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Abstract

In this paper, we introduce a system for recognizing speech
in the presence of multiple rapidly time-varying noise sources.
The main components of the proposed approach are a model-
based speech enhancement pre-processor and an adaptation
technique to optimize the integration between the pre-processor
and the recognizer. The speech enhancement pre-processor con-
sists of two complementary elements, a multi-channel speech-
noise separation method that exploits spatial and spectral infor-
mation, followed by single channel enhancement that uses the
long-term temporal characteristics of speech. To compensate
for any mismatch that may remain between the enhanced fea-
tures and the acoustic model, we employ an adaptation tech-
nique that combines conventional MLLR with the dynamic
adaptive compensation of the variance of the Gaussians of the
acoustic model. Our proposed system greatly improves the au-
dible quality of speech and substantially improves of the key-
word recognition accuracy.
Index Terms: Robust ASR, Source separation, Model-based
speech enhancement, Example-based enhancement, Model
adaptation, Dynamic variance adaptation

1. Introduction

The problem of recognizing speech in the presence of mul-
tiple highly non-stationary noise sources remains a critical
problem. Conventional approaches to noise robust speech
recognition consist mainly of acoustic model compensation or
speech/feature enhancement. Acoustic model compensation
techniques are effective in mitigating the effect of stationary
noise, but are difficult to employ in the presence of time-varying
noise originating, for example, from interfering sources (TV,
speaker...) or reverberation. On the other hand, many speech
enhancement techniques have been developed to cope with non-
stationary noise.

In this paper, we propose a system for recognizing speech in
the presence of rapidly time-varying noise such as in the PAS-
CAL ‘CHiME’ speech separation and recognition challenge [1].
To deal with these challenging noisy conditions, it is essential
to use any information that may be available about the speech
and noise. Most conventional speech enhancement or robust
ASR systems use spatial [2, 3], spectral [4, 5] or temporal in-
formation [6, 7]. There have been only a few proposals that
integrate several such information sources [8]. In this paper, we
propose a system that fully employs spatial (locational), spec-
tral and temporal information about the speech and noise, by
using two complementary enhancement blocks.

First multi-channel speech-noise separation is performed
using locational and spectral models of speech and noise [8, 9].

We adopt a method called dominance based locational and
power-spectral characteristics integration (DOLPHIN). With
DOLPHIN, rapidly changing speech and noise can be distin-
guished appropriately based mainly on their locational features,
while the spectral shapes of the speech can be estimated reli-
ably based mostly on the spectral features. With the CHiME
challenge, since the target speaker location is fixed and speech
and noise training data are available, the models can be trained
in advance to achieve optimal performance.

Then long-term temporal information about the speech is
used to further reduce non-stationary noise. This is achieved us-
ing an example-based enhancement algorithm [6, 7]. Example-
based enhancement uses a parallel corpus containing speech
sentences processed with the speech-noise separation algorithm
and the corresponding clean speech. Enhancement is performed
by searching for the longest speech segments in the corpus that
best match the separated input speech. Then we use the corre-
sponding clean speech segments to reconstruct the target speech
with Wiener filtering. Using such long-term temporal informa-
tion enables us to distinguish non-stationary noise from speech,
thereby achieving high-quality enhancement.

The proposed speech enhancement system can greatly im-
prove the quality and intelligibility of speech. With the CHiME
challenge we are mostly interested in improving ASR perfor-
mance. Therefore, we combine speech enhancement with state
of the art techniques for recognition, such as the discrimina-
tive training of the acoustic model [10] and system combination
[11]. Moreover, the interconnection of the pre-processor with
the recognizer is achieved with the dynamic variance adaptation
(DVA) technique to reduce any remaining mismatch between
the enhanced speech and the acoustic model used for recog-
nition [12]. DVA is similar to uncertainty decoding [13], in
the sense that a dynamic (i.e. time-varying) feature variance is
added to the acoustic model variance during decoding to mit-
igate the effect of unreliable features. It is based on a simple
dynamic feature variance model that provides a general formu-
lation enabling its use with many speech enhancement meth-
ods. Moreover, the model parameters are optimized for recogni-
tion using an adaptation technique. Consequently, the proposed
recognition system achieves high recognition performance even
under severe noise conditions, i.e. more than 90 % average key-
word accuracy.

2. System overview

Figure 1 is a schematic diagram of the proposed recognition
system. It consists of the following modules,

• Speech-noise separation based on DOLPHIN (see sec-
tion 3.1).
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Figure 1: Proposed recognition system.

• Example-based speech enhancement (see section 3.2).
Enhancement is applied to the observed noisy speech
(Example-based I) and the speech processed with DOL-
PHIN (Example-based II), thus generating two enhanced
speech signals.

• Dynamic acoustic model compensation based on DVA
(see section 4).

• Speech recognizer using clean and multi-condition
acoustic models (AM) trained using the differenced
maximum mutual information (dMMI) discriminative
criterion [10]. dMMI is a generalization of the mini-
mum phone error (MPE) criterion that achieves superior
or equivalent performance while being simpler to imple-
ment. Recognition is performed in parallel using speech
processed with DOLPHIN, and the two enhanced out-
puts of the example-based speech enhancement.

• System combination to combine the different recogni-
tion outputs [11]. Each speech enhancement output is
separately processed by the recognizer to output lattice
results. These lattices are then combined by taking ac-
count of the word posterior probabilities.

In the following sections, we describe the enhancement and
model compensation modules in more detail.

3. Speech enhancement

3.1. Speech-noise separation using DOLPHIN

To cope well with highly non-stationary noise such as that oc-
curring in the CHiME challenge, DOLPHIN introduces statis-
tical models of locational and spectral characteristics of both
speech and noise1. All the models are assumed to be trained
in advance using the CHiME challenge training data set, and
utilized in a unified manner for speech-noise separation.

Suppose Xj,k is a short time Fourier transform of a signal
captured at a microphone j (= 1, 2) and at a frequency k (=
1, . . . , Nk). Note that the time frame indices of all symbols are
omitted in section 3.1 for the sake of notation simplicity. Then,
the observed signal can be modeled as

Xj,k =
∑

l

S(l)
j,k, (1)

where S(l)
j,k for l = 1 and l = 2, respectively, are the speech and

noise signals captured at the j-th microphone. In this section,
l is used as the index of the two sources, namely the speech
(l = 1) and the noise (l = 2).

DOLPHIN uses two types of observed features: one is level
normalized 2-ch observed signals, denoted as dk, and the other

1See [9] for more details about DOLPHIN.
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Figure 2: Graphical model of DOLPHIN.

is the log power spectra of 1-ch signals obtained by applying
delay-and-sum beamforming to the 2-ch observed signals to en-
hance the front signal, denoted as xk. Letting T and | · |, re-
spectively, be the non-conjugate transpose of a vector and the
Euclidean norm of a vector, the two features are defined as

dk = Xk/|Xk|, where Xk = [X1,k, X2,k]
T

xk = ln(|
∑

j

Xj,k|
2).

Because dk represents the difference between channels, includ-
ing interchannel phase and level differences, it is referred to as
a location feature.

DOLPHIN estimates the target speech s(1)k =

ln(|
∑

j S
(1)
j,k |

2) for all k values, based on the above fea-

tures. For this purpose, DOLPHIN introduces a generative
model of the observed features as illustrated in Fig. 2. The
model is composed of two sub-models shown in the left and
right of the figure, which correspond to two generative models
for dk and xk, respectively. To integrate the two sub-models,
DOLPHIN utilizes a dominant source index (DSI) Lk that
indicates whether speech or noise is more dominant at each
frequency k. By sharing the DSI between the two sub-models,
we can estimate the DSIs more reliably, and thus estimate
the parameters of the sub-models more appropriately. In the
following, we briefly describe the two sub-models and the
parameter estimation method for the integrated generative
model.

3.1.1. Sub-model for spectral feature

First, DOLPHIN models the log power spectra of speech

and noise, denoted by s(l)k , by using spectral Gaussian mix-
ture models (GMM). With a spectral GMM, the distribu-

tion of s(l)k for each source l is modeled as p(s(l)k ;ψ(l)
k ) =

∑

q u
(l)
q β(l)

k (s(l)k , q), where β(l)
k (s, q) = p(s|q;ψ(l)

k ) is a Gaus-

sian component indexed by q with a model parameter set ψ(l)
k ,

and u(l)
q is its mixture weight. ψ(l)

k is assumed to be fixed in
advance by prior training using the training data set.

To model the relationship between the source signal s(l)k

and the observed signal xk, we adopt the log-max model [14]
because it allows us to achieve efficient optimization based on
the EM algorithm as discussed in [8]. The relationship is de-

fined as xk = maxl s
(l)
k . Then, given the spectral Gaussian

index pair, q = [q(1), q(2)], the joint probability density func-
tion (pdf) of xk and Lk is derived as

p(xk, Lk = l|q) = β(l)
k (xk, q

(l))

∫ xk

−∞

β(l′)
k (s, q(l

′))ds,

where l′ indicates the non-dominant source index.

3.1.2. Sub-model for locational feature

Let D
(l)
k = S

(l)
k /|S(l)

k | be a location feature for a source l at

a frequency k, where S
(l)
k = [S(l)

1,k, S
(l)
2,k]

T . According to the



14

sparseness assumption [2], we assume that the observed loca-

tion feature dk is equal to D
(l)
k of the dominant source at each

frequency. Then, the posterior pdf of dk given Lk can be rewrit-
ten as

p(dk|Lk = l) = p(D(l)
k = dk;φ

(l)
k ), (2)

where p(D(l)
k ;φ(l)

k ) is the pdf of D
(l)
k , and φ(l)

k is its model

parameter. To model dk, we need to define p(D(l)
k ;φ(l)

k ).
For a point source, a model of the location feature, referred

to as a location vector model (LM), is proposed in [3], and

used for source separation. However, the pdf of D
(l)
k in the

assumed scenario is more complex than that for source sep-

aration, because the probabilistic uncertainty of D
(l)
k is de-

rived not only from the reverberation effect but also from the
change of the noise source locations. To model the pdf of such
complex location features, we use a location vector mixture

model (LMM). The LMM for D
(l)
k of each source l at each

frequency k is defined as p(D(l)
k ;φ(l)

k ) =
∑

r w
(l)
r,kγ

(l)
r,k(D

(l)
k )

where γ(l)
r,k(D) = p(D|r(l)k ;φ(l)

k ) is an LM indexed by r(l)k at

a frequency k, and w(l)
r,k is its mixture weight [3]. For compu-

tationally efficient optimization based on the EM algorithm, we

further assume that D
(l)
k and D

(l)
k′ are statistically independent

when k != k′.

This paper assumes that φ(l)
k is trained on the training data

set in advance, and also adapted to each observed noisy utter-
ance. The prior training and the adaptation were accomplished
based on the learning algorithm for LMMs given in [3] and on
its extension with the incremental EM algorithm, respectively.
The details will be discussed in a future study.

3.1.3. Model parameter estimation

DOLPHIN considers the DSIs, Lk, to be hidden variables and
estimates the spectral Gaussian index pair q at each time frame
by maximizing the likelihood function defined as,

L(q) =
∑

{Lk}

p({dk}, {xk}, {Lk},q)

=
∑

{Lk}

(
∏

k

(p(dk|Lk)p(xk, Lk|q))
∏

l

u(l)

q(l)

)

,

where {·} represents a set of variables at all frequencies. Then,
as in [8], the combinations of model parameters over different
sources can be estimated by the EM algorithm in a computa-
tionally efficient manner. Finally, the speech-noise separation
can be achieved based on a minimum mean square error esti-
mation, to output an estimate of the target clean speech. The
overall processing flow can be found in [9], so we omit it in this
paper because of the limited space.

In the experiments, we used a relatively long window for
the feature extraction, that is a 100 ms Hann window with a
25 ms shift, to capture features for reverberant signals appro-
priately. For both speech and noise, we fixed the number of
mixture components at 256 and 4 in the spectral and locational
models, respectively. For speech, speaker dependent spectral
GMMs were prepared, while a speaker independent LMM was
prepared for the locational model. As regards noise, a pair of
spectral and locational models were trained on all the noise data
in the training data set.

3.2. Example-based enhancement

Even if DOLPHIN is powerful in terms of performing speech-
noise separation it may not completely suppress non-stationary

noise. Recently, an example-based approach to speech en-
hancement has been developed to handle highly non-stationary
noise by exploiting the long-term temporal characteristics of
speech [6, 7]. Here we extend the method for use as a post-
processing technique for DOLPHIN. The method uses a paral-
lel speech corpus created using stereo data composed of speech
processed with DOLPHIN and the corresponding clean speech.
The longest possible segments that match the input speech are
extracted from the corpus to estimate the target speech. The use
of such long segments provides long-term temporal dynamic
information that enables us to differentiate speech from non-
stationary noise. In the context of the CHiME challenge, the
test utterances consist of commands with fixed grammar that
can be well represented by a speech corpus. Therefore, for the
CHiME recognition task, example-based enhancement seems
particularly suited to suppressing the remaining non-stationary
noise of DOLPHIN.

The method can be summarized as follows. A GMM is
used to represent speech processed with DOLPHIN. The GMM
is trained using noisy training data processed with DOLPHIN
as,

G =
M∑

m=1

w(m)N(y;µm,Σm)
︸ ︷︷ ︸

g(y|m)

, (3)

where y is an MFCC feature vector of the output of DOLPHIN,
g(y|m) is the m-th Gaussian component with the mean µm and
the covariance Σm, and w(m) is the corresponding weight. M
is the number of mixture components. Then, a state sequence is
associated to the training data as follows,

M = {G,mi i = 1, 2, . . . , I}, (4)

where mi is the index of a Gaussian component g(y|mi) in G
that produces the maximum likelihood for the i-th frame fea-
ture, ytr

i , of the training data set, and I is the total number
of frames of the training data. Hereafter, we call M a cor-
pus model. The clean speech used in the corpus is stored as
amplitude spectra as follows,

A = {Ai : i = 1, 2, . . . , I}, (5)

where Ai is the amplitude spectrum of the clean speech associ-
ated with the i-th frame feature, ytr

i , of the training data set.
Enhancement is performed by first searching for the longest

sequence of the corpus, Mt
u:u+τmax

, that matches a sequence of
the input processed speech yt:t+τ as,

Mt
u:u+τmax

= argmax
τ,Mu:u+τ

p(Mu:u+τ |yt:t+τ ), (6)

≈ argmax
τ,Mu:u+τ

p(yt:t+τ |Mu:u+τ )
p(yt:t+τ )

(7)

where Mu:u+τ = {G,mi : i = u, u + 1, . . . , u + τ} repre-
sents the sequence of Gaussian components modeling consecu-
tive frames from u to u+ τ in the training data set, and yt:t+τ

represents a segment taken from time frame t to t+τ of the pro-
cessed speech y, i.e. yt:t+τ = {yt, . . . ,yt+τ}. We assumed
that the prior probability of the corpus segment p(Mu:u+τ )
is constant for all segments. The likelihood of the processed
speech given the segment Mu:u+τ is given by

p(yt:t+τ |Mu:u+τ ) =
τ∏

v=0

g(yt+v|mu+v). (8)

The longest segments are calculated for each time frame of
the input processed speech. The estimate of the target speech at
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time frame t, Ŝt, is obtained by averaging the amplitude spectra
of all the segments that include the time frame t as follows,

Ŝt =

∑

v Au+t−vp(M
v
u:u+τmax

|yv:v+τmax)
∑

v p(M
v
u:u+τmax

|yv:v+τmax)
(9)

where Au+t−v is the amplitude spectrum associated with
Mv

u:u+τmax
that corresponds to time frame t.

Finally, enhanced speech is obtained by Wiener filter-
ing, using the estimated target speech given in eq. (9) as in
[6]. Wiener filtering is applied to the noisy speech directly
(Example-based I) or to the speech processed by DOLPHIN
(Example-based II).

The above discussion assumes a single set of training data.
One of the problems with the example-based enhancement
method is that the searching process becomes computationally
expensive when the corpus model becomes large. Indeed, we
need to search for the best sequence among all the utterances
used to create the corpus model. A single corpus model cov-
ering all speaker and noise conditions would be very large and
so greatly increase the complexity of the search process. The
CHiME recognition challenge allows for a speaker dependent
recognition system. Therefore, we created a separate corpus
model for each speaker. Moreover, to reduce the search cost
even more, we utilize a separate corpus model for each SNR
level. An input utterance is enhanced using the corpus model
that best represents the utterance, i.e. the corpus model that pro-
vides the maximum likelihood of the utterance given the GMM
model G as shown in eq. (3).

The parameters used in the experiments were as follows.
The feature vector for the GMM G consisted of 60th order
MFCCs with a log energy term. The number of mixture com-
ponents M was 4096. The frame length was 20 ms, and frame
shift is 10 ms. The total number of frames in the training data, I ,
ranges from 512127 to 755650 depending on the target speaker.

4. Interconnection of speech enhancement
and recognizer using dynamic variance

adaptation

Speech processed with an enhancement algorithm usually con-
tains some artifacts that are detrimental to ASR. Such artifacts
are time-varying (i.e. dynamic), and thus cannot be fully com-
pensated for with conventional model compensation approaches
such as MLLR [15]. Recently, there have been several propos-
als for increasing robustness by replacing the point estimates of
the enhanced features by a distribution with a dynamic feature
variance. Assuming that the acoustic model is represented by
HMMs with a state density modeled by GMMs, the probabil-
ity of the enhanced MFCC feature vector, ŝt, given an acoustic
model HMM state n, can then be expressed as [12],

p(ŝt|n) =
Ma∑

m=1

ωn,mN(ŝt;µn,m,Σn,m +Σbt), (10)

where m is the Gaussian mixture component index, Ma is the
number of Gaussian mixtures, ωn,m is the mixture weight, and
µn,m and Σn,m are the mean vector and covariance matrix,
respectively. Σbt is the dynamic feature variance that can be
interpreted as a measure of feature uncertainty. We assume that
it is diagonal with diagonal elements σ2

bt,i, where i is the fea-
ture dimension index. Without the additional Σbt , eq. (10) is
equivalent to conventional ASR. The use of the dynamic feature
variance makes it possible to mitigate the effect of unreliable
features on the recognition results, since for these features the

corresponding σ2
bt,i values are large, which reduces the likeli-

hood of all HMM state n. Note that eq.(10) is similar to uncer-
tainty decoding as described in [13], but the estimation of the
dynamic feature variance differs.

We have recently proposed the following model for the dy-
namic feature variance [12],

σ̂2
bt,i = α2

i (ut,i − ŝt,i)
2

︸ ︷︷ ︸

b̂2
t,i

, (11)

where σ̂2
bt,i is the estimated dynamic feature variance, αi is the

pre-processor uncertainty weight, ut,i and ŝt,i are the observed
and enhanced speech features, respectively, for time frame t
and feature dimension index i. b̂2t,i provides a time-varying
feature variance root. Features are considered unreliable when
the pre-processor removes a lot of acoustic distortion. The pre-
processor uncertainty weight αi measures the reliability of the
speech enhancement pre-processor. If the speech enhancement
introduces many artifacts and the enhanced features are there-
fore unreliable, the pre-processor uncertainty weights will be
large.

In [12] we proposed estimating αi using adaptation to ob-
tain optimal values as follows,

α = argmax
α

(p({ŝt}|W,α)p(W )) , (12)

where {ŝt} is a sequence of enhanced speech feature vectors,
W is the word sequence corresponding to the feature sequence
{ŝt}, α is the set of model parameters to be optimized, i.e. α =
(α1, . . . ,αF ) and F is the dimension of the feature vector. Eq.
(12) can be solved using the EM algorithm or with a gradient
descent optimization method. The DVA algorithm is described
in detail in [12].

DVA focuses on variance compensation but it can be com-
bined with conventional mean adaptation techniques such as
MLLR [15] to further improve the interconnection between the
speech enhancement pre-processor and the recognizer. There
are several approaches that can be used to combine MLLR and
DVA. Here we performed three iterations of MLLR recursively
followed by three iterations of DVA and repeated the process 20
times.

In the experiments we used unsupervised adaptation to es-
timate α, i.e. the word sequence W was obtained from a first
recognition pass performed without adaptation.

5. Experimental results

5.1. Experimental settings

We used the speech recognizer platform SOLON [16], which
was developed at NTT Communication Science Laboratories.
We generated two types of speaker dependent acoustic models,
one using ‘clean’ speech (reverberant only) and one using multi-
condition training data.

The clean speech model consisted of conventional left-to-
right HMMs with a total of 254 states each modeled by a Gaus-
sian Mixture consisting of seven Gaussians. We added a silent
and short pause model to the original model provided by the
CHiME challenge organizers. The original models trained with
HTK were retrained with SOLON using the dMMI discrimina-
tive criterion [10].

We created multi-condition data by adding background
noise samples to the reverberant training data. The amount of
training data was 42 times the amount of clean training data
(seven noise environments obtained from the background noise
data provided by the CHiME challenge[17] by six SNR lev-
els). The multi-condition noisy data were then processed with
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the DOLPHIN enhancement algorithm. The obtained multi-
condition training data were used to train acoustic models. For
the multi-condition model, we did not use silent and short pause
models because it did not provide any significant recognition
improvement. We used 20 Gaussians per HMM state to cover
the variability of the multi-condition training data. The multi-
condition acoustic models were also trained using the dMMI
discriminative criterion [10].

We used also speaker dependent, SNR independent, unsu-
pervised adaptation to further reduce any mismatch between the
input features and the acoustic model. We used all the test data
(from all SNR levels) from a given speaker to generate labels
that were used for adaptation. The adaptation combined DVA
and MLLR with a diagonal transformation matrix to adapt the
mean parameters of the Gaussians. Hereafter we refer to this
adaptation process as Adap.

We evaluated the results in terms of keyword recognition
accuracy using the evaluation script provided by the CHiME
challenge organizers [17].

5.2. Results for development test set

Table 1 shows the keyword recognition accuracy for the de-
velopment set when using clean (systems I to VI) and multi-
condition acoustic models (systems VII to XII). Systems I,
II, VII and VIII provide baseline results obtained with noisy
speech (without any enhancement) using clean and multi-
condition training with maximum likelihood (ML) and dMMI
criteria. The clean ML baseline (system I) performs better than
the baseline provided by the organizers of the challenge because
of the use of the silent model and because of SOLON’s handling
of the sparse training data provided better speaker dependent
models2 [17]. The systems trained using dMMI (systems II and
VIII) provided improvement compared with the ML systems
(systems I and VII), especially for the multi-condition model.
Indeed, with multi-condition training, dMMI can take advan-
tage of the large amount of data. Therefore, in the following,
we report the results using only acoustic models trained with
dMMI. Note that the upper bound keyword recognition accu-
racy obtained by recognizing ‘clean’ speech (reverberant speech
with no noise) using the clean model trained with dMMI was
96.75%.

The first part of Table 1 (systems III and VI) shows the
recognition results for the recognition systems when using
DOLPHIN (system III) and DOLPHIN + example-based en-
hancement with Wiener filtering applied to the noisy speech
(DOLPHIN + EX I, i.e. system IV) with clean acoustic mod-
els. DOLPHIN (system III) already provided an average key-
word accuracy improvement of more than 13%. Combining
DOLPHIN with example-based enhancement (system IV) pro-
vided an additional improvement of more than 3%3. Using
adaptation (MLLR combined with DVA) as shown with sys-
tem V and VI, we further improved the keyword accuracy by
3% for DOLPHIN and 0.8% for DOLPHIN combined with ex-
ample based enhancement. Note that for DOLPHIN, we con-
firmed that MLLR and DVA speparately achieved comparable
performance improvements of around 2%, and combining them
achieved an additional 1% improvement.

The second part of the Table 1 (systems IX to XII) shows
enhancement results when using acoustic model trained with
multi-condition training data. The multi-condition training data

2This was corroborated by observing that we obtained a base-
line comparable to the challenge baseline using a speaker indepen-
dent model but a more than 8% absolute accuracy improvement for the
speaker dependent acoustic models trained using SOLON.

3Note that the example-based algorithm uses multi-condition data
and therefore strictly speaking the whole system does not rely only on
clean training data.

were obtained by processing the multi-condition noisy training
data with the DOLPHIN algorithm. Using DOLPHIN with the
multi-condition acoustic model, we obtained an average accu-
racy improvement of 4% compared with the multi-condition
noisy baseline and 5% when using adaptation. We also in-
vestigated the use of multi-condition model with DOLPHIN +
example-based enhancement (systems XIII and XIV). Here, we
used the same acoustic model as for system VII, i.e. trained with
training data processed with DOLPHIN and therefore we use
example-based with Wiener filtering applied to the speech pro-
cessed by DOLPHIN (DOLPHIN + Ex II). The multi-condition
model does not match well with the speech processed with
DOLPHIN + Example-based enhancement, therefore we ob-
serve a significant performance degradation if no adaptation is
performed, but the performance can be recovered to some ex-
tent using adaptation (system XII). Note that we expect that
performance would improve if we used a multi-condition model
trained on the DOLPHIN+Example-based enhancement output,
but due to the considerable complexity of example-based en-
hancement, we omitted this experiment.

In table 1 we highlight the best performance among sys-
tems I to XII using bold italics. We observe that systems XI
achieved the best performance at almost all SNR levels. Even
though the other systems perform worse than system XI, they
may cause different types of errors and thus can be used as a
different source of information to improve performance with
system combination method [11]. The last part of table 1 shows
results obtained with the system combination technique using
the three different systems that provided the best performance,
i.e. systems VI, XI and XII. For almost all SNR levels, the
best performance (shown in bold in table 1) was obtained with
system combination and an average absolute keyword improve-
ment of up to 0.7% could be achieved.

Our approach does not only achieve a significant improve-
ment in terms of recognition performance, but also provides a
substantial noise reduction and increases the audible quality.
We evaluated the improvement brought about by speech en-
hancement in terms of segmental SNR averaged over the six
SNR conditions evaluated as in [9]. The average segmental
SNR of the noisy speech was −1.6 dB. DOLPHIN improved the
segmental SNR up to 5.6 dB and DOLPHIN + example-based
enhancement improved the segmental SNR up to 5.8 dB. En-
hancement was particularly effective at a low SNR. With -6 dB
noise, the segmental SNR of the noisy speech was -5.6 dB, and
it was improved to 3.8 and 4.3 dB with DOLPHIN and DOL-
PHIN + example-based enhancement, respectively. We provide
also some sound samples at [18] that attest to the good speech
enhancement performance.

5.3. Results for the evaluation test set

Table 2 shows the recognition results for the evaluation test
set. For conciseness, we only provide the most relevant results.
Note that even though all parameters setting was performed us-
ing the development set, we obtained a slightly better perfor-
mance with the evaluation test set. These results confirm the
robustness of the proposed recognition system.

6. Conclusions

In this paper we presented a system for speech recognition in
environments with highly non-stationary noise. We showed that
the proposed system could greatly improve the audible quality
of speech and provide a great improvement in recognition per-
formance. The proposed system was developed for the CHiME
Challenge command recognition task, but it could be extended
for use under broader conditions. In this case, one issue will
be to relax the hypothesis used by the DOLPHIN speech-noise
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Table 1: Keyword recognition accuracy in percent for the development test set. The ‘clean’ baseline achieved 96.75% keyword accuracy.

System Model Speech Adap. -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Mean

I ML-clean noisy - 49.75 52.58 64.25 75.08 84.25 90.58 69.42
II dMMI-clean noisy - 50.42 53.58 63.33 75.25 84.58 90.50 69.61
III dMMI-clean DOLPHIN - 71.33 76.92 82.08 87.42 90.92 91.75 83.40
IV dMMI-clean DOLPHIN + EX I - 77.42 80.92 84.17 89.42 92.33 94.50 86.46
V dMMI-clean DOLPHIN X 77.08 81.42 86.83 89.33 92.42 93.42 86.75
VI dMMI-clean DOLPHIN + EX I X 78.58 81.83 85.50 90.58 92.83 94.33 87.28

VII ML-multi noisy - 69.75 75.08 83.25 86.33 92.00 92.75 83.19
VIII dMMI-multi noisy - 73.25 78.08 84.92 87.75 92.08 93.67 84.96
IX dMMI-multi DOLPHIN - 82.75 85.42 89.17 91.25 92.00 92.67 88.88
X dMMI-multi DOLPHIN + EX II - 75.00 77.67 80.92 87.17 89.00 89.75 83.25
XI dMMI-multi DOLPHIN X 83.83 87.33 90.25 91.50 93.83 93.75 90.08

XII dMMI-multi DOLPHIN + EX II X 82.33 86.50 88.50 91.33 93.83 93.33 89.30

System Combination (VI + XI + XII) 84.33 88.58 90.17 92.33 94.50 95.00 90.82

Table 2: Keyword recognition accuracy in percent for the evaluation test set.

System Model Speech Adap. -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Mean

II dMMI-clean noisy - 45.67 52.67 65.25 75.42 83.33 91.67 69.00
III dMMI-clean DOLPHIN - 71.58 77.92 85.08 90.25 91.58 93.92 85.06
IV dMMI-clean DOLPHIN + EX I - 79.83 82.25 89.75 91.92 92.42 94.92 88.52
V dMMI-clean DOLPHIN X 78.33 82.50 87.42 91.67 93.17 94.83 87.99
VI dMMI-clean DOLPHIN + EX I X 80.42 82.58 90.00 92.58 92.75 95.00 88.89

VIII dMMI-multi noisy - 70.58 77.75 84.92 89.42 91.50 94.00 84.70
IX dMMI-multi DOLPHIN - 84.25 86.17 90.92 92.58 93.67 93.75 90.22
X dMMI-multi DOLPHIN + EX II - 76.50 79.33 85.00 87.50 89.58 89.67 84.60
XI dMMI-multi DOLPHIN X 85.83 87.92 91.17 93.58 94.08 94.17 91.13

XII dMMI-multi DOLPHIN + EX II X 83.58 87.00 90.33 92.33 93.25 93.92 90.07

System Combination (VI + XI + XII) 85.58 88.33 92.33 93.67 94.17 95.83 91.65

separation method as regards the known location of the tar-
get source location. Another issue is to confirm whether the
example-based algorithm can provide equivalently good perfor-
mance with more complex tasks such as spontaneous speech,
when the corpus utterances may not fully represent the test ut-
terances.
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