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Introduction: Uncertainty-Based Approach to ASR Robustness 

 Speech enhancement in time-frequency-domain is often very effective. 

 However, speech enhancement itself can neither 

 remove all distortions and sources of mismatch completely 

 nor can it avoid introducing artifacts itself 

 

 

3 Mixture 

Simple example:         Time-Frequency Masking 
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Introduction: Uncertainty-Based Approach to ASR Robustness 

Problem: Recognition performs significantly better in other domains, such 

that missing feature approach may perform worse than feature 

reconstruction [1]. 

How can decoder handle such artificially distorted signals? 

One possible compromise: 
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[1] B. Raj and R. Stern: „Reconstruction of Missing Features for Robust Speech Recognition“, Speech Communication 43, pp. 275-296, 2004. 
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Xkl  

Introduction: Uncertainty-Based Approach to ASR Robustness 
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Solution used here:  

Transform uncertain features to desired domain of recognition 
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Introduction: Uncertainty-Based Approach to ASR Robustness 
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Solution used here:  

Transform uncertain features to desired domain of recognition 
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Introduction: Uncertainty-Based Approach to ASR Robustness 
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Solution used here:  

Transform uncertain features to desired domain of recognition 

p(Xkl |Ykl ) p(xkl |Ykl ) 
c      



INESC-ID Lisboa 

Uncertainty Estimation & Propagation 
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 Posterior estimation here is 
performed by using one of four 
beamformers: 

 

 Delay and Sum (DS) 

 Generalized Sidelobe Canceller 
(GSC) [2]  

 Multichannel Wiener Filter (WPF)  

 Integrated Wiener Filtering with 
Adaptive Beamformer (IWAB) [3] 

 

 
[2] O. Hoshuyama, A. Sugiyama, and A. Hirano, “A robust adaptive beamformer  

for microphone arrays with a blocking matrix using constrained adaptive filters,”  

IEEE Trans. Signal Processing, vol. 47, no. 10, pp. 2677 –2684, 1999. 

 

[3]  A.  Abad  and  J.  Hernando,  “Speech  enhancement  and recognition  by  

integrating  adaptive  beamforming  and Wiener filtering,” in Proc. 8th  

International Conference on Spoken Language Processing (ICSLP), 2004,  

pp. 2657–2660. 
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Uncertainty Estimation & Propagation 
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 Posterior of clean speech,  
p(Xkl |Ykl ), is then propagated 
into domain of ASR 
 

 Feature Extraction 

 STSA-based MFCCs 

 CMS per utterance 

 possibly LDA 
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Uncertainty Estimation & Propagation 
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 Uncertainty model: 

Complex Gaussian distribution 
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Uncertainty Estimation & Propagation 
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 Two uncertainty estimators: 
 

a) Channel Asymmetry        
Uncertainty Estimation 

 Beamformer output input to 
Wiener filter 

 Noise variance estimated as 
squared channel difference 

 Posterior directly obtainable for 
Wiener filter [4]: 

 

 

 

[4] R. F. Astudillo and R. Orglmeister, “A MMSE estimator in mel-cepstral domain for robust large vocabulary automatic speech recognition  

using uncertainty propagation,” in Proc. Interspeech, 2010, pp. 713–716. 

; 
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Uncertainty Estimation & Propagation 
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 Two uncertainty estimators: 

 

b) Equivalent Wiener variance  

 Beamformer output directly 
passed to feature extraction 

 

 

 

 Variance estimated using ratio of 
beamformer input and output, 
interpreted as Wiener gain 

 

 

 12 [4] R. F. Astudillo and R. Orglmeister, “A MMSE estimator in mel-cepstral domain for robust large vocabulary automatic speech recognition  

using uncertainty propagation,” in Proc. Interspeech, 2010, pp. 713–716. 
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Uncertainty Propagation 

 Uncertainty propagation from [5] was used 

 Propagation through absolute value yields MMSE-STSA 

 Independent log normal distributions after filterbank assumed 

 

 

 

 

 

 

 

 Posterior of clean speech in cepstrum domain assumed Gaussian 

 CMS and LDA transformations simple 

 

 13 [5] R. F. Astudillo, “Integration of short-time Fourier domain speech  enhancement  and  observation  uncertainty  techniques  for  robust  automatic   

speech  recognition,”  Ph.D. thesis, Technical University Berlin, 2010.  
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Recognition under Uncertain Observations 

 Standard observation likelihood for state q mixture m: 

 

 

 Uncertainty Decoding: 

 
 

 

 

  L. Deng, J. Droppo, and A. Acero, “Dynamic compensation of HMM variances using the feature enhancement uncertainty computed from a 

  parametric model of speech distortion,” IEEE Trans. Speech and Audio Processing, vol. 13, no. 3, pp. 412–421, May 2005. 
 

 Modified Imputation: 

              

 
 

 

 Both uncertainty-of-observation techniques collapse to standard observation 
likelihood for Sx = 0. 
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D. Kolossa, A. Klimas, and R. Orglmeister, “Separation and  

robust recognition of noisy, convolutive speech mixtures  

using time-frequency masking and missing data techniques,”  

in Proc. Workshop on Applications of Signal Processing  

to Audio and Acoustics (WASPAA), Oct. 2005, pp. 82–85. 
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Further Improvements 

 Training: Informed Mixture Splitting 

 Baum-Welch Training is only optimal locally -> good initialization and 
good split directions matter. 

 Therefore, considering covariance structure in mixture splitting is 
advantageous: 

15 

x1 

x2 

split along maximum variance axis 
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Further Improvements 

 Training: Informed Mixture Splitting 

 Baum-Welch Training is only optimal locally -> good initialization and 
good split directions matter. 

 Therefore, considering covariance structure in mixture splitting is 
advantageous: 
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x1 

x2 

split along first eigenvector  

  of covariance matrix 
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Further Improvements 

 Integration: Recognizer output voting error reduction (ROVER) 

 Recognition outputs at word level are combined by dynamic 
programming on generated lattice, taking into account  

 the frequency of word labels and 

  the posterior word probabilities 

 We use ROVER on 3 jointly best systems selected  
on development set. 

 
 J. Fiscus, “A post-processing system to yield reduced word error rates: Recognizer output voting error reduction (ROVER),” in IEEE 

 Workshop on Automatic Speech Recognition and Understanding, Dec. 1997, pp. 347 –354. 
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Results and Conclusions 

 Evaluation: 

 Two scenarios are considered, clean training and 
multicondition (‚mixed‘) training. 

 In mixed training, all training data was used at all SNR 
levels, artifically adding randomly selected noise from 
noise-only recordings. 

 Results are determined on the development set first. 

 After selecting the best performing system on 
development data, final results are obtained as  
keyword accuracies on the isolated sentences of the test 
set. 
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Results and Conclusions 

 JASPER Results after clean training 
 

 

 

 

 

 

 

 

 
* JASPER uses full covariance training with MCE iteration control. Token passing is equivalent to HTK.  
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-6dB -3dB 0dB 3dB 6dB 9dB 

Clean: 
Official Baseline 

30.33 35.42 49.50 62.92  75.00 82.42 

JASPER* 
Baseline 

40.83 49.25 60.33 70.67 79.67 84.92 
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Results and Conclusions 

 JASPER Results after clean training 
 

 

 

 

 

 

 

 

 
* Best strategy here:  

Delay and sum beamformer + noise estimation + modified imputation 
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-6dB -3dB 0dB 3dB 6dB 9dB 

Clean: 
Official Baseline 

30.33 35.42 49.50 62.92  75.00 82.42 

JASPER 
Baseline 

40.83 49.25 60.33 70.67 79.67 84.92 

JASPER + BF* + UP 54.50 61.33  72.92  82.17  87.42  90.83 
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 HTK Results after clean training 
 

 

 

 

 

 

 

 

 
* Best strategy here:  

Wiener post filter + uncertainty estimation 

Results and Conclusions 
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-6dB -3dB 0dB 3dB 6dB 9dB 

Clean: 
Official Baseline 

30.33 35.42 49.50 62.92  75.00 82.42 

HTK + BF* + UP 42.33 51.92 61.50 73.58 80.92 88.75 
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 Results after clean training 
 

 

 

 

 

 

 

 

 
* Best strategy here:  

Delay and sum beamformer + noise estimation 

Results and Conclusions 
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-6dB -3dB 0dB 3dB 6dB 9dB 

Clean: 
Official Baseline 

30.33 35.42 49.50 62.92  75.00 82.42 

HTK + BF + UP 42.33 51.92 61.50 73.58 80.92 88.75 

HTK + BF* + UP + 
MLLR 

54.83 65.17 74.25 82.67 87.25 91.33 
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 Overall Results after clean training 
 

 

 

 

 

 

 

 

 

 
 

* (JASPER +DS + MI) & (HTK+GSC+NE) & (JASPER+WPF+MI) 

Results and Conclusions 
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-6dB -3dB 0dB 3dB 6dB 9dB 

Clean: 
Official Baseline 

30.33 35.42 49.50 62.92  75.00 82.42 

JASPER 
Baseline 

40.83 49.25 60.33 70.67 79.67 84.92 

JASPER + BF + UP 54.50 61.33  72.92  82.17  87.42  90.83 
 

HTK + BF + UP 42.33 51.92 61.50 73.58 80.92 88.75 
 

HTK + BF + UP + 
MLLR 

54.83 65.17 74.25 82.67 87.25 91.33 
 

ROVER  
(JASPER + HTK )* 

57.58 64.42 76.75 86.17 88.58 92.75 
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Results and Conclusions 

 JASPER Results after multicondition training 
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-6dB -3dB 0dB 3dB 6dB 9dB 

Multicondition: 
HTK Baseline 

63.00 72.67 79.50 85.25 89.75 93.58 

JASPER 
Baseline 

64.33 73.08  81.75  85.67  89.50  91.17 
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Results and Conclusions 

 JASPER Results after multicondition training 
 

 

 

 

 

 

 

 

 

 
 * best JASPER setup here: Delay and sum beamformer + noise estimation + modified imputation + 
LDA to 37d 25 

-6dB -3dB 0dB 3dB 6dB 9dB 

Multicondition: 
HTK Baseline 

63.00 72.67 79.50 85.25 89.75 93.58 

JASPER 
Baseline 

64.33 73.08  81.75  85.67  89.50  91.17 

JASPER + BF* + UP 73.92 79.08 86.25 89.83 91.08 93.00 
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Results and Conclusions 

 JASPER Results after multicondition training 
 

 

 

 

 

 

 

 

 

 
 * best JASPER setup here: Delay and sum beamformer + noise estimation + modified imputation + 
LDA to 37d 26 

-6dB -3dB 0dB 3dB 6dB 9dB 

Multicondition: 
HTK Baseline 

63.00 72.67 79.50 85.25 89.75 93.58 

JASPER 
Baseline 

64.33 73.08  81.75  85.67  89.50  91.17 

JASPER + BF* + UP 73.92 79.08 86.25 89.83 91.08 93.00 

as above, but 39d +0.58% -0.25% -2.16% -1.41% -2.0% -0.5% 
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Results and Conclusions 

 HTK Results after multicondition training 
 

 

 

 

 

 

 

 

 

 
* best HTK setup here: Delay and sum beamformer + noise estimation 
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-6dB -3dB 0dB 3dB 6dB 9dB 

Multicondition: 
HTK Baseline 

63.00 72.67 79.50 85.25 89.75 93.58 

HTK + BF* + UP 67.92 77.75 84.17 89.00 91.00 92.75 
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Results and Conclusions 

 HTK Results after multicondition training 
 

 

 

 

 

 

 

 

 

 
* best HTK setup here: Delay and sum beamformer + noise estimation 
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-6dB -3dB 0dB 3dB 6dB 9dB 

Multicondition: 
HTK Baseline 

63.00 72.67 79.50 85.25 89.75 93.58 

HTK + BF + UP 67.92 77.75 84.17 89.00 91.00 92.75 

HTK + BF* + UP + 
MLLR 

68.25 79.75 84.67 89.58 91.25 92.92 
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Results and Conclusions 

 Overall Results after multicondition training 
 

 

 

 

 

 

 

 

 

 

 

 
* (JASPER +DS + MI + LDA ) & (JASPER+WPF, no observation uncertainties) & (HTK+DS+NE) 

 

 

 

 
  

29 

-6dB -3dB 0dB 3dB 6dB 9dB 

Multicondition: 
HTK Baseline 

63.00 72.67 79.50 85.25 89.75 93.58 

JASPER 
Baseline 

64.33 73.08  81.75  85.67  89.50  91.17 

JASPER + BF + UP 73.92 79.08 86.25 89.83 91.08 93.00 

HTK + BF + UP 67.92 77.75 84.17 89.00 91.00 92.75 

HTK + BF + UP + 
MLLR 

68.25 79.75 84.67 89.58 91.25 92.92 

ROVER  
(JASPER + HTK )* 

74.58 80.58 87.92 90.83 92.75 94.17 
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Results and Conclusions 

 Conclusions 

 Beamforming provides an opportunity to estimate not only the clean 
signal but also its standard error. 

 This error - the observation uncertainty - can be propagated to the 
MFCC domain or an other suitable domain for improving ASR by 
uncertainty-of-observation techniques. 

 Best results were attained for uncertainty propagation with modified 
imputation. 

 Training is critical, and despite strange philosophical implications, 
observation uncertainties improve the behaviour after 
multicondition training as well. 

 Strategy is simple & easily generalizes to LVCSR. 
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Thank you ! 
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Further Improvements 

 Training: MCE-Guided Training 

 Iteration and splitting control is done by minimum classification error 
(MCE) criterion on held-out dataset. 

 Algorithm for mixture splitting: 

 initialize split distance d 

 while m < numMixtures 

 split all mixtures by distance d along 1st eigenvector 

 carry out re-estimations until accuracy improves no more 

 if accm >= accm-1  

 m = m+1 

 else  

 go back to previous model  
 d = d/f 
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