifier with features
designed by the authors [1] or by generating them automatically with
GRBMs [2]. GRBMs and their respective multilayer versions, deep
belief networks, have recently made a break through in state of the
art ASR systems since their superior capabilities to learn acoustical
patterns (see e.g. [3]). Here, GRBMs are used to learn the acoustical
patterns for generating a quality set of features. This work advances
our recent study (see [2] for more detailed description of the method
and evaluation against other mask estimation methods) by investi-
gating improved ASR training and missing feature imputation, and
applying them to the Track 1 of the 2nd CHiME challenge data.

2. MISSING DATA MASK ESTIMATION

2.1. Gaussian-Bernoulli Restricted Boltzmann Machines

A GRBM is a neural network that models the probability density
of continuous-valued data using binary latent variables. It consists
of two layers, the first of Gaussian visible units that correspond to
components of data vectors, and the second of binary hidden units.
Each unit of one layer is connected to all units in the other layer.
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The energy given by a GRBM to each state of visible units v;
and hidden units h; is defined as
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where n,, and nj, are the numbers of visible and hidden units, and the
parameters @ include weights w;; connecting the visible and hidden
units, the standard deviation o; associated with a Gaussian visible
unit v;, and biases b; and c¢; for each unit [4]. The probability of
each visible unit can be defined through Eq. 1 and the Boltzmann
distribution as p(v; = vlh) = N'(v | bi + 3=, hjwij, o?), where
N (- | p, o%) denotes the Gaussian p.d.f. with mean ;. and a variance
o2 shared by all visible units v;. The input to the j noisy rectified
linear hidden unit [3] is given by a; = >, wi; 2% + c;. Therefore,
the approximate mean activation of the hidden unit becomes

h; = max (0,a;). 2)

Each weight parameter w;; is updated with enhanced gradient

method, whose learning rate is automatically adjusted by the adap-
tive learning rate [4].

2.2. Feature Extraction and GRBM training

In this work, cross-correlation vectors of bandpass filtered (denoted
here as BPF) speech signals were used as input to multiple GRBMs
to generate a set of features. To generate the input, the left-ear x;(n)
and right-ear z-(n) signals, where n is the time domain sample in-
dex, were filtered into 21 BPF signals X;(n, d) and X, (n, d), where
d is the frequency channel. The center frequencies of the filters con-
formed to the audio-MFCC conversion used in our baseline systems.
After that, the cross-correlation values between the windowed BPF
signals, starting from sample n, w;(n,d) = [X;(n,d), ..., Xi(n +
N-1,d)] and w,(n,d) = [X,(n,d),..., Xr(n+ N —1,d)] with
lags [ ranging from —50 to 49 are computed as follows
>0

_ N (b1, my, d)w,e (t,n, d)*
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where N = 256 denotes the window length and ()* the com-
plex conjugate. Thus, the cross-correlation vector for a frame
starting at sample n on channel d is obtained by @corr(n,d)

[R(n,—50,d), ..., R(n,49,d)].

For each channel d, separate GRBMs with 50 hidden units were
trained with 2,000 sample vectors in 100 epochs and a mini-batch
size of 64. The sample vectors, Zcorr(n,d) with random n val-
ues, were arbitrarily selected from the noisy training set so that the
training corpus for each GRBM contained approx. equal amount of
respective channel data from all the signal-to-noise ratios (SNRs).
In evaluation, the inputs to the GRBMs were computed from speech
signals converted into a series of 256 samples long frames with a
shift of 128 samples.
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2.3. Classifier

For classifying the TF units into reliable and unreliable, separate
SVMs with radial basis function (RBF) kernels were trained for each
frequency channel. The activations of the GRBMs given in Eq. (2)
were taken as input features and oracle masks were used as targets.
The binary oracle masks were constructed using the noisy and rever-
berated training data to compute the exact SNR of each TF unit with
a reliability threshold of 0 dB. A single RBF kernel width was used
for all classifiers. TF regions that contained less than 20 connected
reliable elements were removed from the estimated masks.

2.4. Missing-feature reconstruction

Missing-feature reconstruction is applied in the 21-dimensional log-
mel-spectral domain. TF units that have been classified as reliable
are used as estimates for the corresponding clean speech values
whereas units classified as unreliable are substituted with estimates
calculated based on a clean speech prior. The clean speech prior
used in this work is a 13-component full-covariance GMM trained
on 5-frame windows as described in [1]. The model was trained
on 1,500 utterances sampled from the reverberated training set.
Given the GMM prior and the reliable features, a GMM posterior is
calculated for the missing features. The posterior is approximated
with a Gaussian and feature estimates are calculated as the bounded
mean of the approximate posterior (BCMI) as proposed in [5]. In
the experiments reported in [5] and also in our preliminary experi-
ments with the 2nd CHiME challenge data, BCMI outperformed the
cluster-based imputation method used in our previous work [1].

3. EXPERIMENTS

3.1. Data and speech recognition systems

The Track 1 of the 2nd CHiME challenge [6] considers the problem
of recognizing spoken commands from recordings made in a noisy
living room using a binaural dummy head. The data set is divided
into three training sets, a development set and an evaluation set. The
training sets consist of 17,000 utterances of either clean, reverberated
but noise-free, or reverberated and noisy speech. The development
and evaluations sets consist of 600 shared speaker utterances mixed
with 6 SNRs from —6 to 9 dB at 3 dB intervals.

The baseline system used in this work is a HMM based large
vocabulary continuous speech recognizer (LVCSR) adapted to the
CHiIME recognition task (see [1] for details) with superior perfor-
mance compared to the reverberated challenge baseline (CBL).

As for the baseline, we trained two systems with standard maxi-
mum likelihood criterion; a regular baseline (BL) using the reverber-
ated training set and a matched condition baseline (MBL) using the
noisy training set. A third baseline system was trained discrimina-
tively with minimum phone frame error criterion (MBL+MPFE) us-
ing the noisy training set. The features reconstructed by the proposed
missing data method based system (MM+GRBM) were recognized
with the MBL+MPEFE system. For the 2nd CHiME challenge, un-
supervised maximum likelihood linear regression was applied to the
MBL+MPFE and MM+GRBM systems denoted as MM+MLLR and
MG+MLLR, respectively. The adaptation data for each speaker was
obtained from the first-pass recognition hypotheses of MBL+MPFE
and MM+GRBM systems using the entire evaluation data set.

3.2. Results

The keyword accuracies of the systems are collected in Table 1. The
highest scores on each evaluation set SNR is shown in bold type. The
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Table 1. Keyword accuracy rates of the 2nd CHiME challenge base-
line (CBL) system and our systems for the development and evalua-
tion sets of Track 1.

Development set

9dB 6dB 3dB 0dB -3dB -6dB Avg.
CBL 835 751 640 503 363 32.1 569
BL 86.1 813 704 584 472 40.8 64.0
MBL 864 832 805 70.5 6338 558 734
MBL+MPFE 884 85.1 821 73.6 67.6 56.7  75.6
MM+GRBM 882 855 827 763 699 643 778

Evaluation set

CBL 83.8 76.1 627 52.1 38.2 322 575
BL 873 803 702 573 456 42.0 63.8
MBL 863 833 789 718 64.1 543 731
MBL+MPFE 88.6 86.8 80.8 746 66.3 579 758
MM+MLLR 882 869 813 757 66.6 593 763
MM+GRBM 88.0 858 829 774 6838 63.5 777
MG+MLLR 898 874 842 778 713 65.6 79.4

highest accuracies on the evaluation set are achieved by MG+MLLR
in all SNRs and on average (79.4%). The results of MM+GRBM and
MG+MLLR are not directly comparable to the official challenge re-
sults because the fact that the same utterances are used within the re-
verberated and noisy training data was exploited in constructing the
oracle masks. The pairwise accuracy differences between the sys-
tem averages are all statistically significant (Wilcoxon signed-rank
test with 95% confidence level).

4. CONCLUSIONS

We have presented an ASR system based on automatic feature ex-
traction from cross-correlation representation of binaural speech sig-
nal using GRBMs, SVM classifiers and BCMI feature reconstruction
(MM+GRBM). The system outperforms the next best system, the
discriminatively trained matched condition system (MBL+MPFE),
in all but two SNR cases and the other baselines in all SNR cases.
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