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Introduction

Classification from noisy data
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Poor performance because of high noise 
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State of the art

Signal level: Noise suppression or 
source separation
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State of the art

Feature level: Features robust to
additive or convolute noise
errors produced by source separation
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State of the art

Classifier level: Classification that 
accounts for possible distortion of the 
features, given some information about 
this distortion

Feature 
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separation Decision

Noisy signal

Noisy features

Separated 
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Generative 
GMM-based 
classification

Information 
about feature 

distortion / 
UNCERTAINTY

[Cooke01, Barker05, Deng05, Kolossa10]
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State of the art limits and our 
contributions

Limit 1: It is assumed that the clean data 
underlying the noisy observations have 
been generated by the GMMs.

Contribution 1: Introduction and 
investigation of a new data-driven
criterion for GMM learning and decoding 
as an alternative to the model-driven 
criterion.

[Cooke01, Barker05, Deng05, Kolossa10]
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State of the art limits and our 
contributions

Limit 2: Uncertainty is taken into account 
only at the decoding stage, assuming that 
the GMMs were trained from some clean 
data.

Contribution 2: Deriving two new 
Expectation Maximization (EM) algorithms
allowing learning GMMs from noisy data 
with Gaussian uncertainty for the both 
criteria considered.

[Cooke01, Barker05, Deng05, Kolossa10]
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GMM decoding from noisy data

GMM

Uncertainties 
Binary (either observed or missing)
Gaussian (“asymptotically” more general)

unknownknown unknown known

[Cooke01, Barker05]

[Deng05, Kolossa10]
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Criteria

Criterion 1: Model-driven criterion 
(likelihood integration) [state of the art]

GMM Missing feature Feature expectation

[Deng05, Kolossa10]
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Criteria

Criterion 2: Data-driven criterion 
(log-likelihood integration) 
[proposed]
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GMM learning from noisy data

Binary uncertainty
EM algorithm

Gaussian uncertainty
We derived two new EM algorithms for 
the both criteria considered

[Ghahramani&Jordan94]
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GMM learning from noisy data

Needed some approximations

Generalizes “asymptotically” the binary 
uncertainty EM [Ghahramani&Jordan94]
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Artificial uncertainty

Artificial uncertainty
gives us a possibility to control some 
characteristics of the uncertainty,
allows us leaving the study of the 
following situations for further work:

realistic feature-corrupting noise,
estimated uncertainty covariances.

1.                       is drawn from a Gaussian

2.           is drawn from
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Characteristics of the uncertainty

Feature to Noise Ratio (FNR) (dB)

Noise Variation Level (NVL) (dB)
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Evaluated setups

All possible combinations of

375 setups
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Artificial data
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Real data

Speaker recognition task
Setting is quite similar to [Reynolds95]

TIMIT database
10 male speakers
16-states GMMs
Feature space dimension = 20

Differences with [Reynolds95]
Features: Logarithms of Mel-Frequency Filter-
Bank outputs (LMFFB) instead of MFCC
GMMs with full covariance matrices
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Artificial data results
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Artificial data
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Real data results
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Conclusions and further work

Conclusions
We validate the model-driven uncertainty decoding 
approach as compared to a data-driven approach.
We show that considering the uncertainty allows us to

handle the heterogeneity of noise between the 
training and testing sets,
exploit the variability of noise for improved 
performance.

Further work
Considering realistic feature-corrupting noise and 
uncertainty covariances estimation.
Considering the log-likelihood integration within a 
GMM-based classification framework with 
discriminative training.
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