

NTT Communication Science Laboratories

Speech recognition in the presence of highly non-stationary noise based on spatial, spectral and temporal speech/noise modeling combined with dynamic variance adaptation

<u>M. Delcroix</u>, K. Kinoshita, T. Nakatani, S. Araki, A. Ogawa, T. Hori, S. Watanabe, M. Fujimoto, T. Yoshioka, T. Oba, Y. Kubo, M. Souden, S. Hahm, A. Nakamura

Motivation of our system

Speech enhancement

- Deal with highly non-stationary noise, using **all information** available about speech/noise

Spatial - Spectral - Temporal

- Realized using two complementary enhancement processes

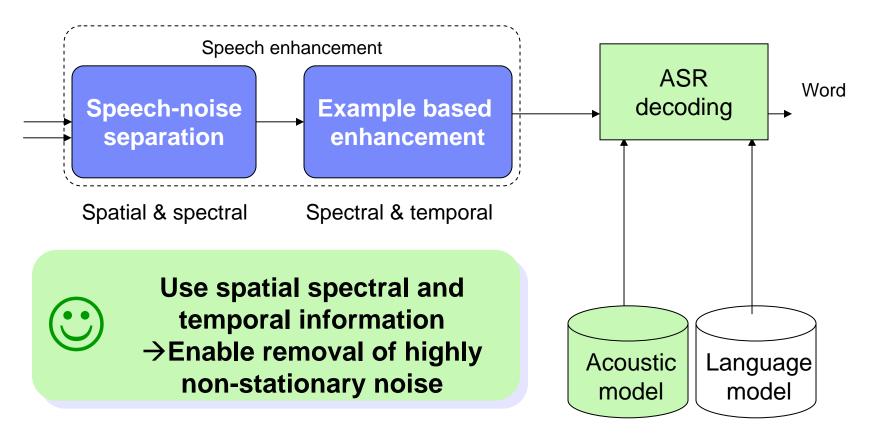
Recognition

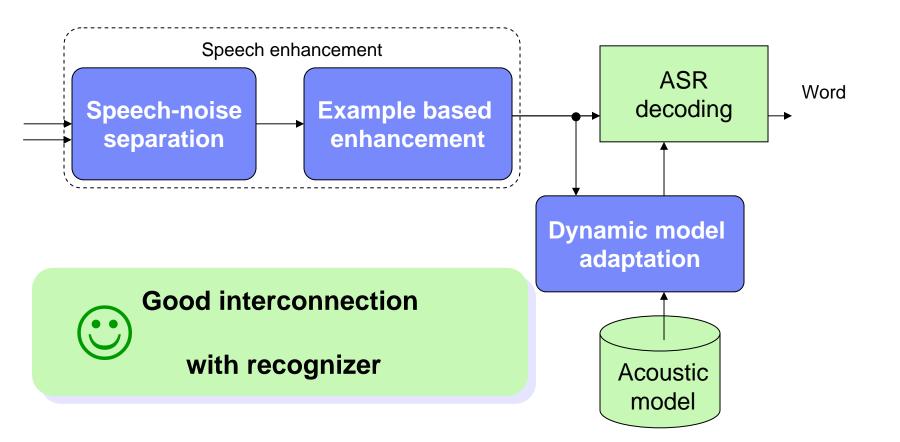
- Interconnection of speech enhancement and recognizer using dynamic acoustic model adaptation
- Use of state of the art ASR technologies (discriminative training, system combination...)

Average accuracy improves $69 \% \rightarrow 91.7 \%$

Approaches for noise robust ASR

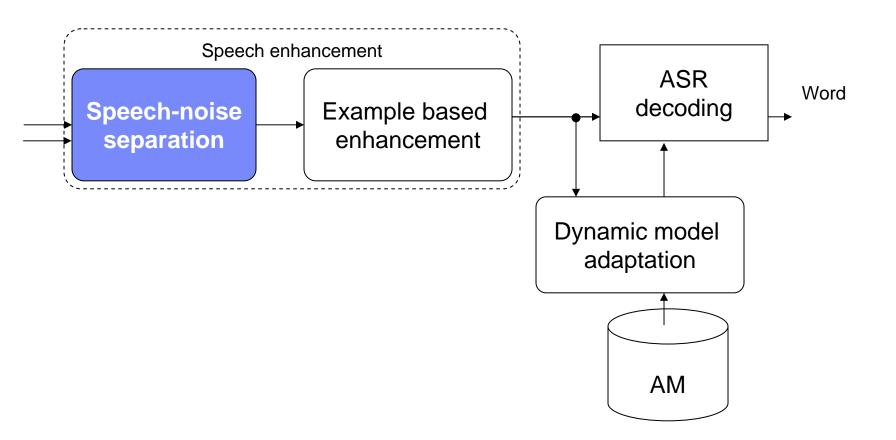
	Information used	Handling highly non-stationary noise	Interconnection w/ ASR
Acoustic model compensation, e.g. VTS	Spectral	$\overline{\mathbf{S}}$	٢
Speech enhancement, e.g. BSS	Spatial/spectral/ temporal		8
Proposed			





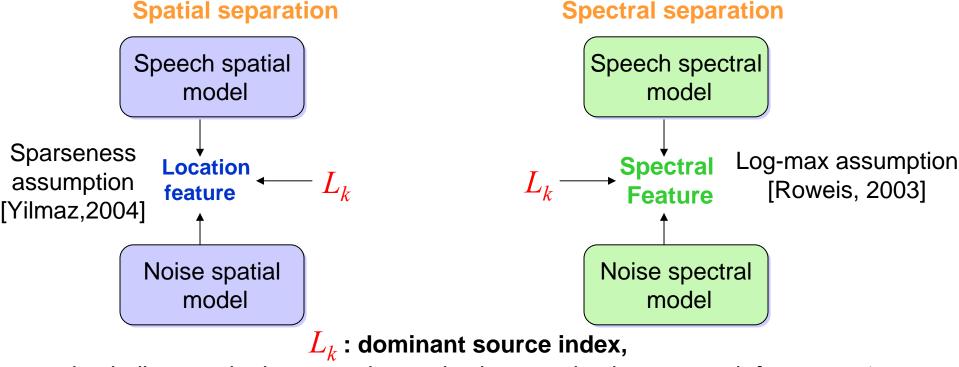
Approaches for noise robust ASR

	Information used	Handling highly non-stationary noise	Interconnection w/ ASR
Acoustic model compensation, e.g. VTS	Spectral		٢
Speech enhancement, e.g. BSS	Spatial/spectral/ temporal		<u>(</u>
Proposed	Spatial, spectral & temporal	\odot	٢



Speech-noise separation [Nakatani, 2011]

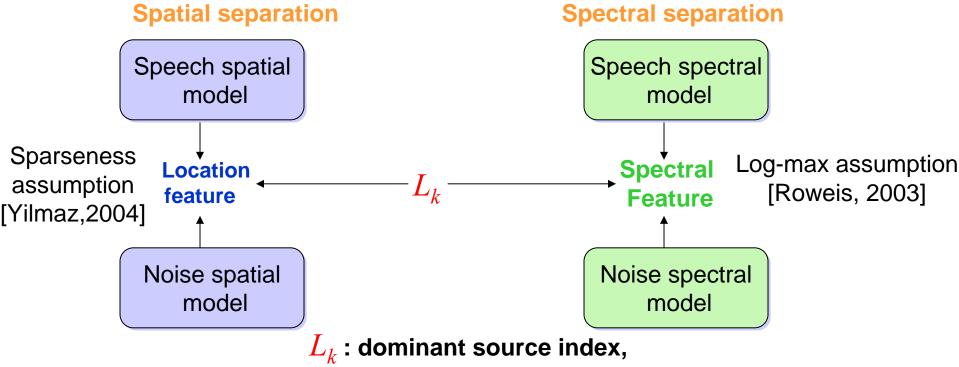
Integrate spatial-based and spectral-based separation in a single framework



i.e. indicates whether speech or noise is more dominant at each frequency k

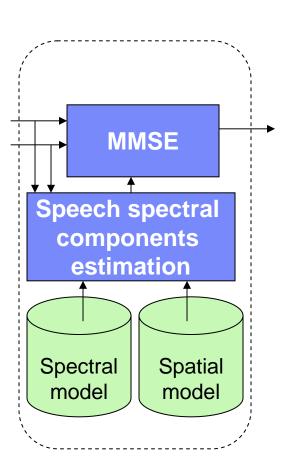
Speech-noise separation [Nakatani, 2011]

Combined using dominant source index L_k



i.e. indicates whether speech or noise is more dominant at each frequency k

Speech-noise separation [Nakatani, 2011]



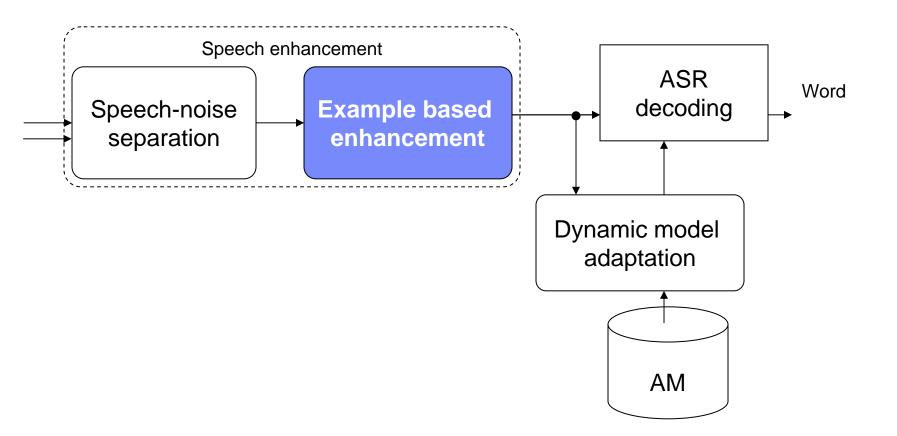
DOLPHIN *dominance based locational and power-spectral characteristics integration*

- Estimate speech spectral component sequence using EM algorithm
- Estimated speech obtained using MMSE

Integrate efficiently spatial and spectral information to remove non-stationary noise

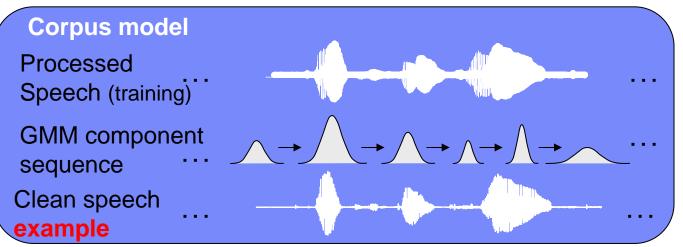
11

System overview



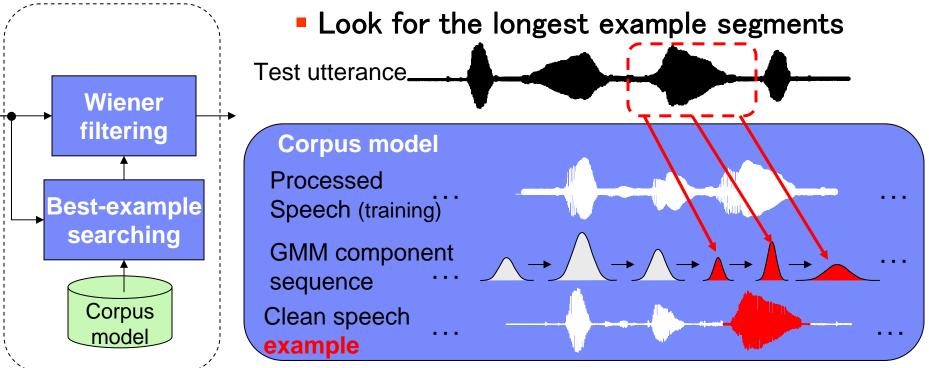
Example-based enhancement [Kinoshita,2011]

- Use a parallel corpus model (clean and processed speech) that represents the fine spectral and temporal structure of speech
 - Train a GMM from multi-condition training data processed with DOLPHIN
 - Generate corpus model



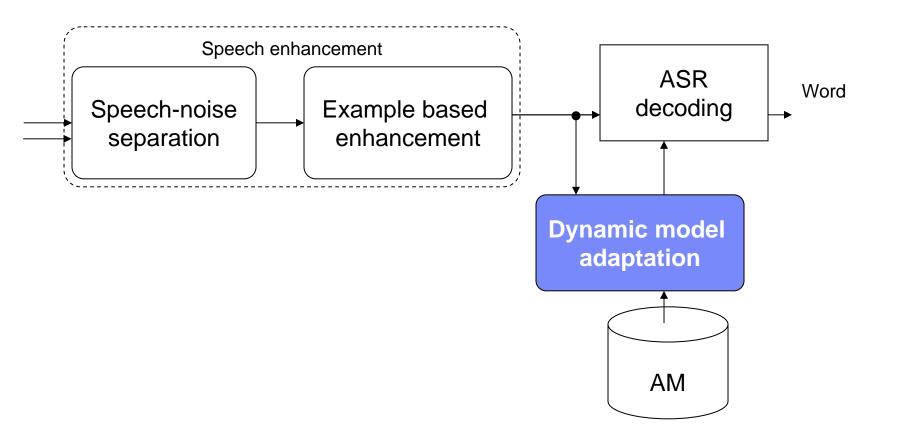
13

Example-based enhancement [Kinoshita,2011]



Use the corresponding clean speech example for Wiener filtering

Using precise model of temporal structure of speech → remove remaining highly non-stationary noise → recover precisely speech



Dynamic model adaptation [Delcroix, 2009]

- Compensate mismatch between enhanced speech and acoustic model
 - Non-stationary noise & frame by frame processing
 - → Mismatch changes frame by frame (dynamic)
 - → Conventional acoustic model compensation techniques (MLLR) not
 sufficient
- Dynamic variance compensation (Uncertainty decoding) [Deng, 2005]
 - Mitigate the mismatch frame by frame by considering feature variance

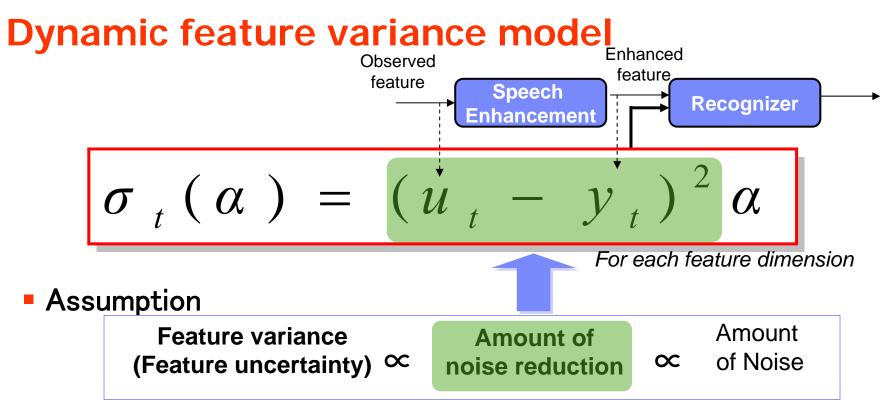
 $\sigma_{n,m}$

NTT Communication Science Laboratories

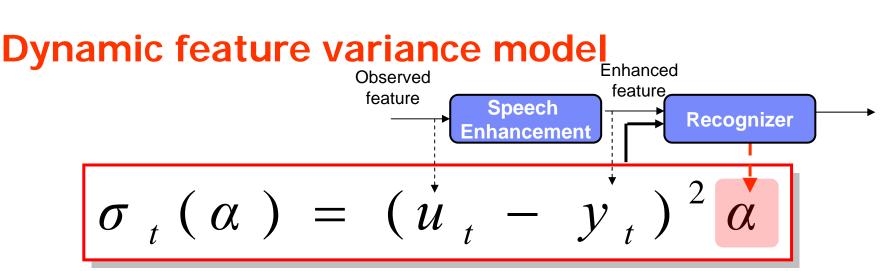
 σ_t

$$p(y_t \mid n) = \sum p(m)N(y_t; \mu_{n,m}, \sigma_{n,m} + \sigma_t)$$

Enhanced speech *m* feature



The more we process the signal, the more we introduce uncertainty

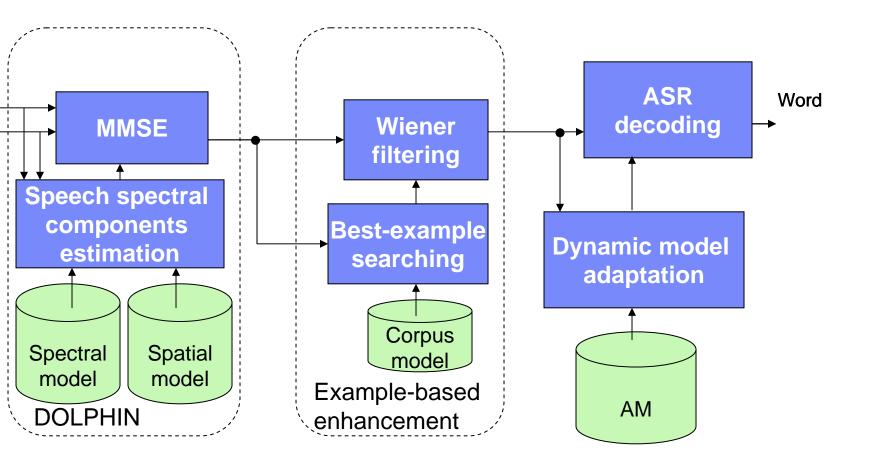


For each feature dimension

- Optimized for recognition with ML criterion using adaptation data (Dynamic variance adaptation – DVA)
- Can be combined with MLLR for static adaptation of the acoustic model mean parameters

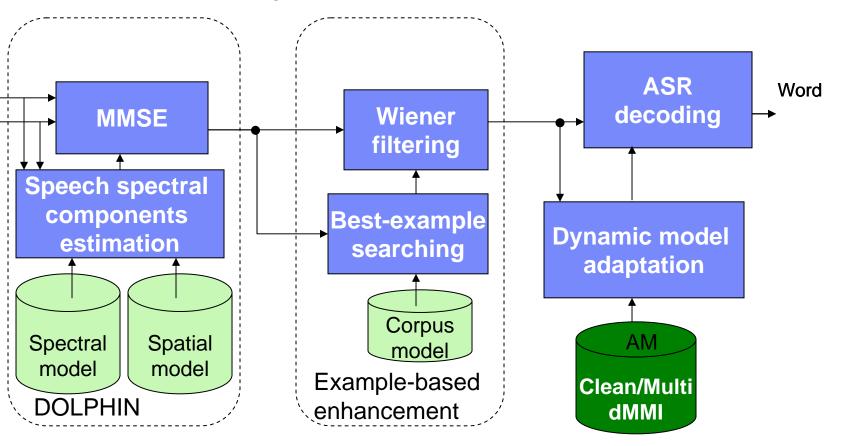
Good interconnection

with recognizer

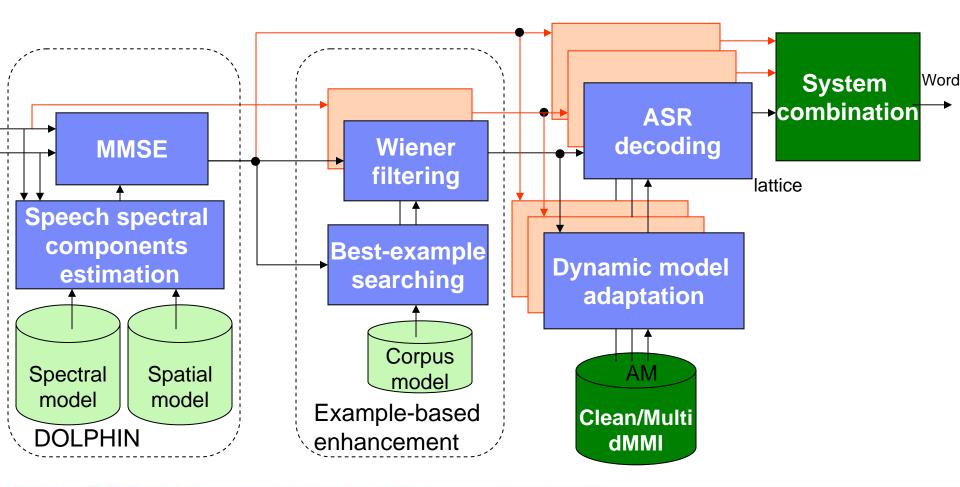


Multi-condition/discriminative training

Add background noise training **dMMI** : differenced maximum samples to clean training data mutual information [McDermott, 2010]



System combination [Evermann, 2000]

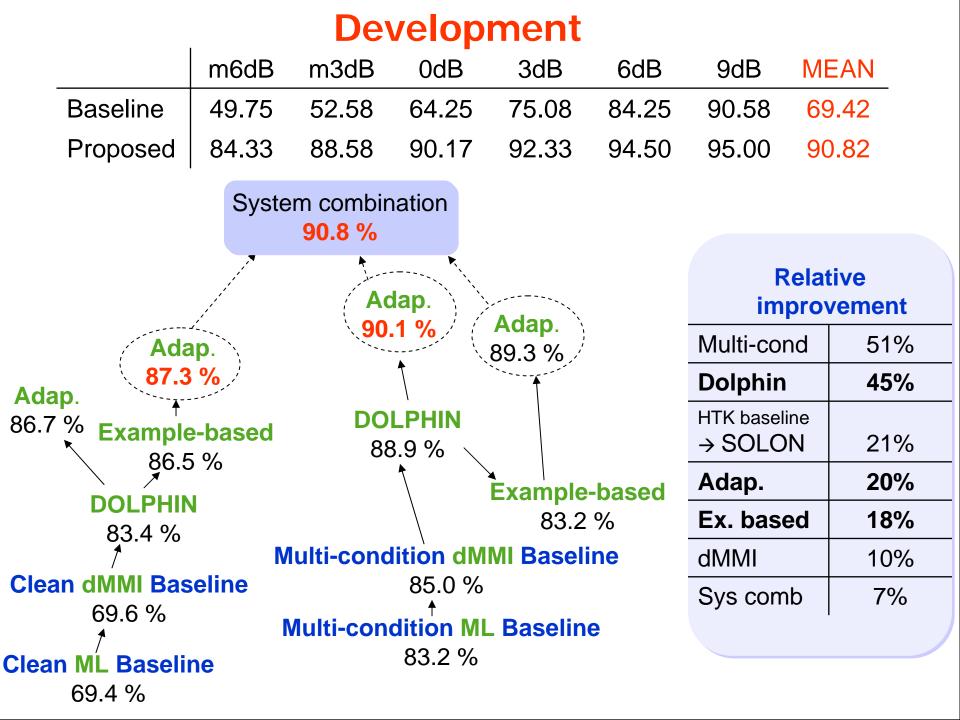


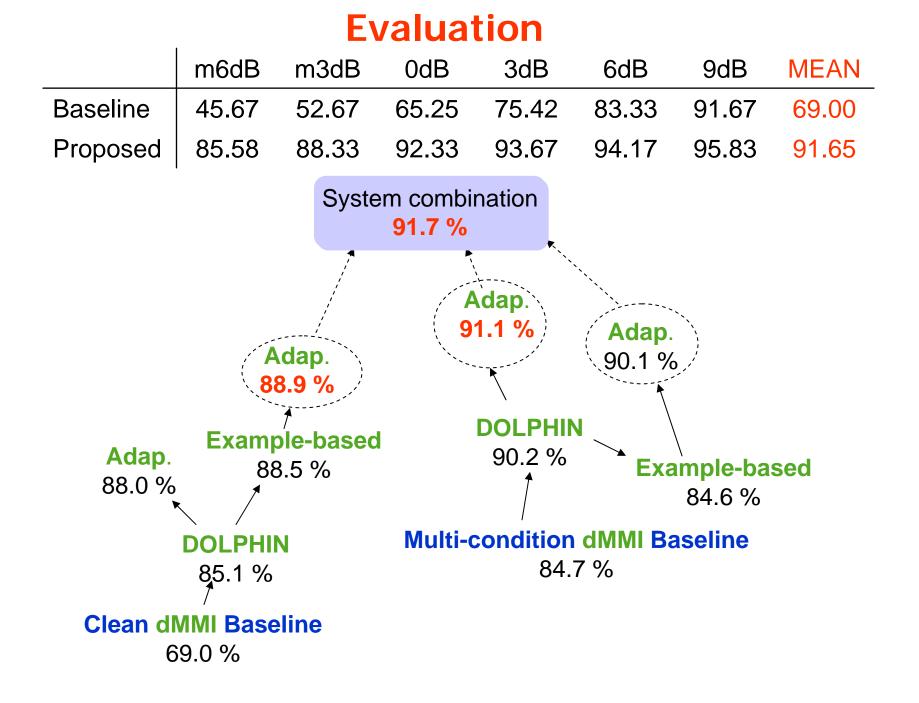
Settings - Enhancement

DOLPHIN	 Spatial model 	
	- 4 mixture components	
	Spectral model	
	- 256 mixture components	
	- Speaker dependent model	
	Models trained in advanced using the noise/speech training data	
	Long windows (100 ms) to capture reverberation	
Example-based	Corpus model	
	- GMM w/ 4096 mixture components	
	- Trained on DOLPHIN processed speech	
	 Features 60 order MFCC w/ log energy 	

Settings - Recognition

Recognizer	SOLON [Hori, 2007]	
Acoustic Model	Trained with SOLON (ML & discriminative (dMMI))	
	Clean	
	- HMM w/ 254 states (include silent state)	
	- HMM state modeled by GMM with 7 components	
	 Multi-condition 	
	- 20 components per HMM state	
	- No silent model	
Multi-condition	Added background noise samples to clean training data	
data	7 noise environment x 6 SNR conditions	
Adaptation	Unsupervised/speaker dependent	
	use all test data for a given speaker	





Conclusion

General approach

- Fully use spatial, spectral and temporal information
- Good interconnection with recognizer
- → Achieve great reduction of highly non-stationary noise
- → Improve ASR performance
- → Improve also audible quality

(http://www.kecl.ntt.co.jp/icl/signal/kinoshita/publications/CHiME_demo/index.html)

Remaining issues

- Apply to more complex tasks spontaneous speech
 - Unknown speaker location

NTT Communication Science Laboratories

Thank you!

