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Abstract
While much progress has been made in designing robust au-
tomatic speech recognition (ASR) systems, the combination of
high noise levels and reverberant room acoustics still poses a
major challenge even to state-of-the-art systems. The follow-
ing paper describes how robust automatic speech recognition
in such difficult environments can be approached by combining
beamforming and missing data techniques.

The combination of these two techniques is achieved by
first estimating uncertainties of observation in the beamforming
stage, either in the time or frequency domain, and subsequently
transforming these observations with associated uncertainties
to the domain of speech recognition. This strategy allows the
use of reverberation-insensitive cepstral features, which can still
be decoded robustly with the help of uncertainty information
gained from the beamforming front end.

In this paper, we investigate a number of different prepro-
cessing options with the somewhat surprising result that a sim-
ple fixed delay-and-sum beamformer and a null-steering beam-
former, when combined with uncertainty decoding techniques,
resulted in the most robust design among a much wider set of
investigated techniques.
Index Terms: robustness, automatic speech recognition, beam-
forming, uncertainty decoding

1. Introduction
The goal of the CHiME challenge is to measure the progress
that has been made in the last decade in distant microphone
speech recognition and to establish a benchmark for further
work in highly robust ASR [1]. For this purpose, the CHiME
corpus covers natural environments by including various simul-
taneous audio sources in reverberant mixtures. As spatial cues
are important for source separation, the corpus was recorded
with a binaural microphone setup.

Many state-of-the-art speech separation or enhancement
techniques turn out to be inefficient when used alone for the
CHiME challenge, because of their inherent assumptions. For
instance, many speech enhancement methods rely on noise es-
timates provided by noise estimation schemes. Such methods
often assume that the noise signal shows less rapid changes than
the speech, and are therefore limited in performance when the
interfering noise signal has highly dynamic characteristics [2].

On the other hand, beamforming methods can cancel out
non-stationary but directional interferers by incorporating spa-

tial knowledge. Still, beamformers such as the Generalized
Sidelobe Canceller (GSC) [3] have limitations in real life sce-
narios. For instance, the GSC is sensitive to direction-of-arrival
(DOA) mismatch and suffers from signal leakage or low perfor-
mance under environmental reverberation [4].

From the above discussion, it is plausible that standard
speech enhancement or beamforming methods alone are insuf-
ficient for the CHiME corpus. In this paper, we investigate dif-
ferent approaches to provide robust speech recognition by com-
bining standard beamforming techniques with uncertainty-of-
observation techniques.

Uncertainty-of-observation techniques have proven benefi-
cial in many contexts. They consider the speech features not as
precisely known values, but use their time varying estimation
error variances [5], or distinguish, in a binary fashion, between
reliable and unreliable features [6]. With these approaches,
noise, interfering speech and reverberation can all be treated as
contributions to speech observation uncertainty, and decoding
can then take place under consideration of these uncertainties,
e.g. by uncertainty decoding or modified imputation [7].

However, since uncertainty estimation from beamforming
is naturally given in the domain where the beamformer oper-
ates, i.e. in the time or time-frequency domain, the observation
uncertainties need to undergo a transformation in order to serve
as reliability information for the recognizer’s MFCC features.
To this end, we consider the speech features together with their
uncertainties as random variables and calculate the impact that
feature extraction has on their mean and variance. The mean
value of the random variable output by uncertainty propagation
can also be considered an MMSE estimator of the features [8],
and the covariance output is used for more robust recognition by
uncertainty decoding or modified imputation. Optionally, linear
discriminant analysis (LDA) is used to reduce the dimensional-
ity of MFCC features while maximizing class separability.

Finally, we employ Recognizer Output Voting Error Reduc-
tion (ROVER) [9] to combine the outputs of multiple speech
recognition scores into a single one. The fusion enables us to
achieve a lower error rate than any of the individual systems.

The organization of the paper is as follows. In the next sec-
tion, we present the beamforming methods that we have used.
In Section 3, the idea of uncertainty propagation as an interface
between beamformer and uncertainty-based ASR is discussed.
Section 4 discusses the model training and the experimental re-
sults on the CHiME corpus are reported in Section 5, and Sec-
tion 6 concludes the work.
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Figure 1: Block diagram of the proposed approach. An initial

step of beamforming is combined with MMSE post-filtering and

uncertainty propagation.

2. Beamforming
Microphone array processing [10] has been broadly used as a
pre-processing stage to enhance distant recorded signals that
might be used for any speech application, and in particular for
speech recognition. Many different proposals exist for micro-
phone array designs but most of them can be summarized into
two major trends: fixed and adaptive beamforming. On one
hand, fixed beamformers as the delay-and-sum (DS) [11] are
quite simple solutions but are ineffective in reducing highly di-
rective noise sources. On the other hand, adaptive beamformers,
like the Generalized Sidelobe Canceller (GSC) [3], present a
higher capability of interference cancellation but are much more
sensitive to steering errors and suffer from signal leakage and
degradation. In order to overcome some of the drawbacks of
fixed and adaptive beamforming different robust solutions are
used. Furthermore, a postprocessing Wiener filtering stage can
be applied to the output of beamformers to improve the perfor-
mance for diffuse noise fields [12]. To solve the problems of
the adaptive beamforming, Hoshuyama et al. [13] propose us-
ing an adaptive blocking matrix (ABM) where coefficients are
constrained to a determinate target error region.
In this work, the use of beamforming techniques was favored
against alternative multi-microphone approaches (i.e. blind
speech separation) due to the possibility to exploit knowledge
of the fixed position of the speaker (broadside of the micro-
phone pair). For this evaluation campaign we have developed
and assessed several different beamforming configurations. The
best performing beamformer candidates are described below.
2.1. Delay-and-sum beamformer (DS)

The delay-and-sum beamformer [11] aligns the different mi-
crophone signals to compensate for the different path lengths
from the source to the various microphones. The combination
of these aligned signals is

y(n) = ↵LmL(n) + ↵RmR(n� ⌧d) (1)

where mL and mR are the left and right microphone channels,
↵L and ↵R are the microphone gains and ⌧d is the delay that
compensates the different propagation delays. In this particular
case ⌧d = 0 and ↵L = ↵R = 1. The simplicity of the delay-
and-sum beamformer is its most important strength, resulting

in a convenient and practical choice for many microphone array
applications. Thus, delay-and-sum beamforming is widely used
despite its frequency dependent response and the weakness in
reducing highly directive noise sources.

2.2. Robust Generalized Sidelobe Canceller (GSC)

A Generalized Sidelobe Canceller (GSC) beamformer basically
consists of a fixed yf (n) and an adaptive ya(n) beamforming
path. The adaptive path estimates the non-desired components
m

o

(n) through a spatial blocking matrix B that blocks target
signal direction and allows all the other directions. These non-
desired components are used for reducing the correlated noise
components of the output of the fixed beamformer through a
multiple input canceller stage with adaptive filters w

a

:

y(n) = yf (n)� ya(n) = ↵T
m(n)�w

a

T
m

o

(n) (2)
m

o

(n) = Bm(n) (3)

where m(n) = [mL(n),mR(n)]
T is the vector formed by the

two-channel inputs and ↵ = [↵L,↵R]
T are the weights of fixed

beamformer.
In this work, we have used a robust modification of the GSC

structure like the one described in [13] named CCAF-NCAF
(coefficient-constrained adaptive filters and norm-constrained
adaptive filters) structure. The blocking matrix (BM) is adap-
tively designed to allow a concrete target-looking error region
and to minimize the leakage of the desired signal to the beam-
former noise estimate, while the filters of the multiple-input
canceler are constrained to help guide their adaptation.

2.3. Wiener post-filtering for microphone arrays (WPF)

The use of an adaptive Wiener post-filter with a beamformer
is known to allow effective frequency filtering of the signal by
using spatial signal characteristics [12]. The general Wiener
gain is formulated in the frequency domain as

H(k, l) =
�X(k, l)

�X(k, l) + �N (k, l)
(4)

where k and l are the frequency and time-frame indices re-
spectively and �N (k, l) and �X(k, l) account for the power-
spectral densities of noise after the beamformer and the desired
source respectively.
When multiple inputs are available, the Wiener filter can be
computed by combining the cross-power spectral densities and
the power spectral density of the different microphones of the
array. Assuming that the received signal is an additive mixture
of the desired signal and noise, that they are uncorrelated and
that noise is uncorrelated also between microphones and have
an equal power spectral density, then the gain of the filter can
be approximated as

H(k, l) ⇡ 2max{<{E{ML(k, l)MR(k, l)
⇤}}, 0}

E{|ML(k, l)|2}+ E{|MR(k, l)|2}
(5)

where ML(k, l) and MR(k, l) correspond to the STFT of the
left and right microphone channels. The expectations are com-
puted by smoothed periodograms and a flooring of the denom-
inator at zero was used to prevent negative Wiener gains. <
denotes the real value.

It is clear that given the above assumptions the post-filter is
particularly convenient in the presence of spatially white noise,
however it is also useful in diffuse noise fields which reasonably
approximate these conditions.
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2.4. Integrated Wiener-filtering with Adaptive Beam-
former (IWAB)

In [14], a beamformer is proposed consisting of the combina-
tion a robust GSC-like beamformer with Wiener post-filtering.
The conventional delay-and-sum of the fixed beamformer path
yf (n) is replaced by the Wiener beamformer, resulting in a
filter-and-sum beamformer nested in a GSC-like robust struc-
ture with enhanced performance. In this evaluation, we have in-
tegrated the robust GSC-like beamformer and the Wiener post-
filter described above in this section, where the filter is the one
given in Eq. (5).

3. Single Channel Speech Enhancement
and Robust Feature Extraction

Microphone array processing techniques are often comple-
mented with a second step of single channel speech enhance-
ment to eliminate residual noises. The efficiency of the such
steps can be improved by integrating them with the ASR sys-
tem through uncertainty propagation techniques. This leads to
minimum mean square error (MMSE) estimates directly in the
domain of recognition features [8] and provides estimation vari-
ances as well. Such variances can be utilized to improve the
recognition furthermore by employing observation uncertainty
techniques like modified imputation [15].

As described in [8], an MMSE-MFCC estimator can be
attained by using the posterior distribution associated with a
Wiener filter. Since a Wiener filter can be interpreted as a
Bayesian estimator for Gaussian prior and likelihoods, the as-
sociated complex Gaussian posterior distribution has the form

p(Xkl|Ykl) = NC(Xkl;
ˆXkl,�kl) (6)

where ˆXkl is the estimation of the Wiener filter and �kl the
corresponding estimate variance

�kl =

˜

�X(k, l)˜�D(k, l)
˜

�X(k, l) + ˜

�D(k, l)
. (7)

Here the parameters ˜

�X(k, l) and ˜

�D(k, l) are used to de-
note the power spectral densities of speech and residual noise
used to derive the Wiener filter. Note that these can be differ-
ent from the power spectral densities obtained for the WPF in
Eq. (4) since they can be determined from other sources.

Two strategies were followed to determine the parameters
of the posterior distribution.

3.1. Wiener Filter with Beamforming Based Noise Estimate

The first strategy, displayed in Fig. 1, left, simply applies a sin-
gle channel Wiener estimator to the outputs of the DS and GSC
beamformers and computes the associated posterior. However,
rather than providing a noise variance estimate ˜

�D(k, l) by us-
ing voice activity detection or minimum statistics, this estimate
was obtained from the beamformer information.

Since the speaker is known to be positioned in front of the
microphone array, any asymmetry between the microphones
can be interpreted as either an interfering signal or the effect
of asymmetric reverberation. Therefore, in the case of the DS
beamformer, a very simple measure of the residual noise was
attained from the subtraction of the two channel inputs as

d(n) = mL(n)�mR(n), (8)

from which the power spectral density ˜

�D(k, l) was computed.
In the case of the GSC a more elaborated estimate was derived
from the blocking matrix. In both cases, the speech power spec-
tral density ˜

�X(k, l) was obtained using the well known deci-
sion directed method [16].

3.2. Approximate Wiener Post-Filtering Uncertainty

The second strategy, displayed in Fig. 1, was applied to the WPF
and IWAB. This did not use any additional enhancement step
but rather aimed at deriving a measure of uncertainty for the
estimation obtained in the beamforming step.

In principle, since both WPF and IWAB employ Wiener
filters, it should be possible to derive the associated posterior
from the gain in Eq. (4) and directly determine the parameters of
Eq. 6. Nevertheless, due to the particular form in which the gain
is computed, the WPF is more aggressive than the conventional
Wiener filter. Directly propagating the WBF posterior through
the feature extraction resulted in poor results.

The impact of the artifacts induced by the WPF is mitigated
when resynthesizing the signal back into a time domain signal
y(n). To take advantage of this fact, an equivalent gain of the
Wiener filter after resynthesis was computed by comparing the
STFT of the input to the WPF with the STFT of the output of
the beamformer y(n). The parameters of the posterior were
then derived from this gain.

3.3. Robust Feature Extraction

For our setup we employed magnitude based Mel-cepstral coef-
ficients as feature extraction with additional cepstral mean sub-
traction, delta and acceleration parameters. Linear discriminant
analysis (LDA) was also used in some of the setups. Magni-
tude based cepstra proved to be consistently better than the con-
ventional magnitude squared cepstra in all experiments. To de-
rive the corresponding MMSE-MFCC estimator, we apply the
recipes given in [17]. First the propagation of the Wiener pos-
terior through the magnitude transformation is attained as

µABS
kl = �(1.5)

p
� exp

⇣⌫
2

⌘

·
h
(1� ⌫) I0

⇣
�⌫

2

⌘
� ⌫I1

⇣
�⌫

2

⌘i
(9)

where � is the gamma function and I0, I1 are the modified
Bessel functions of order zero and one respectively. The param-
eter ⌫ = | ˆXkl|2/�kl is the signal to noise ratio of the associated
Rice distribution. The propagation through the filterbank and
logarithm can be greatly simplified by assuming the filterbank
outputs to be uncorrelated and log-normal distributed, leading
to

⌃

LOG
jjl ⇡ log

0

B@

PK
k=1 W

2
jk

⇣
| ˆXkl|2 + �kl

⌘

⇣PK
k=1 WjkµABS

kl

⌘2 + 1

1

CA (10)

with Wjk as the weights of the Mel-filterbank. The mean after
the log-filterbank can be derived as

µLOG
jl ⇡ log

 
KX

k=1

Wjkµ
ABS
kl

!
� 1

2

⌃

LOG
jjl . (11)

Once the propagation through the logarithm has been at-
tained, the pending transformations are the discrete cosine
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transform, delta and acceleration parameters and cepstral mean
subtraction. Since these are all linear they pose no additional
difficulty and thus the mean and variance of the recognition fea-
tures can be computed.

3.4. Recognition with Observation Uncertainty Techniques

Three options were used for recognition. In the simplest case,
the MMSE-MFCC estimate was directly passed to the recog-
nizer (termed “no VC” for “no variance compensation”). When
using Jasper for recognition, the available variances were also
used to modify the recognizer to account for the observation un-
certainty. For this purpose, modified imputation (MI) [15] and
uncertainty decoding (UD) [18] were used.

4. Training
In all cases HMMs were trained using standard Baum-Welch
re-estimation. For HTK the training and test scripts provided
for the CHIME challenge were used. The only modification
was lowering the mixture pruning threshold in speaker adaption.
This allowed the use of MLLR adaptation while slightly reduc-
ing the performance of the unadapted models. For MLLR, one
single global mean transformation was used for each speaker.

The differences between HTK- and Jasper-Training con-
cern four aspects that will be described in the following section.

4.1. Jasper Training

Jasper is a Java-based recognition system for token passing in
standard and coupled hidden Markov models [19]. Its core
probability computation can be carried out in CUDA [20],
which allows for fast training of full-covariance HMMs. The
implications of this ability will be described in Sections 4.1.1 to
4.1.3. Also, the model structure used for JASPER was slightly
different, which is detailed in Section 4.1.4.

4.1.1. Mixture splitting

A major shortcoming of Baum-Welch re-estimation is that its
outcome is optimal only locally. Therefore, initial points are of
high significance.

This is of interest also in selecting the directions for mix-
ture splitting. However, a mixture-split can only follow the
first eigenvector of the data covariance if the full covariance
structure of the data is known. Therefore, in training mixture
models, we opted for full-covariance matrices, and used the off-
diagonals to inform mixture splitting.

4.1.2. Discriminative iteration control

Although it is typical to carry out a fixed number of Baum-
Welch re-estimations after each mixture splitting, this may not
give the maximally discriminative model set. Therefore, Jasper
carries out re-estimations for each number of mixtures as many
times, as performance on the development set continues to im-
prove. Once a loss in accuracy is observed, a step-back takes
place, so that the optimum performance model can be used.
Since full-covariance models are trained, this is a computation-
ally expensive approach, which is enabled by the massively par-
allel processing of log-likelihoods that CUDA can provide.

4.1.3. Linear Discriminant Analysis

The full-covariance models also support a linear discriminant
analysis. We find the LDA matrix W by a generalized eigen-

vector decomposition. This leads to the transformed data

x

0
l = Wxl (12)

possessing the maximum ratio between inter- and intra-class
covariance. In this context, class for us is equivalent to one
GMM mixture component, so that we actually maximize dis-
crimination between GMM components of the transformed data
model. In all following experiments, this projection was onto
37-dimensional feature vectors x

0
l, where 37 was the optimum

dimension for the development set using mixed training.

4.1.4. Model structure

The sentence model consists of a silence model at the beginning
and the end, which is different from the standard setup. Be-
tween the silence models, a network for the sentence grammar
is defined, which can be traversed by means of token passing
and the forward-backward algorithm for recognition and train-
ing, respectively. All word models were strict left-right models
without skips, using three states per phoneme.

5. Results
After establishing the baseline without signal processing or
uncertainty-of-observation techniques in Sec. 5.1, we will show
keyword accuracies for the isolated utterances of the develop-
ment set first. These are organized in two sections: first, for
models trained on clean data in Section 5.2, and secondly, for
mixed training in Sec. 5.3. The best performing systems from
the development set were finally evaluated on the isolated utter-
ance test set, both stand-alone and in a Rover fusion of the three
best systems, results for which can be found in Sec. 5.4.

5.1. Baseline results

The baseline results without signal processing are shown in Ta-
ble 1. Whereas the first block gives official baseline results
for the standard HTK configuration, the second block shows
the Jasper baseline, obtained with clean training of speaker-
dependent models. The final two blocks show results for mixed
training, once with the HTK system that also reproduced the
baseline results exactly, and once with Jasper.

method -6dB -3dB 0dB 3dB 6dB 9dB
clean
HTK
devel 31.08 36.75 49.08 64.00 73.83 83.08
test 30.33 35.42 49.50 62.92 75.00 82.42

Jasper
devel 44.33 48.92 62.08 72.25 80.33 85.50
test 40.83 49.25 60.33 70.67 79.67 84.92

mixed
HTK
devel 63.83 70.92 78.50 85.17 89.58 92.42
test 63.00 72.67 79.50 85.25 89.75 93.58

Jasper
devel 64.44 73.17 81.75 85.00 90.58 91.92
test 64.33 73.08 81.75 85.67 89.50 91.17

Table 1: Keyword recognition accuracy, no signal processing.

5.2. Clean Training

After beamforming with various strategies, the results of Jasper
improve significantly, and best results are obtained once uncer-
tainty propagation and, optionally, missing data recognition, are
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also applied. Both can be seen in Table 2. Here, the results of
best averaging system (null-beamformer with uncertainty prop-
agation and modified imputation) are shown in bold. Greek let-
ters identify the systems that were later used in ROVER fusion.

The results for clean training of the HTK system can be
seen in the left half of Table 4. As it can be seen here, clean
training without adaptation is improved upon very notably by all
systems using MLLR. As with the Jasper results, bold numbers
indicate results of the system with best average performance for
the considered condition.

method -6dB -3dB 0dB 3dB 6dB 9dB
WPF, no uncertainty propagation

50.33 59.67 72.17 80.25 87.25 91.25
Beamforming with uncertainty propagation

DS
no VC 54.42 60.83 71.67 80.67 86.00 89.92

UD 56.00 62.00 72.42 80.58 86.83 90.25
↵ : MI 56.83 63.08 72.75 81.17 87.58 91.58
WPF
no VC 51.08 59.25 72.42 80.33 86.50 89.67

UD 53.42 61.33 73.58 81.33 87.58 90.00
� : MI 54.33 63.00 74.08 81.75 88.00 89.50

Table 2: Jasper clean training results: keyword recognition ac-
curacy with standalone beamforming (top) and with beamform-
ing and uncertainty propagation.

5.3. Mixed Training

To reduce the mismatch between models and noisy data, a
mixed trainig set was created by adding randomly selected sam-
ples from the noise-only development set to the entire clean
training set at all SNR conditions. This improved the results
notably as shown in the final block of Table 1.

As already for clean training, for mixed training beamform-
ing also improves upon the baseline. But again, the best results,
which are also marked in bold, are obtained using uncertainty
propagation and missing data recognition, cf. Table 3 for the
Jasper, and the right hand side of Table 4 for the HTK keyword
recognition accuracies.

method -6dB -3dB 0dB 3dB 6dB 9dB
WPF, no uncertainty propagation

✏ : 39d 67.25 75.25 82.58 86.67 90.75 91.25
Beamforming (DS) with uncertainty propagation

39d 74.00 79.25 84.25 88.25 90.50 92.83
LDA 71.50 77.50 86.00 89.25 92.50 93.25

UD
39d 74.08 79.33 84.42 88.67 90.67 92.50

LDA 72.83 79.42 86.33 89.58 92.25 93.17
MI

39d 75.58 79.67 84.42 88.67 90.92 92.67
� :LDA 75.00 79.92 86.58 90.08 92.92 93.17

Table 3: Jasper mixed training results with best standalone
beamforming (WPF) without uncertainty propagation (top), and
with delay-and-sum beamforming (DS) and uncertainty propa-
gation (MMSE MFCC). LDA-results were obtained with 37-
dimensional features.

5.4. Final Test Results

The systems with the best performance on the development
set were evaluated on the final test data results for which are
shown in Table 6. The corresponding best methods have been

marked in bold in Tables 2 and 3 for the Jasper, and in Ta-
ble 4 for the HTK experiments. Generally speaking, the best-
performing system was the delay-and-sum beamformer with
uncertainty propagation, which is responsible for all entries in
the table, with just the one exception of clean HTK training
without MLLR, where the WPF gave best results.

In the last row of Table 6, finally, the results of ROVER
fusion are shown. The three systems to be fused were selected
based on best ROVER performance on the development set, and
the fused system identifiers together with their development set
results are shown in the following Table 5.

Systems -6dB -3dB 0dB 3dB 6dB 9dB
clean
↵,�, � 57.75 64.92 74.08 82.67 89.42 91.58
mixed
�, ✏, ⇣ 75.50 81.08 87.50 90.58 93.58 93.17

Table 5: Rover fusion results on development set.

6. Conclusions
Results of automatic speech recognition on reverberant and
noisy data can be improved significantly by the combination
of beamforming and missing data techniques. This combina-
tion can be achieved not only for frequency-domain but also for
cepstrum domain recognition, if an appropriate transformation
of observation uncertainties is used.

Alternatively to delay-and-sum beamforming, a Wiener
beamformer has also given good results, but in the considered
dataset, the combination with uncertainty-of-observation tech-
niques was not competitive overall with a simple delay-and-sum
beamformer. This indicates the need for further work on uncer-
tainty estimation for beamformer output signals, which would
be a promising route for further improvement.

We have tested all algorithms using both clean and matched
training. It was observed that matched training leads to by far
better recognition results, not only alone, but also in conjunc-
tion with all of the tested strategies for signal enhancement and
uncertainty-based decoding, indicating both its wide applica-
bility and also the ability of all preprocessing and robust recog-
nition techniques to improve results even under well-matched
conditions.

Among all experiments, the highest speech recognition re-
sults were obtained by ROVER fusion of multiple recognizer
outputs. Among the single recognition systems, the ones show-
ing best performance were generally those using a delay-and-
sum beamformer for uncertainty estimation and propagation,
with MLLR improving results for clean data, and Jasper with a
precomputed LDA dimensionality reduction leading to the best
overall performance for mixed training data.
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Clean training Mixed training
method -6dB -3dB 0dB 3dB 6dB 9dB -6dB -3dB 0dB 3dB 6dB 9dB
NONR 31.08 36.75 49.08 64.00 73.83 83.08 63.83 70.92 78.50 85.17 89.58 92.42
unadapted
⇣: DSN 43.17 52.75 61.25 74.75 82.00 88.00 69.58 77.00 81.83 87.67 91.42 92.75
WPFU

44.83 53.33 64.00 75.83 84.92 88.92 66.58 73.42 81.83 87.33 91.33 92.83
�: GSCN 47.08 52.50 65.08 73.83 82.42 85.83 65.58 70.75 78.33 85.00 88.58 89.50
IWABU 44.75 53.58 65.58 74.83 85.58 87.58 64.75 73.08 79.08 84.33 90.83 91.67
MLLR
DSN

57.42 65.83 74.00 82.33 87.50 89.75 70.17 78.67 82.58 88.25 91.58 92.58
WPFU 54.08 64.75 73.83 80.42 88.00 90.17 68.67 74.08 83.00 88.00 91.00 93.75
GSCN 55.25 61.75 72.00 78.92 85.50 86.00 67.08 72.17 79.42 85.33 89.08 90.75
IWABU 54.00 63.00 72.42 79.75 87.00 88.25 66.67 74.67 79.92 85.50 91.50 91.42

Table 4: HTK keyword recognition accuracy without noise reduction (NONR) is shown in the first row. All other results were obtained
with HTK and uncertainty propagation (MMSE-MFCC Estimation) and are shown for clean vs. mixed training data and with vs. w/o
MLLR adaptation. A superset N indicates the use of noise estimation, a U that of uncertainty estimation.

Clean training Mixed training
method -6dB -3dB 0dB 3dB 6dB 9dB -6dB -3dB 0dB 3dB 6dB 9dB
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Table 6: Keyword recognition accuracies on test set for best methods from development set.
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