RUHR-UNIVERSITÄT BOCHUM INESC-ID Lisboa

CHiME Challenge:

Approaches to Robustness using Beamforming and Uncertainty-of-Observation Techniques

Dorothea Kolossa ¹, Ramón Fernandez Astudillo ², Alberto Abad ², Steffen Zeiler ¹, Rahim Saeidi ³, Pejman Mowlaee ¹, João Paulo da Silva Neto ², Rainer Martin ¹

¹ Institute of Communication Acoustics (IKA) Ruhr-Universität Bochum
² Spoken Language Laboratory, INESC-ID, Lisbon
³ School of Computing, University of Eastern Finland

Overview

- Uncertainty-Based Approach to Robust ASR
- Uncertainty Estimation by Beamforming & Propagation
- Recognition under Uncertain Observations
- Further Improvements
 - Training: Full-covariance Mixture Splitting
 - Integration: Rover
- Results and Conclusions

- Speech enhancement in time-frequency-domain is often very effective.
- However, speech enhancement itself can neither
 - remove all distortions and sources of mismatch completely
 - nor can it avoid introducing artifacts itself

How can decoder handle such artificially distorted signals?

One possible compromise:

Problem: Recognition performs significantly better in other domains, such that missing feature approach may perform worse than feature reconstruction [1].

[1] B. Raj and R. Stern: "Reconstruction of Missing Features for Robust Speech Recognition", Speech Communication 43, pp. 275-296, 2004.

Solution used here:

Transform uncertain features to desired domain of recognition

Solution used here:

Transform uncertain features to desired domain of recognition

Solution used here:

Transform uncertain features to desired domain of recognition

- Posterior estimation here is performed by using one of four beamformers:
 - Delay and Sum (DS)
 - Generalized Sidelobe Canceller (GSC) [2]
 - Multichannel Wiener Filter (WPF)
 - Integrated Wiener Filtering with Adaptive Beamformer (IWAB) [3]

[2] O. Hoshuyama, A. Sugiyama, and A. Hirano, "A robust adaptive beamformer for microphone arrays with a blocking matrix using constrained adaptive filters," IEEE Trans. Signal Processing, vol. 47, no. 10, pp. 2677 –2684, 1999.

[3] A. Abad and J. Hernando, "Speech enhancement and recognition by integrating adaptive beamforming and Wiener filtering," in Proc. 8th International Conference on Spoken Language Processing (ICSLP), 2004, pp. 2657–2660.

- Posterior of clean speech, p(X_{kl} | Y_{kl}), is then propagated into domain of ASR
- Feature Extraction
 - STSA-based MFCCs
 - CMS per utterance
 - possibly LDA

Uncertainty model:

Complex Gaussian distribution

- Two uncertainty estimators:
- a) Channel Asymmetry Uncertainty Estimation
 - Beamformer output input to Wiener filter
 - Noise variance estimated as squared channel difference
 - Posterior directly obtainable for Wiener filter [4]:

$$\lambda_{\mathbf{D}} = \mathrm{DFT}\{(m_L(n) - m_R(n))^2\}$$
$$p(X_{kl}|Y_{kl}) = \mathcal{N}\left(\frac{\lambda_{X_{kl}}}{\lambda_{D_{kl}} + \lambda_{X_{kl}}}Y_{kl}, \frac{\lambda_{X_{kl}}\lambda_{D_{kl}}}{\lambda_{D_{kl}} + \lambda_{X_{kl}}}\right)$$

[4] R. F. Astudillo and R. Orglmeister, "A MMSE estimator in mel-cepstral domain for robust large vocabulary automatic speech recognition 11 using uncertainty propagation," in Proc. Interspeech, 2010, pp. 713–716.

Two uncertainty estimators:

b) Equivalent Wiener variance

 Beamformer output directly passed to feature extraction

$$p(X_{kl}|Y_{kl}) = \mathcal{N}\left(Y_{kl}, \tilde{\lambda}_{kl}\right)$$

 Variance estimated using ratio of beamformer input and output, interpreted as Wiener gain

^[4] R. F. Astudillo and R. Orglmeister, "A MMSE estimator in mel-cepstral domain for robust large vocabulary automatic speech recognition 12 using uncertainty propagation," in Proc. Interspeech, 2010, pp. 713–716.

Uncertainty Propagation

- Uncertainty propagation from [5] was used
 - Propagation through absolute value yields MMSE-STSA
 - Independent log normal distributions after filterbank assumed

- Posterior of clean speech in cepstrum domain assumed Gaussian
- CMS and LDA transformations simple

[5] R. F. Astudillo, "Integration of short-time Fourier domain speech enhancement and observation uncertainty techniques for robust automatic speech recognition," Ph.D. thesis, Technical University Berlin, 2010.

Recognition under Uncertain Observations

Standard observation likelihood for state q mixture m:

 $p(x \mid \mu_{q,m}, \Sigma_{q,m}) = N(x; \mu_{q,m}, \Sigma_{q,m})$

Uncertainty Decoding:

$$p(\mu_x|\mu_{q,m}, \Sigma_{q,m}, \Sigma_x) = N(\mu_x; \mu_{q,m}, \Sigma_{q,m} + \Sigma_x)$$

L. Deng, J. Droppo, and A. Acero, "Dynamic compensation of HMM variances using the feature enhancement uncertainty computed from a parametric model of speech distortion," IEEE Trans. Speech and Audio Processing, vol. 13, no. 3, pp. 412–421, May 2005.

Modified Imputation:

$$p(\mu_x | \mu_{q,m}, \Sigma_{q,m}, \Sigma_x) = \mathcal{N}(\hat{x}; \mu_{q,m}, \Sigma_{q,m})$$

with $\hat{x} = (\Sigma_{q,m} + \Sigma_x)^{-1} (\Sigma_{q,m} \mu_x + \Sigma_x \mu_{q,m})$

D. Kolossa, A. Klimas, and R. Orglmeister, "Separation and robust recognition of noisy, convolutive speech mixtures using time-frequency masking and missing data techniques," in Proc. Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), Oct. 2005, pp. 82–85.

Both uncertainty-of-observation techniques collapse to standard observation likelihood for $\Sigma_x = 0$.

- Training: Informed Mixture Splitting
 - Baum-Welch Training is only optimal locally -> good initialization and good split directions matter.
 - Therefore, considering covariance structure in mixture splitting is advantageous:

- Training: Informed Mixture Splitting
 - Baum-Welch Training is only optimal locally -> good initialization and good split directions matter.
 - Therefore, considering covariance structure in mixture splitting is advantageous:

- Integration: Recognizer output voting error reduction (ROVER)
 - Recognition outputs at word level are combined by dynamic programming on generated lattice, taking into account
 - the frequency of word labels and
 - the posterior word probabilities
 - We use ROVER on 3 jointly best systems selected on development set.

J. Fiscus, "A post-processing system to yield reduced word error rates: Recognizer output voting error reduction (ROVER)," in IEEE Workshop on Automatic Speech Recognition and Understanding, Dec. 1997, pp. 347–354.

- Evaluation:
 - Two scenarios are considered, clean training and multicondition (,mixed') training.
 - In mixed training, all training data was used at all SNR levels, artifically adding randomly selected noise from noise-only recordings.
 - Results are determined on the development set first.
 - After selecting the best performing system on development data, final results are obtained as *keyword accuracies* on the *isolated sentences* of the *test set*.

JASPER Results after clean training

	-6dB	-3dB	OdB	3dB	6dB	9dB
Clean: Official Baseline	30.33	35.42	49.50	62.92	75.00	82.42
JASPER* Baseline	40.83	49.25	60.33	70.67	79.67	84.92

* JASPER uses full covariance training with MCE iteration control. Token passing is equivalent to HTK.

JASPER Results after clean training

	-6dB	-3dB	OdB	3dB	6dB	9dB
Clean: Official Baseline	30.33	35.42	49.50	62.92	75.00	82.42
JASPER Baseline	40.83	49.25	60.33	70.67	79.67	84.92
JASPER + BF* + UP	54.50	61.33	72.92	82.17	87.42	90.83

* Best strategy here:

Delay and sum beamformer + noise estimation + modified imputation

HTK Results after clean training

	-6dB	-3dB	OdB	3dB	6dB	9dB
Clean: Official Baseline	30.33	35.42	49.50	62.92	75.00	82.42
HTK + BF* + UP	42.33	51.92	61.50	73.58	80.92	88.75

* Best strategy here:

Wiener post filter + uncertainty estimation

Results after clean training

	-6dB	-3dB	OdB	3dB	6dB	9dB
Clean: Official Baseline	30.33	35.42	49.50	62.92	75.00	82.42
HTK + BF + UP	42.33	51.92	61.50	73.58	80.92	88.75
HTK + BF* + UP + MLLR	54.83	65.17	74.25	82.67	87.25	91.33

* Best strategy here:

Delay and sum beamformer + noise estimation

Overall Results after clean training

	-6dB	-3dB	OdB	3dB	6dB	9dB
Clean: Official Baseline	30.33	35.42	49.50	62.92	75.00	82.42
JASPER Baseline	40.83	49.25	60.33	70.67	79.67	84.92
JASPER + BF + UP	54.50	61.33	72.92	82.17	87.42	90.83
HTK + BF + UP	42.33	51.92	61.50	73.58	80.92	88.75
HTK + BF + UP + MLLR	54.83	65.17	74.25	82.67	87.25	91.33
ROVER (JASPER + HTK)*	57.58	64.42	76.75	86.17	88.58	92.75

* (JASPER +DS + MI) & (HTK+GSC+NE) & (JASPER+WPF+MI)

JASPER Results after multicondition training

	-6dB	-3dB	OdB	3dB	6dB	9dB
Multicondition: HTK Baseline	63.00	72.67	79.50	85.25	89.75	93.58
JASPER Baseline	64.33	73.08	81.75	85.67	89.50	91.17

JASPER Results after multicondition training

	-6dB	-3dB	OdB	3dB	6dB	9dB
Multicondition: HTK Baseline	63.00	72.67	79.50	85.25	89.75	93.58
JASPER Baseline	64.33	73.08	81.75	85.67	89.50	91.17
JASPER + BF* + UP	73.92	79.08	86.25	89.83	91.08	93.00

* best JASPER setup here: Delay and sum beamformer + noise estimation + modified imputation + LDA to 37d $^{\rm 25}$

JASPER Results after multicondition training

	-6dB	-3dB	OdB	3dB	6dB	9dB
Multicondition: HTK Baseline	63.00	72.67	79.50	85.25	89.75	93.58
JASPER Baseline	64.33	73.08	81.75	85.67	89.50	91.17
JASPER + BF* + UP	73.92	79.08	86.25	89.83	91.08	93.00
as above, but 39d	+0.58%	-0.25%	-2.16%	-1.41%	-2.0%	-0.5%

* best JASPER setup here: Delay and sum beamformer + noise estimation + modified imputation + LDA to 37d $^{\rm 26}$

HTK Results after multicondition training

	-6dB	-3dB	OdB	3dB	6dB	9dB
Multicondition: HTK Baseline	63.00	72.67	79.50	85.25	89.75	93.58
HTK + BF* + UP	67.92	77.75	84.17	89.00	91.00	92.75

* best HTK setup here: Delay and sum beamformer + noise estimation

HTK Results after multicondition training

	-6dB	-3dB	OdB	3dB	6dB	9dB
Multicondition: HTK Baseline	63.00	72.67	79.50	85.25	89.75	93.58
HTK + BF + UP	67.92	77.75	84.17	89.00	91.00	92.75
HTK + BF* + UP + MLLR	68.25	79.75	84.67	89.58	91.25	92.92

* best HTK setup here: Delay and sum beamformer + noise estimation

Overall Results after multicondition training

	-6dB	-3dB	OdB	3dB	6dB	9dB
Multicondition: HTK Baseline	63.00	72.67	79.50	85.25	89.75	93.58
JASPER Baseline	64.33	73.08	81.75	85.67	89.50	91.17
JASPER + BF + UP	73.92	79.08	86.25	89.83	91.08	93.00
HTK + BF + UP	67.92	77.75	84.17	89.00	91.00	92.75
HTK + BF + UP + MLLR	68.25	79.75	84.67	89.58	91.25	92.92
ROVER (JASPER + HTK)*	74.58	80.58	87.92	90.83	92.75	94.17

* (JASPER +DS + MI + LDA) & (JASPER+WPF, no observation uncertainties) & (HTK+DS+NE)

- Conclusions
 - Beamforming provides an opportunity to estimate not only the clean signal but also its standard error.
 - This error the observation uncertainty can be propagated to the MFCC domain or an other suitable domain for improving ASR by uncertainty-of-observation techniques.
 - Best results were attained for uncertainty propagation with modified imputation.
 - Training is critical, and despite strange philosophical implications, observation uncertainties improve the behaviour after multicondition training as well.
 - Strategy is simple & easily generalizes to LVCSR.

Thank you !

- Training: MCE-Guided Training
 - Iteration and splitting control is done by minimum classification error (MCE) criterion on held-out dataset.
 - Algorithm for mixture splitting:
 - initialize split distance d
 - while m < numMixtures</p>
 - split all mixtures by distance d along 1st eigenvector
 - carry out re-estimations until accuracy improves no more
 - if acc_m >= acc_{m-1}
 - *m* = *m*+1
 - else
 - go back to previous model
 - *d* = *d*/*f*