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Abstract
This paper describes the system used to process the data of the
CHiME Pascal 2011 competition, whose goal is to separate the
desired speech and recognize the commands being spoken. The
binaural recorded mixtures are processed by an on-line Semi-
Blind Source Extraction algorithm. The algorithm is based on
a multi-stage architecture combining the advantages of con-
strained Independent Component Analysis and Wiener-based
processing, allowing the estimation of the target signal with lim-
ited distortion. The recovered target signal is then fed to the rec-
ognizer which uses noise robust features based on Gammatone
Frequency Cepstral Coefficients. Moreover, model adaptation
to actual processing is applied as a further stage to reduce the
acoustic mismatch. Performance comparison between differ-
ent model/algorithmic settings is reported for both development
and test data sets.
Index Terms: blind source separation, speech enhancement,
robust speech recognition

1. Introduction
Although speech processing technologies have being investi-
gated actively since natural interaction is an appealing com-
munication modality, speech acquisition, processing and recog-
nition in a non-ideal acoustic environments are complex tasks
due to presence of noise, reverberation and interfering speak-
ers [1, 2] . CHiME is a speech corpus designed for investigat-
ing robust speech processing and recognition and for comparing
achievements obtained in both speech enhancement and recog-
nition communities [3]. The recorded data includes background
recordings from a head simulator positioned in a domestic set-
ting as well as binaural impulse responses collected in the same
environment. By means of these genuine responses, utterances
from the Grid corpus [4] have been added to this setting and
mixed with the background noise to produce controlled and nat-
ural audio data. The task is to separate the speech and recog-
nize the commands being spoken using systems that have been
trained on noise-free commands and room noise recordings.

In general to improve automatic speech recognition (ASR)
robustness, processing can be performed at signal, feature or
model level [5, 2]. Speech enhancement techniques aim at im-
proving the quality of speech signal captured through single mi-
crophone or microphone array. Robust acoustic features attempt
to represent parameters less sensitive to noise or by enhancing
the extracted features. Model adaptation approaches modify the
acoustic model parameters to fit better the actual speech fea-
tures. Another direction to tackle the problem of ASR in noisy
environment is using techniques of speech enhancement to pre-
process the noisy mixtures. Recent achievements in the field
of the Blind Source Separation (BSS) context [6] have shown

that binaural mixtures can be successfully processed by BSS
methods in order to remove diffuse background noise from a
given source of interest [7]. The array processing can then en-
hance the target speech in order to improve the performance of
an ASR system.

In this work, a complete system designed to process the
CHiME data is presented. A Semi-Blind Source Extraction
(SBSE) system, based on the combination of Blind and Semi-
Blind source separation [8][9] estimates the noise and target
spectra which is later used to control the coefficients of a Wiener
filter. This SBSE architecture allows a high suppression of the
noise while maintaining the quality of the target source signal
at an acceptable level. Results are provided in term of Keyword
recognition Accuracy and various approaches are presented and
discussed.

The paper is organized as follows: Section 2 presents the
binaural signal processing module, detailing on the theoretical
background and the adopted processing architecture. Section 3
introduces the recognition system, including the acoustic front
end and training/adaptation procedures and reporting the partial
recognition results. In Section 4 we summarize the experimen-
tal results and discuss the investigated techniques and, finally,
Section 5 concludes the paper.

2. Semi-Blind Source Extraction
In this section a general formulation of the multichannel Blind
Source Extraction problem is discussed. A specialization for the
case of binaural recordings and the related system architecture
is later described.

The problem is formulated considering the signals in the
discrete time-frequency STFT domain. Indicate with k and l the
frequency bin and STFT frame indices, respectively. Consider
the case where M microphones observe at each frequency bin
and frame, the image of the signals related to N(k, l) sources.
Note that the dependence of N with k and l indicates that the
number of sources having non negligible energy may vary over
time and frequency. In matrix notation one can write

x(k, l) = H(k, l)s(k, l) (1)

where x(k, l) is a column vector of the observed mix-
tures (x(k, l) = [x1(k, l), · · · , xM (k, l)]T ), s(k, l) is
the column vector of the source signals (s(k, l) =
[s1(k, l), · · · , sN(k,l)(k, l)]

T ) and H(k, l) is a M × N(k, l)
mixing matrix modeling the frequency responses between the
microphones and the N(k, l) sources.

In the case N(k, l) = M , the problem is determined and
one can retrieve separated signal components y(k, l) by means
of a set of demixing matrices W(k, l) as

y(k, l) = W(k, l)x(k, l). (2)

jon
CHiME 2011 Workshop on Machine Listening in Multisource Environments                             September 1, 2011

jon


jon


jon




19

The time-varying demixing matrix W(k, l) can be determined,
up to scaling and permutation ambiguities, by applying a
complex-valued ICA. Note that, ICA requires a sufficient num-
ber of temporal observations for the mixtures x(k, l). However
if the mixing conditions are quasi-stationary, i.e. do not change
for a sufficient amount of time frames, an on-line ICA algorithm
is sufficient to estimate the demixing matrices W(k, l), which
can be modeled as

W(k, l) = Λ(k, l)Π(k, l)H
−1

(k, l), (3)

where Λ(k, l) is an arbitrary diagonal scaling matrix, Π(k, l) is
a permutation matrix and H

−1
(k, l) is an estimate of the inverse

of the true time-varying mixing matrix H(k, l). For the case
N(k, l) > M the problem is underdetermined since there is
no demixing matrix able to linearly separate the mixtures in the
original signal components. When the number of the sources is
known in advance, the mixing conditions are stationary and the
reverberation time is not too high, clustering techniques based
on the time-frequency disjointness have shown to be accurate
enough for estimating STFT masks, which are used to isolate
the spectral components of each source signal [10][11]. How-
ever, in realistic scenarios, the number of active sources is un-
predictable and not constant over time. Moreover, clustering
procedures are further complicated by the mixing conditions
which are time-varying and can even change abruptly over time.

In general for the well-known determined case, i.e. H(k, l)
is a square matrix, the solution to the separation problem is
given by

y(k, l) = W(k, l)x(k, l), (4)
W(k, l + 1) = W(k, l) + η[∆W(k, l)] (5)

where ∆W(k, l) is the gradient which takes different form ac-
cording to the cost function that is to be minimized. Consid-
ering the Natural Gradient adaptation based on the Kullback-
Leibler divergence ∆W(k, l) is determined as

∆W(k, l) = {I− Φ[y(k, l)]y(k, l)H}W(k, l), (6)

where Φ(·) is a nonlinear function, [ · ]H is the Hermitian (con-
jugate) transpose operator and I is the M ×M identity matrix.

Although for the case N(k, l) > M it is not possible to
linearly separate all the signal sources, one may be interested
in recovering only a single target source while filtering out the
noise generated by the interfering sources. In fact it is still pos-
sible to estimate a demixing filter which would reduce the mu-
tual dependence of the output components, and then potentially
reducing the noise in the target signal. In general, since there are
multiple sources the adaptation might converge to many equiv-
alent solutions, i.e., the cost function that is to be minimized
might have different equivalent minima. In other terms, without
any constrain it is not guaranteed that the output signals would
represent always the same source. Geometrically constrained
adaptation were adopted for BSS, in order to prevent the per-
mutation problem of frequency-domain implementation and im-
prove the convergence stability of the overall adaptation [6].
Analogously, we define here a constrained ICA which is on the
bases of the Semi-Blind Source Separation framework (SBSS),
successfully applied to the Multichannel Acoustic Echo Cancel-
lation (MCAEC) problem [9]. A demixing matrix constrain is
imposed in order to force one of the outputs to give an estima-
tion of a given target source, while the others give an estimation
of the remaining interfering sources.

2.1. Constrained ICA adaptation
For the sake of simplicity we assume that the target source is
always active and has stationary mixing parameters, i.e., it does
not change location and modifications of the impulse responses
(between the target source and the microphones) due to move-
ments of other sources, are neglected. In order to guarantee that
the first system output always corresponds to an estimation of
the target source, the adaptation in (5) should be modified im-
posing the constraint

W−1(k, l) = [h1(k)| · · · ] (7)

where h1(k) indicates the column vector of the mixing param-
eters related to the target source, which is assumed to be known
or approximatively estimated in advance. The constrain in (7)
can be imposed in (4-6) as follows. First of all equation in (1)
can be approximated as

x(k, l) = H̃(k, l)s(k, l) (8)

where H̃(k, l) = [h1(k)|h2(k) · · ·hM (k)] indicates the re-
duced mixing system of the target source and of the M − 1
remaining most dominant sources. The matrix H̃(k, l) can be
factorized as

H̃(k, l) = [h1(k)|I2···M ]× [c|F(k, l)] (9)

where I2···M indicates the last M − 1 columns of the M ×M
identity matrix, c is the M × 1 column vector [c, 0, · · · , 0]T
with c an arbitrary constant and F(k) is an arbitrary M×M−1
matrix resulting from the factorization. By inversion of (9) we
obtain

W̃(k, l) = Wconstr(k, l)Wprior(k) (10)

where Wconstr =[c̃|F̃(k, l)] and Wprior = [h1(k)|I2···M ]−1.
Here F̃(k, l) is an arbitrary M×M−1 matrix resulting from the
inversion and c̃ = [1/c, 0, · · · , 0]T . It follows that the first sys-
tem output gives an estimation of the target source if the demix-
ing matrix has the structure in (10). Substituting (10) in (4) we
obtain

y(k, l) = Wconstr(k, l)Wprior(k)x(k, l) (11)
= Wconstr(k, l)x̃(k, l) (12)

where x̃(k, l) indicates the pre-processed mixtures according
to the prior knowledge on the target mixing parameters. There-
fore, a constrained adaptation is obtained by modifying (4-5)
as

x̃(k, l) = Wprior(k)x(k, l), (13)
y(k, l) = W(k, l)x̃(k, l), (14)

∆Wconstr(k, l) = [µ∆W1(k, l)|∆W2···M (k, l)] (15)
W(k, l + 1) = W(k, l) + η[∆Wconstr(k, l)] (16)

where µ is a scalar with values in the range between 0 and 1,
∆W1(k, l) is the M × 1 matrix consisting of the first column
of ∆W(k, l) and ∆W2···M (k, l) is the sub-matrix consisting
in the last M−1 columns of ∆W(k, l). The scalar µ defines the
importance of the constraint imposed by Wprior(k). If µ = 1
no constraint is imposed and the adaptation is equivalent to (4-
6). On the other hand, if µ = 0 the adaptation constrains the
mixing parameters of the target to h1(k), while it continuously
adapts the parameters related to the interfering sources. Note
that when µ = 0 the constrained adaptation in (13-16) has the
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same structure of the SBSS applied to the MCAEC problem [9].
In [9] a constrain in the matrix W was motivated by the fact that
target signals are not present in the reference signals (used to
estimate the echos) and consequently the full demixing system
is to be constrained in order to have opportune zero entries in
the corresponding mixing matrix. Similarly, in our case if the
target mixing parameters are ideally known, the pre-processing
is equivalent to null-steering in the direction of the target source,
which means that the mixtures corresponding to the last M − 1
elements of x̃(k, l) do not contain any contribute of the target
source and can be considered as references of the remaining
noise signals.

If 0 < µ < 1 the optimization is less constrained by the
prior imposed by Wprior(k), that is, it is implicitly assumed
a certain degree of uncertainty in the initial guess for h1(k).
For the sake of simplicity, in this work it is assumed that an
”exact” knowledge of h1(k) is available beforehand and µ is
imposed to 0. In this case the signal of the target source is not
affected by the permutation problem of the frequency-domain
BSS since the order of the output is intrinsically forced by the
constrain imposed in the mixing parameters. On the other hand,
as discussed in the next section, an exact solution for the scaling
ambiguity does not exist even when the mixing parameters are
ideally known.

2.2. Scaling ambiguity

As shown in equation (3), neglecting the permutation ambiguity
(which is assumed to be solved in the semi-blind case), the es-
timated demixing matrix W(k) is an estimation of the inverse
mixing matrix up to a scaling ambiguity. A popular method
used to reduce this ambiguity is the Minimal Distortion Princi-
ple (MDP) [12]. According to MDP, for estimating the multi-
channel image of the m-th source, the demixing matrix is nor-
malized as

Wm(k, l) = [OM×m−1|[wm]−1(k, l)|OM×M−m]W(k, l)
(17)

where [wm]−1(k, l) indicates the m-th column of W−1(k, l).
It may be shown that, for the determined case, the MDP leads
to the estimation of the exact image of the source signals at
each microphone. Assuming the permutation to be solved (i.e.,
Π(k, l) = I), substituting (3) in (17) and (4) we obtain

ym(k, l) = [OM×m−1|hm(k, l)|OM×M−m]Λ(k, l)−1Λ(k, l)s(k, l)

= hm(k, l)sm(k, l) = sm(k, l) (18)

where sm(k, l) and sm(k, l) are the m-th source signal and
its multichannel image at the microphones, respectively, and
ym(k, l) indicates the normalized output signals when the scal-
ing normalization is referred to the mixing parameters of the
m-th column of W−1(k, l). If N(k, l) > M the source signal
images cannot be exactly recovered and ym(k, l) is not equiv-
alent to sm(k, l). For this case, indicating with sL(k, l) and
sR(k, l) the vectors of the first M and the last N(k, l) − M
source signals, the mixing system in (1) can be factorized as

x(k, l) = HL(k, l)sL(k, l) +HR(k, l)sR(k, l) (19)

where HL(k, l) and HR(k, l) are the M × M and M ×
[N(k, l) − M ] matrix partitions, respectively. We assume for
simplicity that the estimated demixing matrix W(k, l) is a
scaled version of the inverse of HL(k, l),

W(k, l) = Λ(k, l)H−1
L (k, l) (20)

which means that the first M signal components belong to the
most dominant sources. Note that if the constrain in (7) is im-
posed, the first column of HL(k, l) corresponds to the mixing
parameters of the target source while the others columns would
correspond to the remaining most dominant interfering sources.
Applying the MDP normalization to W(k, l) as in (17) the im-
age at the microphones of the m-th source signal is obtained as

ym(k, l) = sm(k, l)+

+ [OM×m−1|hm(k, l)|OM×M−m]×
×H−1

L (k, l)HR(k, l)sR(k, l)

= sm(k, l) + dm(k, l)e(k, l), (21)

where dm(k, l) = [OM×m−1|hm(k, l)|OM×M−m] and
e(k, l) = H−1

L (k, l)HR(k, l)sR(k, l). As expected, further
the desired target source image, the output contains a term re-
lated to the residual N(k, l)−M source signals, which are not
suppressed by the linear demixing. However, due to the STFT
disjointness of acoustic signals it may be assumed that only M
sources are not negligible in each k and l. Under this assump-
tion sR(k, l) may be neglected. However, note that the noise
in the outputs due to the residual unsuppressed sources also de-
pends on HL(k, l). Therefore, even when sR(k, l) is small the
noise is not negligible if HL(k, l) approaches the singularity
and the output may result distorted. To reduce this drawback a
straightforward normalization is to limit the magnitude of the
outputs in order to force that the overall filtering is limited by
unity gain. This is imposed as

ym
m̃(k, l) = min(|ym

m̃(k, l)|, |xm̃(k, l)|) ym
m̃(k, l)

|ym
m̃(k, l)| , (22)

Here ym
m̃(k, l) indicates the image of the m-th source

signal at the m̃-th microphone (i.e. ym(k, l) =
[ym

1 (k, l), · · · , ym
M (k, l)]T ).

2.3. Channel-wise Wiener filtering postprocessing

The proposed constrained ICA adaptation is able to enhance a
given source of interest, as long as we have a partial knowl-
edge on the target source mixing parameters. Since in general
N(k, l) > M the time-varying linear demixing is only partially
able to suppress the noise, specifically the signals of the most
M − 1 dominant sources. In order to better extract the image at
the microphones of the target source we apply to the input signal
x(k, l) a Wiener filter, which gains are determined according to
the target and noise source spectral power. Here we limit to the
case of M = 2 but the reasoning can be easily extended to the
general case M ≥ 2.

Indicating with P t
m̃(k, l) and P r

m̃(k, l) the power density
spectra of the target and residual noise at the m̃-th microphone
and frames l, the image of the target source signal at the m̃-th
microphones is recovered through a channel-wise Wiener filter
as

s1m̃(k, l) =
P t
m̃(k, l)

P t
m̃(k, l) + P r

m̃(k, l)
xm̃(k, l). (23)

Note, the dependence of the filter gain with the STFT frame l
indicates a time-varying filtering, which is required due to the
non-stationarity of the sources. According to (22) P r

m̃(k, l) can
be approximated with E[|y2

m̃(k, l)|2], where the expectation is
determined as the smooth average of |y2

m̃(k, l)|2 over time (i.e.,
assuming local stationarity). An approximation of P t

m̃(k, l) can
be derived from E[|s1m̃(k, l)|2], where the power spectra of the
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target source is estimated as:

|s1m̃(k, l)|2 =






|ŝ1m̃(k, l)|2, if ŝ1m̃(k, l) > 0

0, otherwise
, (24)

ŝ1m̃(k, l) = y1
m̃(k, l)− Cm̃(k, l)y2

m̃(k, l) + om̃(k, l) (25)
where Cm̃(k, l) is a normalized correlation coefficient and
om̃(k, l) is an offset, used to limit the over-substraction gen-
erated by the over-estimation of Cm̃(k, l). Equation (25) is mo-
tivated by the fact that, according to (21), both y1

m̃(k, l) and
y2
m̃(k, l) contains the same residual error, up to different scal-

ing factors. Due to the time-frequency disjointeness of acous-
tic signals in the STFT domain, y1

m̃(k, l) may be approxima-
tively assumed to be equal to 0 in the points where s2(k, l) is
dominant. Therefore the substraction in (25) has effect only in
time-frequency points where s2(k, l) is not dominant. The co-
efficient Cm̃(k, l) is determined as

Cm̃(k, l) =
E[|y1

m̃(k, l)||y2
m̃(k, l)|

E[|y1
m̃(k, l)|2] , (26)

where the expectation E[·] indicates a smooth average over l.
In order to limit the statistical bias introduced by s1(k, l) and
s2(k, l) the average is computed considering only points where
1
α <

|y1
m̃(k,l)|

|y2
m̃

(k,l)| < α, with α > 1. Finally, the offset om̃(k, l)

is determined from a smooth average of |ŝ1m̃(k, l)|, over values
ŝ1m̃(k, l) < 0.

2.4. SBSE system architecture
The global architecture of the SBSE is based on a multiple
stage processing as depicted in figure 1. The system has been
coded in C++ and works in real-time on a laptop. The sam-
pled time-domain signals are transformed in a discrete time-
frequency representation applying a Short-Time Fourier Trans-
form (STFT) with overlapped Hanning windows in order to
obtain frames with a certain degree of continuity in time. In
order to have an accurate estimation of the mixing parameters
h1(k), which is assumed to be stationary (i.e., independent on
l), the Recursively-Regularized ICA in frequency-domain [8] is
applied to a segment where the target source dominates the re-
maining noise. A constrained on-line ICA adaptation is adopted
as in 2.1, using as constrain the estimated target mixing parame-
ters and imposing µ = 0. The estimated spectra is used to com-
pute the gain of the Wiener filter for each channel in order to
get the spatial images of the target source at microphones. The
enhanced signals are then beamformed according to the target
mixing parameters as

sbeam(k, l) =

[
1;

ĥ1
1(k)

ĥ1
2(k)

]
s1(k, l) (27)

where ĥ1
1(k) and ĥ1

2(k) are the estimated impulse responses
of the target source, truncated to 64ms (in order to enhance
only the direct-path and the early reflections). Since the over-
all adaptation is on-line, the system is applied directly to the
unsegmented utterances in continuous audio. Finally, the re-
sulting mono target signals are segmented and each utterance is
fed to the ASR system. In this work the performance are eval-
uated with the ideal segmentation, since this information is as-
sumed to be known beforehand. However, since the system has
been coded for working in a real-time real-world application,
automatic segmentation (based on the estimated source direc-
tion and spectral power) is currently under development.

Note that while the RR-ICA and SBSS subsystems use a
high frequency resolution in order to better handle long impulse
responses, the Wiener filter uses a lower frequency resolution.
The RR-ICA and SBSS system are based on ICA, which re-
quires that the observed mixtures are linear combination of the
original signals. This is true in the STFT domain if the framing
window is sufficiently larger than the impulse response length.
However, due to the scaling ambiguity, the outputs ym(k, l)
contain also noise in the phase due to the residual components
dm(k, l)e(k, l). As the STFT window gets larger this noise
degrades the quality of the output, generating an ”artificial re-
verberation” effect. For this reason, the output of the SBSS is
not directly used to reconstruct the target signal but only to give
an estimation of the target and residual noise power. Further-
more, the double STFT resolution of the overall system allows
us to inherit the benefits of a high frequency resolution filtering
and of an increased sparse source representation obtained with
smaller STFT frames.

Figure 1: SBSE system architecture

3. Robust ASR
The task considers the problem of recognizing commands be-
ing spoken in a noisy living room from recordings made us-
ing a binaural manikin. The recognition system is based
on the provided HTK setup: whole-word HMMs with topol-
ogy described in [13] are trained with the reverberated Grid
training data and speaker-dependent (SD) models are de-
rived: the corpus consists of 34 speakers reading sen-
tences which are simple sequences of the form:[command]
[color][preposition][letter][digit][adverb]. As a result, the
dictionary comprises 51 words and performance is measured as
accuracy of two keywords for utterance (the letter and the digit
tokens). The provided scripts perform the baseline training, the
utterances decoding and related keyword accuracies computa-
tion.

3.1. Baseline
The baseline recognizer employs Mel Frequency Cepstral Co-
efficients (MFCC) and Cepstral Mean Normalisation.

Figure 2 reports Word Accuracy (%) for the develop-
ment/test set before and after SBSE processing.

3.1.1. Acoustic features

To further improve performance of the ASR system we have in-
troduced an alternative set of acoustic features, based on gam-
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Figure 2: Keyword recognition accuracies for development and
test sets, without and with SBSE processing for baseline setup.
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Figure 3: Comparison of recognition accuracies on test set us-
ing baseline MFCC and proposed GFCC.

matone analysis.
Gammatone filters (GF) are linear approximation of physio-

logically motivated processing performed by the cochlea, char-
acterized by bandpass filters, whose impulse response is defined
by:

g(t) = atn−1cos(2πfct+ φ)e−2πbt (28)
where n is order of the filter, b is bandwidth of the filter, a is the
amplitude, fc is the filter center frequency and φ is the phase.
The filter center frequencies and bandwidths are derived from
the filter’s Equivalent Rectangular Bandwidth (ERB) as detailed
in [14]. The filter output of the mth gammatone filter , Xm can
be expressed by

Xm(t) = x(t) ∗ hm(t) (29)

where hm(t) is the impulse response of the filter. These psycho-
acoustic inspired features prove to be robust against the residual
noise and distortion induced by the SBSE processing.

In Figure 3 we present the comparison between the standard
front-end (MFCC) and the proposed one (GFCC). For details
about implementation and performance on other tasks see [15].

3.1.2. Model Training and Adaptation

To increase accuracy, we have then worked at model level, aim-
ing at reducing the acoustic mismatch: typically it is possible to
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Figure 4: Keyword recognition accuracies on test set with dif-
ferent acoustic models: baseline, enlarged training (ET) and
model adaptation (MA).

derive a suitable set of HMMs through retraining or adaptation.
In this work two approaches have been tested: enlarged training
and model adaptation.
Enlarged Training (ET)
The standard training procedure uses the reverberated stereo
signals; in the enlarged training different versions of the utter-
ance are considered: besides the 17000 stereo files, we have
added 17000 left and right monophonic channel signals and
17000 clean signals (the original waveform taken from the Grid
corpus). The rationale behind this choice is that this redun-
dancy can provide more generalization capability to the result-
ing acoustic model.
Model Adaptation (MA)
Starting from the Speaker Independent (SI) models, the base-
line training procedure is modified applying a model adaptation
based on a combination of MLLR and MAP. The development
dataset and the test dataset are used to adapt the test and de-
velopment models, respectively. MLLR is applied in the usual
two-stage fashion: first a global adaptation is performed and
the global transformation becomes the input transformation and
a set of more specific transforms, using a regression class tree
(with 128 nodes in our experiments), is estimated. After the
MLLR step, an iteration of MAP adaption is performed. As a
result, two sets of SD models are derived using the development
and test material (i.e. all signals at different SNRs are pooled).
Figure 4 shows the recognition curves for the two investigated
approaches.

4. Summary and discussion
In the Tables 2 and 3 we report a summary of the recognition
accuracies obtained with the illustrated techniques for the devel-
opment and test sets, respectively. Different processing config-
urations are obtained combining the discussed methodologies,
as described in Table 1.

The results show that the proposed processing is able
to drastically reduce the impact of unwanted (and unknown)
sources on the desired signal; the residual noise and distortion is
effectively tackled by strategies at feature and model level. The
introduction of parameters inspired by the human auditory sys-
tem can provide additional robustness as well as some adapta-
tion stages where the acoustic model benefits of audio examples
of the SBSE chain.

The investigated methods maintain their benefits indepen-
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C1 SBSE
C2 SBSE+GF
C3 SBSE+GF+ET
C4 SBSE+GF+MA
C5 SBSE+GF+ET+MA
C6 SBSE+MA
C7 SBSE+ET
C8 GF+ET+MA

Table 1: Processing configurations.

SNR -6dB -3dB 0 dB 3dB 6dB 9dB
- 31.08 36.75 49.08 64.00 73.83 83.08

C1 61.08 68.67 76.00 80.67 85.83 88.83
C2 69.33 75.83 83.83 87.17 90.17 92.17
C3 76.08 81.67 87.33 89.92 92.17 93.67
C4 79.25 84.25 88.25 91.00 93.08 93.92
C5 80.17 83.92 89.50 90.83 93.33 94.42
C6 71.42 76.92 83.75 89.92 91.58 93.42
C7 66.33 73.50 79.17 83.83 86.50 90.83
C8 53.17 57.25 70.75 81.08 87.42 92.50

Table 2: Keyword recognition accuracies on CHiME develop-
ment set according to the application of different processing
configurations.

dently; we have observed improvements also with different
combination of the strategies. For example SBSE provides tan-
gible improvements also with MFCC and model adaptation.
This may indicate also that GFCC are less sensitive to distor-
tions introduced by the enhancement chain.

5. Conclusions
This paper presents and discuss recognition results on the PAS-
CAL CHiME Speech Separation and Recognition Challenge.
The binaural recorded mixtures are processed by a multistage
Semi-Blind Source Extraction algorithm in order to obtain an
estimation of the target signal.

The recovered target signal is processed by an automatic
speech recognition (ASR) system which uses noise robust fea-
tures based on Gammatone Frequency Cepstral Coefficients
(GFCC). Standard MAP and MLLR adaptation techniques are
then used to further mitigate the impact of the SBSE process-
ing on the resulting models. Performance comparison between
different model/algorithmic settings is reported for both devel-
opment and test data sets. As discussed in Section 4 the pro-
posed SBSE processing allows to tangibly reduce the error rate
and demonstrate a good complementary with some standard ap-
proaches for robust speech recognition.

Future work is planned on a development of solutions in
which SBSE techniques are tightly coupled with the ASR pro-
cessing, for example developing the speech enhancement opti-
mization in the acoustic features domain.

6. References
[1] W. Kellermann, “Some current challenges in multichannel acous-

tic signal processing,” Journal of the Acoustical Society of Amer-
ica, vol. 120, no. 5, pp. 3177–3178, 2006.

[2] M. Wölfel and J. McDonough, Distant Speech Recognition. John
Wiley and Sons, 2009.

SNR -6dB -3dB 0 dB 3dB 6dB 9dB
- 30.33 35.42 49.50 62.92 75.00 82.42

C1 54.75 63.08 72.67 78.17 83.42 87.08
C2 66.67 74.25 81.50 87.25 90.42 92.67
C3 72.00 78.33 85.17 90.08 92.00 93.50
C4 76.25 80.17 86.08 91.17 92.33 94.17
C5 77.08 81.42 87.25 91.17 93.00 94.58
C6 71.17 76.42 82.58 86.50 88.83 91.67
C7 60.75 67.33 76.83 80.75 85.67 89.42
C8 51.58 57.25 70.67 79.67 85.92 92.67

Table 3: Keyword recognition accuracies on CHiME test set
according to the application of different processing configura-
tions.

[3] H. Christensen, J. Barker, N. Ma, and P. Green, “The chime cor-
pus: a resource and a challenge for computational hearing in mul-
tisource environments,” in Proceedings of Interspeech, Makuhari,
Japan, 2010.

[4] T. C. M. P., J. Barker, S. P. Cunningham, and X. Shao, “An audio-
visual corpus for speech perception and automatic speech recog-
nition,” Journal of the Acoustical Society of America, vol. 120, pp.
2421–2424, 2006.

[5] J. Droppo and A. Acero, Environmental Robustness. Springer
Handbook of Speech Processing, 2008.

[6] M. S. Pedersen, J. Larsen, U. Kjems, and L. C. Parra, “A survey of
convolutive blind source separation methods,” in Springer Hand-
book of Speech, Nov. 2007.

[7] Y. Takahashi, T. Takatani, K. Osako, H. Saruwatari, and
K. Shikano, “Blind spatial subtraction array for speech enhance-
ment in noisy environment,” Audio, Speech, and Language Pro-
cessing, IEEE Transactions on, vol. 17, no. 4, pp. 650 –664, May
2009.

[8] F. Nesta, P. Svaizer, and M. Omologo, “Convolutive bss of short
mixtures by ica recursively regularized across frequencies,” Au-
dio, Speech, and Language Processing, IEEE Transactions on,
vol. 19, no. 3, pp. 624 –639, march 2011.

[9] F. Nesta, T. Wada, and B.-H. Juang, “Batch-online semi-blind
source separation applied to multi-channel acoustic echo cancel-
lation,” Audio, Speech, and Language Processing, IEEE Transac-
tions on, vol. 19, no. 3, pp. 583 –599, 2011.

[10] O. Yilmaz and S. Rickard, “Blind separation of speech mixtures
via time-frequency masking,” Signal Processing, IEEE Transac-
tions on, vol. 52, no. 7, pp. 1830–1847, July 2004.

[11] T. Melia, “Underdetermined blind source separation in echoic en-
vironments using linear arrays and sparse representations,” Ph.D.
dissertation, University College Dublin, 2007.

[12] K. Matsuoka and S. Nakashima, “Minimal distortion principle for
blind source separation,” in Proceedings of International Sympo-
sium on ICA and Blind Signal Separation, San Diego, CA, USA,
Dec. 2001.

[13] M. Cooke, J. R. Hershey, and S. J. Rennie, “Monaural speech
separation and recognition challenge,” Computer Speech and Lan-
guage, vol. 24, pp. 1–15, 2010.

[14] M. Slaney, “An efficient implementation of the patterson
holdsworth auditory filterbank,” Apple Computers, Perception
Group, Tech. Rep., 1993.

[15] H. K. Maganti and M. Matassoni, “An auditory based modulation
spectral feature for reverberant speech recognition,” in Proceed-
ings of Interspeech, Makuhari, Japan, 2010, pp. 570–573.


