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Abstract
Complex audio scenes with a large number of sound sources
pose one of the most difficult problems for audio pattern recog-
nition. Therefore, methods for source separation are very im-
portant in this context. Many source separation methods try to
exactly recover every source in an audio scene. In this paper,
however, we propose an algorithm for the extraction of simpler
components from complex audio scenes based on an optimisa-
tion approach using a sound complexity measure derived from
the spectral flatness measure. We yield good separation for ar-
tificial mixtures of three signals with time dependent mixing
conditions.
Index Terms: source separation, spectral flatness measure

1. Introduction
Pattern recognition in real-world audio scenes is very difficult
because of the high complexity of these scenes. They are built
up from a multitude of single sources in an additive as well as
in more complex manners. Blind source separation [1] has been
suggested as a pre-processing step allowing to analyse each
source by itself. With rising complexity of the scene, achieving
blind separation becomes more and more difficult. Currently,
for complex audio scenes, it does not seem to be feasible to re-
construct all of the constituting source signals exactly. In this
work, we therefore develop an algorithm that extracts combi-
nations of the input signals that constitute less complex com-
ponents of an audio scene. These components will still be sim-
pler to analyse by pattern recognition methods than the complex
mixture.

One of the predominant methods for blind source separa-
tion is independent component analysis [2, 3]. It assumes a
fixed linear mixture of signals and recovers the sources exactly
by assuming their statistical independence. Different solutions
to this problem exist, based on either algebraic [4] or statis-
tical/information theoretic optimisation methods, and covering
either only overdetermined cases or also tackling the underde-
termined case [5], i.e., when there are fewer microphones than
sources. Other than these methods, we do not assume fixed
mixing parameters over time. Moreover, we choose a different
measure for judging candidate unmixing parameters. We design
a measure for the complexity of the unmixed signals based on
the spectral flatness measure. This measure indicates whether
the energy in the spectrum is concentrated or spread out. We
use a particle based optimisation algorithm to extract low com-
plexity components.

The rest of the paper is organised as follows. In Section 2
we derive the complexity measure for extracted components
based on the spectral flatness measure and give a top level
overview of the source separation algorithm. In Section 3, we
describe the details of the algorithm. We compute the neces-
sary derivatives for the optimisation algorithm, discuss the op-

timisation algorithm and its initialisation, as well as component
extraction. In Section 4, we give evaluation results on artificial
mixtures with time-varying mixing conditions.

2. Spectral Flatness Components
The central step in devising our source separation algorithm is
the choice of a measure describing the complexity of an audio
scene. Given such a measure, it is possible to evaluate it for sev-
eral combinations of input sounds and choose the combination
that gives the lowest complexity score.

The measure we use in our approach is the spectral flatness
measure. It measures how much the energy at a given time is
spread in the spectrum, giving a high value when the energy
is equally distributed and a low value when the energy is con-
centrated in a small number of narrow frequency bands. The
spectral flatness measure is computed from the spectrum as the
geometric mean of the Fourier coefficients divided by the arith-
metic mean. If S(ω, t) is the windowed power spectrum of a
signal s at time t and frequency ω, its spectral flatness measure
is given by

SFM [S](t) =
(
∏Ω−1

ω=0 S(ω, t))
1

Ω

1
Ω

∑Ω−1
ω=0 S(ω, t)

.

The spectral flatness measure is also known as Wiener en-
tropy.

Given a sequence of signals f := (f1, . . . , fn) from a mi-
crophone array we assume that a lower complexity source can
be derived by choosing a linear combination of the signals. In
order to apply the spectral flatness measure, we are interested in
the windowed power spectrum Uf of such a linear combination:

Uf (ω, t; a1, . . . , an) := |
n
∑

i=1

aif̂i(ω, t)|2.

Scaling of the input signals does not affect the com-
plexity measure of a component Uf . Hence, we assume
‖(a1, . . . , an)‖2 = 1.

The mixing coefficients of the source signals should be es-
timated from segments of constant mixing conditions. We as-
sume that mixing conditions are locally constant and form a
windowed spectral flatness measure by convolving short sig-
nal windows with a Hann window. If h(n) := 1

2 (1 −
cos( 2π(n−W )

2W )) denotes a discrete Hann window of length
2W + 1 centered at 0, the measure of complexity Φ for the
mixture Uf is given by:

Φ[Uf (·, ·; a1, . . . ,an)](x) :=

W
∑

t=−W

h(t)SFM[Uf (·, ·; a1, . . . , an)](x+ t).
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Figure 1: Left: The spectral flatness measure of a mixture of bird songs. Right: Windowed version of the measure which is used as an
objective function for source separation. Note that the second half of the signal is more complex than the first.

Figure 1 gives an example of the spectral flatness measure
of an audio signal and the windowed measure. In the following
we will first give an overview of how to extract lower complex-
ity components based on this complexity measure. Afterwards,
we will give a more detailed description of the algorithm, fol-
lowed by experimental results for artificial as well as natural
audio scenes.

Starting from p initial hypotheses A ∈ R
p×n for the

n unmixing coefficients at the first analysis window of the
signal, starting with time position τ0, we use an optimisa-
tion algorithm to find local minimisers (ak,1, . . . , ak,n) of
Φ[Uf (·, ·; a1, . . . , an)](τ0). Because of our assumption that
‖(a1, . . . , an)‖2 = 1, we represent each hypothesis k— given
by row k of A — by polar coordinates Hk,1, . . . , Hk,n−1.
Now, we examine the audio scene at T equally spaced time
steps and estimate p hypotheses for each of them by apply-
ing a local optimisation algorithm starting from the hypothe-
ses of the previous time step. In this way, we enable our algo-
rithm to start from good initial hypotheses whenever the unmix-
ing parameters vary slowly. Therefore, our algorithm performs
source tracking where applicable. Finally, we find hypotheses
H ∈ R

p×n−1 for each time step. These can be combined in
a matrix H̃ ∈ R

p(n−1)×T with one row for each mixing co-
efficient of each hypothesis. In order to extract meaningful
components, we apply a dynamic programming algorithm to
the matrix H̃ which extracts up to p components by selecting
one hypothesis for each time step. In each component, the algo-
rithm minimises the #2-distance between mixture hypotheses of
neighbouring time steps. Moreover, we ensure, that no single
mixing hypothesis is used in more than one extracted compo-
nent. Mixing coefficients for time positions between two time
steps are found by linear interpolation.

3. The Algorithm
In order to complete the algorithm sketched above, three parts
have to be detailed. First, we need a good initialisation of the
hypotheses for the n mixing coefficients of the first time step
regarded by the algorithm. Second, we use gradient-based opti-
misation to find good mixing coefficients and therefore need to
compute the partial derivatives of the complexity measure w.r.t.

the mixing coefficients. Finally, we need to choose components
from the hypotheses generated by the optimisation procedure.

3.1. Initial Hypotheses

We start by generating h initial hypotheses for the mixing
parameters. Each hypothesis, given by polar coordinates
Hk,1, . . . , Hk,n−1, describes a point on the sphere Sn−1.
Therefore, a good covering of the parameter space is obtained
by choosing h points on the sphere which are distributed as reg-
ularly as possible. Finding a good measure for the regularity of
the distribution is far from trivial. A number of measures have
been proposed emphasising different aspects of the point distri-
bution (see, e.g., [6]). A very simple approach is to find approx-
imate solutions to Thomson’s problem [7]. This problem asks
for the distribution of a fixed number h of electrons on a sphere,
when the electrons repel each other following Coulomb’s law.
Two equal electric charges repel each other with a force in-
versely proportional to the square of their distance.

An approximate solution is found by iteratively moving
each point according to the sum of the forces exerted by the
other points. This simple approach gives a good distribution of
the points for the initial hypotheses used in our algorithm after a
small number of iterations. For the numbers of hypotheses used
in our algorithm, the computational cost for this initialisation
process is negligible.

3.2. Optimisation

In order to use the complexity measure Φ defined above in an
optimisation algorithm, we need to compute the partial deriva-
tives with respect to the mixture weights. The mixture weights
(a1, . . . , an) are given as functions of their polar coordinates
(ϕ1, . . . ,ϕn−1) as follows:

as =

{

cos(ϕs)
∏s−1

i=1 sin(ϕi) s < n
∏n−1

i=1 sin(ϕi) s = n
.

In the following, we will need the derivatives of the weights
with respect to the polar coordinates. For an they are given as
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∂an

∂ϕj
= cos(ϕj)

∏

i #=j

sin(ϕi).

For as, s < n, the derivatives are

∂as

∂ϕj
=











cos(ϕs) cos(ϕj)
∏s−1

i=1,i #=j sin(ϕi) j < s

−
∏s−1

i=1 sin(ϕi) j = s

0 j > s

.

In order to simplify the notation, in the following, we will
abbreviate

(a1(ϕ1, . . . ,ϕn−1), . . . , an(ϕ1, . . . ,ϕn−1)) =: a(ϕ).

Now, we can proceed to calculating the partial derivatives
of Φ[Uf (·, ·; a(ϕ))] with respect to the polar coordinates ϕ :=
(ϕ1, . . . ,ϕn−1):

∂Φ
∂ϕj

(x;ϕ) =
W
∑

t=−W

h(t)
∂

∂ϕj
SFM [Uf (·, ·; a(ϕ))](x+ t).

Thus, in order to compute the partial derivatives of Φ,
we need to know the partial derivatives of SFM. For this
purpose, we abbreviate numerator and denominator of SFM
by p(x;ϕ) :=

∏Ω−1
ω=0(Uf (ω, x; a(ϕ)))

1

Ω and q(x;ϕ) :=
1
Ω

∑Ω−1
ω=0 Uf (ω, x; a(ϕ)), respectively. Now, the derivative is

∂SFM [Uf (·, ·; a(ϕ))]
∂ϕj

(x;ϕ) =

∂p
∂ϕj

(x;ϕ)q(x;ϕ)− p(x;ϕ) ∂q
∂ϕj

(x;ϕ)

q2(x;ϕ)
.

Here, the corresponding derivatives of p and q are given by

∂q
∂ϕj

(x;ϕ) =
1
Ω

Ω
∑

ω=1

∂
∂ϕj

Uf (ω, x; a(ϕ))

and

∂p
∂ϕj

(x;ϕ) =
1
Ω
p(t)

Ω
∑

ω=1

∂
∂ϕj

Uf (ω, x; a(ϕ))

Uf (ω, x; a(ϕ))
.

Finally, the derivative of Uf can be computed from the data
as

∂Uf (ω, x; a(ϕ))
∂ϕj

=
n
∑

i=1

f̂i(ω, x)
∂

∂ϕj
ai(ϕ1, . . . ,ϕn−1).

Using this derivative, locally optimal unmixing parameters
can be found by a variant of a line-search algorithm. We found
the simple Algorithm 1, adjusting the step size by a factor of
two according to whether or not the new step size gives a better
increase in the objective function than the last one, to be suffi-
cient for our purposes.

Algorithm 1 A simple line-search step for the optimisation of
Uf .
Require: step sizeα from previous optimisation step, objective
function Uf , position x and derivative dx.
state := 0
done := false
while not done do

v := Uf (x+ α · dx)
if v > Uf (x) then
if state == 2 then

done := true
else

state := 1
end if
α := 2α

else
if state == 1 then

done := true
else

state := 2
end if
α := α/2

end if
end while
return x+ α · dx

3.3. Component Extraction

Finally, after transforming back angular representations into
unmixing parameters, we have computed a matrix H ∈
R

hn×T giving, at each time step, h hypotheses for the mix-
ing parameters. A component is described by a sequence
((h1, 1), (h2, 2), . . . , (hT , T )). To each element (i, j) of such
a sequence, we associate the corresponding vector v(i, j) :=
(H(i, j), . . . , H(i+ n− 1, j)) of unmixing parameters. In or-
der to extract components without abrupt changes in the unmix-
ing parameters, where possible, we want to minimise the sum S
of differences between the unmixing parameters for each com-
ponent:

S((h1, 1), . . . , (hT , T )) :=
T−1
∑

i=1

‖v(hi+1, i+ 1)− v(hi, i)‖

Moreover, we want to extract disjoint components, i.e.,
each parameter vector v(i, j) should appear in at most one com-
ponent.

The first component can be extracted by computing the val-
ues of matrices D and P defined as follows. Entry Dij gives
the minimal costs for a component of length j, ending with the
parameter vector v(i, j). Entry Pij gives the predecessor of
v(i, j) on a minimal cost component. D can be computed by
standard dynamic programming, observing thatD(i, 1) = 0 for
all i and

D(i, j) = min
k

D(k, j − 1) for j > 1. (1)

The entries of P are easily found by storing the minimisers
in (1).

In order to guarantee disjoint components, this process has
to be slightly modified after the extraction of the first component
by setting Dij = ∞ whenever v(i, j) has already been used in
a component.
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Figure 2: Three signals used for artificial mixing of test signals:
Chiff-chaff (left), great tit (middle) and chaffinch (right).

For the analysis of audio scenes, it is usually sufficient to re-
construct the spectrum of a component by applying the selected
unmixing parameters. It is, however, sometimes desirable to re-
construct audio signals from the components. In this case, it
is possible to use the estimated power spectrum as a mask for
weighting the complex spectrum of the mixed signals. Then, a
signal can be reconstructed from this weighted spectrum which
includes phase information in addition to the magnitude infor-
mation contained in the power spectrum.

4. Results
The algorithm described above has been tested on two datasets.
First, in order to test basic functionality, artificial mixtures of
natural sound sources have been created. Then, in order to get
closer to real-world applications, we present an example of two
speakers recorded by two microphones in an office room.

Artificial mixtures of sound sources were created using
recordings from three species of birds, the chiff-chaff, the great
tit and the chaffinch as depicted in Figure 2.

In the first test, the songs of chiff-chaff and great tit were
mixed with constant mixing parameters to obtain the signals
shown in the top of Figure 3. The first mixture is obtained by
weighting each signal by a factor of

√
2, the second signal is

obtained by weighting the great tit song by a factor of
√
3
2 and

the chiff-chaff song with a factor of 1
2 . As can be seen in the

figure, the chiff-chaff song can be recovered almost perfectly
from these mixtures.

One of the main features distinguishing our method of
source separation from previous solutions is that it is able to
track varying mixing conditions. Figure 4 shows an example
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Figure 3: Source separation for two artificially mixed sources.
The upper part shows the spectrograms of two different mixed
signals of chiff-chaff and great tit song. The lower part shows
the spectrogram of the simplest component extracted from these
mixtures.
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Figure 4: Source separation for two artificially mixed sources
with varying mixing parameters.

of the same two signals as in the previous example, this time
mixed by varying mixing parameters. For a second mixture, the
two source signals were mixed by weighting the first one by the
factor sinα and the second one by the factor cosα for an angle
α which changes gradually over the playback time of the sig-
nals. It starts with α = 0 in the first fourth of the signal, then
changes to π

8 in the second fourth, to
π
4 in the third, and to

3π
8 in

the final fourth. A second mixture signal was obtained by using
the weight cosα on the first source signal and the weight sinα
on the second. Mixing parameters are interpolated linearly be-
tween the different parts. Again, the song of the chiff-chaff can
be extracted from the mixtures with the same quality as in the
case of constant mixture parameters.

As a final test with artificial mixtures, we present a result for
a mixture of three sources with varying mixing parameters. The
first three spectrograms in Figure 5 show three mixtures of the
three signals shown in Figure 2. The mixing parameters have
been created similar to those in the previous example. Using
the same angle α as a parameter, the signals have been mixed
according to Table 1. Here, the song of the chaffinch is extracted
almost perfectly, except for some remnants of the song of the
great tit to be found at the beginning and the end of the extracted
component.

A result which is closer to real world applications is the
separation of a mixture of two speakers talking simultaneously
in a room recorded by two microphones. The data used for
this test is an example from an ICA-based source separation
method which incorporated estimating time delay between the
two microphones [8]. Note, that no estimation of time delay is
necessary for our method. Figure 6 shows spectrograms of the
signals recorded by the microphones. Each of the two speak-

Table 1: Mixture parameters for the three signals shown in Fig-
ure 5. The mixtures were created using an angle α varying from
0 over π

8 and
π
4 to

3π
8 .

Mixture Weight for signal 1 Weight for signal 2 Weight for signal 3
Mixture 1 cos(α) sin(α) cos(α+ π

8 )
Mixture 2 sin(α+ π

8 ) cos(α) cos(α)
Mixture 3 cos(α+ π

8 ) cos(α) sin(α)
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Figure 5: Source separation for three artificially mixed sources
with varying mixing parameters.
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Figure 6: Source separation for two speakers in a room recorded
by two microphones. The upper spectrograms show spectro-
grams of the two signals picked up by the microphones. The
lower spectrogram shows the best component reconstructed by
the algorithm.

ers is counting from one to ten, one speaker in English, one
in Spanish. Their utterings strongly overlap in time and fre-
quency. Looking at the spectrograms shows that the extracted
component is indeed much simpler than the mixtures. Listening
to a reconstructed signal reveals that the utterings of one of the
speakers are strongly attenuated.

5. Conclusion
In this work, the spectral flatness measure is proposed as a mea-
sure of component complexity for blind source separation. To-
gether with particle-based gradient descent optimisation of this
measure and a dynamic programming approach for component
extraction, it is possible to extract low complexity components
from signals with time-varying mixing conditions.

Unfortunately, usually only the best component extracted
from the mixtures gives sensible results. The other components
extracted are very similar to the best component most of the
time. Thus, in order to extract more than one component with
our methods, a different way of extracting these additional com-
ponents from the optimisation hypotheses has to be found. A
simple method to do so would be to subtract the best extracted
component from the mixtures with a suitable weight and then
repeat the optimisation process with these simplified mixtures.
Another idea would be to include a measure of similarity to al-
ready extracted components into the component extraction pro-
cess.

Additional experiments show that complex real-world sig-
nals such as real mixtures of bird songs are yet out of the scope

of our method. This problem is probably due to non-linear mix-
ing. Thus, a non-linear unmixing approach would be necessary.
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