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Overview

= Uncertainty-Based Approach to Robust ASR
= Uncertainty Estimation by Beamforming & Propagation
= Recognition under Uncertain Observations

= Further Improvements
= Training: Full-covariance Mixture Splitting

= |ntegration: Rover

= Results and Conclusions
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Introduction: Uncertainty-Based Approach to ASR Robustness

= Speech enhancement in time-frequency-domain is often very effective.
= However, speech enhancement itself can neither

= remove all distortions and sources of mismatch completely

" nor can it avoid introducing artifacts itself

Simple example: Time-Frequency Masking

I Thi, s |
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Introduction: Uncertainty-Based Approach to ASR Robustness

How can decoder handle such artificially distorted signals?

One possible compromise:

Missing Feature
HMM Speech
Recognition

m(n)

STET Speech

Processing [/*

Time-Frequency-Domain

Problem: Recognition performs significantly better in other domains, such
that missing feature approach may perform worse than feature
reconstruction [1].

[1] B. Raj and R. Stern: ,Reconstruction of Missing Features for Robust Speech Recognition“, Speech Communication 43, pp. 275-296, 2004.



N
RUHR-UNIVERSITAT BOCHUM b, L
INESC-ID Lisboa Q\/H\s ngasc d

Introduction: Uncertainty-Based Approach to ASR Robustness

Solution used here:
Transform uncertain features to desired domain of recognition

X, Missi
- _ issing Data
(n) STET | - Uncertainty | B fivim Speech
— Processing} Propagation "Bl Recognition
Kl

Recognition
Domain

TF-Domain
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Introduction: Uncertainty-Based Approach to ASR Robustness

Solution used here:
Transform uncertain features to desired domain of recognition

- 1Y _ Missing Data
(n) STET Speech p(Xiy| k/)> Uncertalpty HMM Speech
- Processing Propagation Recognition

Recognition
Domain

TF-Domain
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Introduction: Uncertainty-Based Approach to ASR Robustness

Solution used here:
Transform uncertain features to desired domain of recognition

Uncertainty-
m(n) Speech W PXulYu)| U inty [P Y based
—| STFT p ncertainty [P(Xk Y«
Processing ”| Propagation AMM Speech

Recognition

Recognition
Domain

TF-Domain
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Uncertainty Estimation & Propagation

LR

mp(n)|  |mr(n)

Yy v v v Yy v
Beamfomer Noise Beamfomer
(DS,GSC) | | Estimation (WPF,IWAB)

| vto d(n) | veo

Wiener » Uncertainty
Estimator —» Estimation

J’ (Xt |Yer) P(sz|Yk:)J’

= Posterior estimation here is
performed by using one of four
beamformers:

= Delay and Sum (DS)

= Generalized Sidelobe Canceller
(GSC) [2]

= Multichannel Wiener Filter (WPF)

= |ntegrated Wiener Filtering with
Adaptive Beamformer (IWAB) [3]

[2] O. Hoshuyama, A. Sugiyama, and A. Hirano, “A robust adaptive beamformer
for microphone arrays with a blocking matrix using constrained adaptive filters,”
IEEE Trans. Signal Processing, vol. 47, no. 10, pp. 2677 —2684, 1999.

[3] A. Abad and J. Hernando, “Speech enhancement and recognition by
integrating adaptive beamforming and Wiener filtering,” in Proc. 8th
International Conference on Spoken Language Processing (ICSLP), 2004,
pp. 2657—2660. 3
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Uncertainty Estimation & Propagation

* !, = Posterior of clean speech,
N p(Xy 1Yy ), is then propagated
into domain of ASR
Beamfomer | | Note Beamiomer = Feature Extraction
(DS.GSC) | | Eetimation (WPE IWAD) = STSA-based MFCCs
J, yn) e l utr) = CMS per utterance
Wiener » Uncertainty .
Estimator —» Fstimation u pOSSIny LDA
l (Xt |Yer) P(Xkdyk:)l
Feature Feature
Extraction Extraction
l plealYu) P(wi|Yir) l
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Uncertainty Estimation & Propagation

! = Uncertainty model:
mr(n)|  |mr(n) Complex Gaussian distribution
Yy v \ A 4 Yy v
Beamfomer Noise Beamfomer
(DS,GSC) | | Estimation (WPF,JWAB)
| vto ) | veo
Wiener » Uncertainty
Estimator —» Estimation
l (Xt |Yer) P(Xkdyk:)l
Feature Feature
Extraction Extraction
lp(wama el l
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Uncertainty Estimation & Propagation

* !’ = Two uncertainty estimators:

i) |mat) a) Channel Asymmetry
Uncertainty Estimation

h 4 h 4 vy .
Beamfomer Noise = Beamformer output input to
J, y(n) i) = Noise variance estimated as
Wiener | | squared channel difference
Estimator
= Posterior directly obtainable for
(X Yir) . .
Wiener filter [4]:

| }"D = DFT{[J’HL[HJ — J'J"J".H[J'i'-jjj}

b = A7 (2, Ao
TN A\ Apy, + Axy 5 by, + Ax

Pl X

[4] R. F. Astudillo and R. Orglmeister, “A MMSE estimator in mel-cepstral domain for robust large vocabulary automatic speech recognition 11
using uncertainty propagation,” in Proc. Interspeech, 2010, pp. 713-716.
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Uncertainty Estimation & Propagation

* !’ = Two uncertainty estimators:

mL(n) mR(n)

b) Equivalent Wiener variance

v v = Beamformer output directly
(\%‘;f;’f%;“;;) passed to feature extraction
I
| v p(Xua|Yia) = N (Yia. Mt
» Uncertainty |

—» Estimation

P(Xa|Yir) J’

= Variance estimated using ratio of
beamformer input and output,
interpreted as Wiener gain

[4] R. F. Astudillo and R. Orglmeister, “A MMSE estimator in mel-cepstral domain for robust large vocabulary automatic speech recognition 12
using uncertainty propagation,” in Proc. Interspeech, 2010, pp. 713-716.
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Uncertainty Propagation

= Uncertainty propagation from [5] was used
= Propagation through absolute value yields MMSE-STSA
" |Independent log normal distributions after filterbank assumed

STSA Mel-STSA MFCC
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a - i\
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= Posterior of clean speech in cepstrum domain assumed Gaussian

= CMS and LDA transformations simple

[5] R. F. Astudillo, “Integration of short-time Fourier domain speech enhancement and observation uncertainty techniques for robust automatic
speech recognition,” Ph.D. thesis, Technical University Berlin, 2010.
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Recognition under Uncertain Observations

Standard observation likelihood for state g mixture m:

p(x ||-lq,m: 2:q,m)=N (x; Hq,m. Z:q,m)

= Uncertainty Decoding:

p(”xl”q,m: 2:q,'ml 2 )=N (U Wq m» 2:q,m + Z,)

L. Deng, J. Droppo, and A. Acero, “Dynamic compensation of HMM variances using the feature enhancement uncertainty computed from a
parametric model of speech distortion,” IEEE Trans. Speech and Audio Processing, vol. 13, no. 3, pp. 412-421, May 2005.

Modified Imputation:

, , . — A . D. Kolossa, A. Klimas, and R. Orglmeister, “Separation and
p(ﬂm |/-£q,-’ma 25}-??’1? Zﬁf?) o N(‘l” /uf}~7?“1? EQ-T”) robust recognition of noisy, convolutive speech mixtures

using time-frequency masking and missing data techniques,”

. ~ —1 2 . 2. . :
vith r = - - - . L in Proc. Workshop on Applications of Signal Processing
with (Z‘I*m + 2 ) (2‘1”’”’[ be + ) ‘f*m) to Audio and Acoustics (WASPAA), Oct. 2005, pp. 82-85.

= Both uncertainty-of-observation techniques collapse to standard observation
likelihood for X, = 0.

14
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Further Improvements

* Training: Informed Mixture Splitting

= Baum-Welch Training is only optimal locally -> good initialization and
good split directions matter.

= Therefore, considering covariance structure in mixture splitting is
advantageous:

split along maximum variance axis

Xy

15
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Further Improvements

* Training: Informed Mixture Splitting

= Baum-Welch Training is only optimal locally -> good initialization and
good split directions matter.

= Therefore, considering covariance structure in mixture splitting is
advantageous:

|

16
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Further Improvements

= |ntegration: Recognizer output voting error reduction (ROVER)

= Recognition outputs at word level are combined by dynamic
programming on generated lattice, taking into account

= the frequency of word labels and
= the posterior word probabilities

= We use ROVER on 3 jointly best systems selected
on development set.

J. Fiscus, “A post-processing system to yield reduced word error rates: Recognizer output voting error reduction (ROVER),” in IEEE
Workshop on Automatic Speech Recognition and Understanding, Dec. 1997, pp. 347 —354.

17
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Results and Conclusions

= Evaluation:

= Two scenarios are considered, clean training and
multicondition (,mixed’) training.

" |n mixed training, all training data was used at all SNR
levels, artifically adding randomly selected noise from
noise-only recordings.

= Results are determined on the development set first.

= After selecting the best performing system on
development data, final results are obtained as
keyword accuracies on the jsolated sentences of the test
set.
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Results and Conclusions

= JASPER Results after clean training

-6dB -3dB 0dB

Clean: 30.33 35.42 49.50 62.92 75.00 82.42
Official Baseline

JASPER* 40.83 49.25 60.33 70.67 79.67 84.92
Baseline

* JASPER uses full covariance training with MCE iteration control. Token passing is equivalent to HTK.

19
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Results and Conclusions

= JASPER Results after clean training

-6dB -3dB 0dB

Clean: 30.33 35.42 49.50 62.92 75.00 82.42
Official Baseline

JASPER 40.83 49.25 60.33 70.67 79.67 84.92
Baseline

JASPER + BF* + UP  54.50 61.33 72.92 82.17 87.42 90.83

* Best strategy here:
Delay and sum beamformer + noise estimation + modified imputation

20
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Results and Conclusions

= HTK Results after clean training

-6dB -3dB 0dB

Clean: 30.33 35.42 49.50 62.92 75.00 82.42
Official Baseline

HTK + BF* + UP 42.33 51.92 61.50 73.58 80.92 88.75

* Best strategy here:

Wiener post filter + uncertainty estimation

21
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Results and Conclusions

= Results after clean training

-6dB -3dB

Clean: 30.33 35.42 49.50 62.92
Official Baseline

HTK + BF + UP 42.33 51.92 61.50 73.58

HTK + BF* + UP + 54.83 65.17 74.25 82.67
MLLR

* Best strategy here:

Delay and sum beamformer + noise estimation

75.00 82.42

80.92 88.75

87.25 91.33

22
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Results and Conclusions

= Qverall Results after clean training

Clean:
Official Baseline

JASPER
Baseline

JASPER + BF + UP

HTK + BF + UP

HTK + BF + UP +
MLLR

* (JASPER +DS + Ml) & (HTK+GSC+NE) & (JASPER+WPF+Ml)
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Results and Conclusions

= JASPER Results after multicondition training

-6dB -3dB 0dB 3dB

Multicondition: 63.00 72.67 79.50 85.25
HTK Baseline

JASPER 64.33 73.08 81.75 85.67

Baseline

89.75

89.50

14 -
| \
1T
P \,f,,{\v/ °
/ —\
C - Jinescid

93.58

91.17

24
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Results and Conclusions

= JASPER Results after multicondition training

-6dB -3dB 0dB 3dB

Multicondition: 63.00 72.67 79.50 85.25 89.75 93.58
HTK Baseline

JASPER 64.33 73.08 81.75 85.67 89.50 91.17

Baseline
JASPER + BF*+ UP 73.92 79.08 86.25 89.83 91.08 93.00

* best JASPER setup here: Delay and sum beamformer + noise estimation + modified imputation +
LDA to 37d 2
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Results and Conclusions

= JASPER Results after multicondition training

-6dB -3dB 0dB 3dB

Multicondition: 63.00 72.67 79.50 85.25 89.75 93.58
HTK Baseline

JASPER 64.33 73.08 81.75 85.67 89.50 91.17
Baseline

JASPER + BF* + UP  73.92 79.08 86.25 89.83 91.08 93.00

as above, but 39d +0.58% -0.25% -2.16% -1.41% -2.0% -0.5%

* best JASPER setup here: Delay and sum beamformer + noise estimation + modified imputation +
LDA to 37d 26
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Results and Conclusions

= HTK Results after multicondition training

-6dB -3dB 0dB 3dB

Multicondition: 63.00 72.67 79.50 85.25 89.75 93.58
HTK Baseline

HTK + BF* + UP 67.92 77.75 84.17 89.00 91.00 92.75

* best HTK setup here: Delay and sum beamformer + noise estimation
27
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Results and Conclusions

= HTK Results after multicondition training

-6dB -3dB 0dB 3dB

Multicondition: 63.00 72.67 79.50 85.25 89.75 93.58
HTK Baseline

HTK + BF + UP 67.92 77.75 84.17 89.00 91.00 92.75

HTK + BF* + UP +  68.25 79.75 84.67 89.58 91.25 92.92
MLLR

* best HTK setup here: Delay and sum beamformer + noise estimation
28
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Results and Conclusions

= Qverall Results after multicondition training

Multicondition:
HTK Baseline

JASPER
Baseline

JASPER + BF + UP

HTK + BF + UP

HTK + BF + UP +
MLLR

* (JASPER +DS + MI + LDA ) & (JASPER+WPF, no observation uncertainties) & (HTK+DS+NE)
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Results and Conclusions

= Conclusions

= Beamforming provides an opportunity to estimate not only the clean
signal but also its standard error.

= This error - the observation uncertainty - can be propagated to the
MFCC domain or an other suitable domain for improving ASR by
uncertainty-of-observation techniques.

= Best results were attained for uncertainty propagation with modified
imputation.

= Training is critical, and despite strange philosophical implications,
observation uncertainties improve the behaviour after
multicondition training as well.

= Strategy is simple & easily generalizes to LVCSR.

30
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Further Improvements

" Training: MCE-Guided Training

= |teration and splitting control is done by minimum classification error
(MCE) criterion on held-out dataset.

= Algorithm for mixture splitting:

= jnitialize split distance d

= while m < numMixtures
= split all mixtures by distance d along 1st eigenvector
= carry out re-estimations until accuracy improves no more
= ifacc,>=acc,,

= m=m+l

= else

= go back to previous model
= d=dff

32



