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Overview 

 Uncertainty-Based Approach to Robust ASR  

 Uncertainty Estimation by Beamforming & Propagation 

 Recognition under Uncertain Observations 

 Further Improvements 

 Training: Full-covariance Mixture Splitting 

 Integration: Rover 

 Results and Conclusions 
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Introduction: Uncertainty-Based Approach to ASR Robustness 

 Speech enhancement in time-frequency-domain is often very effective. 

 However, speech enhancement itself can neither 

 remove all distortions and sources of mismatch completely 

 nor can it avoid introducing artifacts itself 

 

 

3 Mixture 

Simple example:         Time-Frequency Masking 
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Introduction: Uncertainty-Based Approach to ASR Robustness 

Problem: Recognition performs significantly better in other domains, such 

that missing feature approach may perform worse than feature 

reconstruction [1]. 

How can decoder handle such artificially distorted signals? 

One possible compromise: 
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[1] B. Raj and R. Stern: „Reconstruction of Missing Features for Robust Speech Recognition“, Speech Communication 43, pp. 275-296, 2004. 
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Xkl  

Introduction: Uncertainty-Based Approach to ASR Robustness 
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Solution used here:  

Transform uncertain features to desired domain of recognition 

Mkl  

Missing Data  

HMM Speech 

Recognition 

m(n)  

Recognition 

Domain 

Ykl  

TF-Domain 

Speech 

Processing 
STFT 

 

 

Uncertainty 

Propagation 



INESC-ID Lisboa 

Introduction: Uncertainty-Based Approach to ASR Robustness 
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Solution used here:  

Transform uncertain features to desired domain of recognition 

p(Xkl |Ykl ) 
Missing Data  

HMM Speech 

Recognition 



INESC-ID Lisboa 

Introduction: Uncertainty-Based Approach to ASR Robustness 
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Uncertainty- 

based  
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Uncertainty 

Propagation 

Solution used here:  

Transform uncertain features to desired domain of recognition 

p(Xkl |Ykl ) p(xkl |Ykl ) 
c      
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Uncertainty Estimation & Propagation 
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 Posterior estimation here is 
performed by using one of four 
beamformers: 

 

 Delay and Sum (DS) 

 Generalized Sidelobe Canceller 
(GSC) [2]  

 Multichannel Wiener Filter (WPF)  

 Integrated Wiener Filtering with 
Adaptive Beamformer (IWAB) [3] 

 

 
[2] O. Hoshuyama, A. Sugiyama, and A. Hirano, “A robust adaptive beamformer  

for microphone arrays with a blocking matrix using constrained adaptive filters,”  

IEEE Trans. Signal Processing, vol. 47, no. 10, pp. 2677 –2684, 1999. 

 

[3]  A.  Abad  and  J.  Hernando,  “Speech  enhancement  and recognition  by  

integrating  adaptive  beamforming  and Wiener filtering,” in Proc. 8th  

International Conference on Spoken Language Processing (ICSLP), 2004,  

pp. 2657–2660. 
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Uncertainty Estimation & Propagation 
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 Posterior of clean speech,  
p(Xkl |Ykl ), is then propagated 
into domain of ASR 
 

 Feature Extraction 

 STSA-based MFCCs 

 CMS per utterance 

 possibly LDA 
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Uncertainty Estimation & Propagation 
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 Uncertainty model: 

Complex Gaussian distribution 
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Uncertainty Estimation & Propagation 
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 Two uncertainty estimators: 
 

a) Channel Asymmetry        
Uncertainty Estimation 

 Beamformer output input to 
Wiener filter 

 Noise variance estimated as 
squared channel difference 

 Posterior directly obtainable for 
Wiener filter [4]: 

 

 

 

[4] R. F. Astudillo and R. Orglmeister, “A MMSE estimator in mel-cepstral domain for robust large vocabulary automatic speech recognition  

using uncertainty propagation,” in Proc. Interspeech, 2010, pp. 713–716. 

; 
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Uncertainty Estimation & Propagation 
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 Two uncertainty estimators: 

 

b) Equivalent Wiener variance  

 Beamformer output directly 
passed to feature extraction 

 

 

 

 Variance estimated using ratio of 
beamformer input and output, 
interpreted as Wiener gain 

 

 

 12 [4] R. F. Astudillo and R. Orglmeister, “A MMSE estimator in mel-cepstral domain for robust large vocabulary automatic speech recognition  

using uncertainty propagation,” in Proc. Interspeech, 2010, pp. 713–716. 
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Uncertainty Propagation 

 Uncertainty propagation from [5] was used 

 Propagation through absolute value yields MMSE-STSA 

 Independent log normal distributions after filterbank assumed 

 

 

 

 

 

 

 

 Posterior of clean speech in cepstrum domain assumed Gaussian 

 CMS and LDA transformations simple 

 

 13 [5] R. F. Astudillo, “Integration of short-time Fourier domain speech  enhancement  and  observation  uncertainty  techniques  for  robust  automatic   

speech  recognition,”  Ph.D. thesis, Technical University Berlin, 2010.  
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Recognition under Uncertain Observations 

 Standard observation likelihood for state q mixture m: 

 

 

 Uncertainty Decoding: 

 
 

 

 

  L. Deng, J. Droppo, and A. Acero, “Dynamic compensation of HMM variances using the feature enhancement uncertainty computed from a 

  parametric model of speech distortion,” IEEE Trans. Speech and Audio Processing, vol. 13, no. 3, pp. 412–421, May 2005. 
 

 Modified Imputation: 

              

 
 

 

 Both uncertainty-of-observation techniques collapse to standard observation 
likelihood for Sx = 0. 
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D. Kolossa, A. Klimas, and R. Orglmeister, “Separation and  

robust recognition of noisy, convolutive speech mixtures  

using time-frequency masking and missing data techniques,”  

in Proc. Workshop on Applications of Signal Processing  

to Audio and Acoustics (WASPAA), Oct. 2005, pp. 82–85. 

€ 
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Further Improvements 

 Training: Informed Mixture Splitting 

 Baum-Welch Training is only optimal locally -> good initialization and 
good split directions matter. 

 Therefore, considering covariance structure in mixture splitting is 
advantageous: 
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x1 

x2 

split along maximum variance axis 
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Further Improvements 

 Training: Informed Mixture Splitting 

 Baum-Welch Training is only optimal locally -> good initialization and 
good split directions matter. 

 Therefore, considering covariance structure in mixture splitting is 
advantageous: 
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x1 

x2 

split along first eigenvector  

  of covariance matrix 
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Further Improvements 

 Integration: Recognizer output voting error reduction (ROVER) 

 Recognition outputs at word level are combined by dynamic 
programming on generated lattice, taking into account  

 the frequency of word labels and 

  the posterior word probabilities 

 We use ROVER on 3 jointly best systems selected  
on development set. 

 
 J. Fiscus, “A post-processing system to yield reduced word error rates: Recognizer output voting error reduction (ROVER),” in IEEE 

 Workshop on Automatic Speech Recognition and Understanding, Dec. 1997, pp. 347 –354. 
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Results and Conclusions 

 Evaluation: 

 Two scenarios are considered, clean training and 
multicondition (‚mixed‘) training. 

 In mixed training, all training data was used at all SNR 
levels, artifically adding randomly selected noise from 
noise-only recordings. 

 Results are determined on the development set first. 

 After selecting the best performing system on 
development data, final results are obtained as  
keyword accuracies on the isolated sentences of the test 
set. 
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Results and Conclusions 

 JASPER Results after clean training 
 

 

 

 

 

 

 

 

 
* JASPER uses full covariance training with MCE iteration control. Token passing is equivalent to HTK.  
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-6dB -3dB 0dB 3dB 6dB 9dB 

Clean: 
Official Baseline 

30.33 35.42 49.50 62.92  75.00 82.42 

JASPER* 
Baseline 

40.83 49.25 60.33 70.67 79.67 84.92 
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Results and Conclusions 

 JASPER Results after clean training 
 

 

 

 

 

 

 

 

 
* Best strategy here:  

Delay and sum beamformer + noise estimation + modified imputation 
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-6dB -3dB 0dB 3dB 6dB 9dB 

Clean: 
Official Baseline 

30.33 35.42 49.50 62.92  75.00 82.42 

JASPER 
Baseline 

40.83 49.25 60.33 70.67 79.67 84.92 

JASPER + BF* + UP 54.50 61.33  72.92  82.17  87.42  90.83 
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 HTK Results after clean training 
 

 

 

 

 

 

 

 

 
* Best strategy here:  

Wiener post filter + uncertainty estimation 

Results and Conclusions 
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-6dB -3dB 0dB 3dB 6dB 9dB 

Clean: 
Official Baseline 

30.33 35.42 49.50 62.92  75.00 82.42 

HTK + BF* + UP 42.33 51.92 61.50 73.58 80.92 88.75 
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 Results after clean training 
 

 

 

 

 

 

 

 

 
* Best strategy here:  

Delay and sum beamformer + noise estimation 

Results and Conclusions 
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-6dB -3dB 0dB 3dB 6dB 9dB 

Clean: 
Official Baseline 

30.33 35.42 49.50 62.92  75.00 82.42 

HTK + BF + UP 42.33 51.92 61.50 73.58 80.92 88.75 

HTK + BF* + UP + 
MLLR 

54.83 65.17 74.25 82.67 87.25 91.33 
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 Overall Results after clean training 
 

 

 

 

 

 

 

 

 

 
 

* (JASPER +DS + MI) & (HTK+GSC+NE) & (JASPER+WPF+MI) 

Results and Conclusions 
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-6dB -3dB 0dB 3dB 6dB 9dB 

Clean: 
Official Baseline 

30.33 35.42 49.50 62.92  75.00 82.42 

JASPER 
Baseline 

40.83 49.25 60.33 70.67 79.67 84.92 

JASPER + BF + UP 54.50 61.33  72.92  82.17  87.42  90.83 
 

HTK + BF + UP 42.33 51.92 61.50 73.58 80.92 88.75 
 

HTK + BF + UP + 
MLLR 

54.83 65.17 74.25 82.67 87.25 91.33 
 

ROVER  
(JASPER + HTK )* 

57.58 64.42 76.75 86.17 88.58 92.75 
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Results and Conclusions 

 JASPER Results after multicondition training 
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-6dB -3dB 0dB 3dB 6dB 9dB 

Multicondition: 
HTK Baseline 

63.00 72.67 79.50 85.25 89.75 93.58 

JASPER 
Baseline 

64.33 73.08  81.75  85.67  89.50  91.17 
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Results and Conclusions 

 JASPER Results after multicondition training 
 

 

 

 

 

 

 

 

 

 
 * best JASPER setup here: Delay and sum beamformer + noise estimation + modified imputation + 
LDA to 37d 25 

-6dB -3dB 0dB 3dB 6dB 9dB 

Multicondition: 
HTK Baseline 

63.00 72.67 79.50 85.25 89.75 93.58 

JASPER 
Baseline 

64.33 73.08  81.75  85.67  89.50  91.17 

JASPER + BF* + UP 73.92 79.08 86.25 89.83 91.08 93.00 
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Results and Conclusions 

 JASPER Results after multicondition training 
 

 

 

 

 

 

 

 

 

 
 * best JASPER setup here: Delay and sum beamformer + noise estimation + modified imputation + 
LDA to 37d 26 

-6dB -3dB 0dB 3dB 6dB 9dB 

Multicondition: 
HTK Baseline 

63.00 72.67 79.50 85.25 89.75 93.58 

JASPER 
Baseline 

64.33 73.08  81.75  85.67  89.50  91.17 

JASPER + BF* + UP 73.92 79.08 86.25 89.83 91.08 93.00 

as above, but 39d +0.58% -0.25% -2.16% -1.41% -2.0% -0.5% 
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Results and Conclusions 

 HTK Results after multicondition training 
 

 

 

 

 

 

 

 

 

 
* best HTK setup here: Delay and sum beamformer + noise estimation 
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-6dB -3dB 0dB 3dB 6dB 9dB 

Multicondition: 
HTK Baseline 

63.00 72.67 79.50 85.25 89.75 93.58 

HTK + BF* + UP 67.92 77.75 84.17 89.00 91.00 92.75 
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Results and Conclusions 

 HTK Results after multicondition training 
 

 

 

 

 

 

 

 

 

 
* best HTK setup here: Delay and sum beamformer + noise estimation 
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-6dB -3dB 0dB 3dB 6dB 9dB 

Multicondition: 
HTK Baseline 

63.00 72.67 79.50 85.25 89.75 93.58 

HTK + BF + UP 67.92 77.75 84.17 89.00 91.00 92.75 

HTK + BF* + UP + 
MLLR 

68.25 79.75 84.67 89.58 91.25 92.92 
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Results and Conclusions 

 Overall Results after multicondition training 
 

 

 

 

 

 

 

 

 

 

 

 
* (JASPER +DS + MI + LDA ) & (JASPER+WPF, no observation uncertainties) & (HTK+DS+NE) 
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-6dB -3dB 0dB 3dB 6dB 9dB 

Multicondition: 
HTK Baseline 

63.00 72.67 79.50 85.25 89.75 93.58 

JASPER 
Baseline 

64.33 73.08  81.75  85.67  89.50  91.17 

JASPER + BF + UP 73.92 79.08 86.25 89.83 91.08 93.00 

HTK + BF + UP 67.92 77.75 84.17 89.00 91.00 92.75 

HTK + BF + UP + 
MLLR 

68.25 79.75 84.67 89.58 91.25 92.92 

ROVER  
(JASPER + HTK )* 

74.58 80.58 87.92 90.83 92.75 94.17 
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Results and Conclusions 

 Conclusions 

 Beamforming provides an opportunity to estimate not only the clean 
signal but also its standard error. 

 This error - the observation uncertainty - can be propagated to the 
MFCC domain or an other suitable domain for improving ASR by 
uncertainty-of-observation techniques. 

 Best results were attained for uncertainty propagation with modified 
imputation. 

 Training is critical, and despite strange philosophical implications, 
observation uncertainties improve the behaviour after 
multicondition training as well. 

 Strategy is simple & easily generalizes to LVCSR. 
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Thank you ! 

31 



INESC-ID Lisboa 

Further Improvements 

 Training: MCE-Guided Training 

 Iteration and splitting control is done by minimum classification error 
(MCE) criterion on held-out dataset. 

 Algorithm for mixture splitting: 

 initialize split distance d 

 while m < numMixtures 

 split all mixtures by distance d along 1st eigenvector 

 carry out re-estimations until accuracy improves no more 

 if accm >= accm-1  

 m = m+1 

 else  

 go back to previous model  
 d = d/f 
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