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Abstract
This paper addresses the problem of speech recognition using
distant binaural microphones in reverberant multisource noise
conditions. Our scheme employs a two stage fragment decod-
ing approach: first spectro-temporal acoustic source fragments
are identified using signal level cues, and second, a hypothesis-
driven stage simultaneously searches for the most probable
speech/background fragment labelling and the corresponding
acoustic model state sequence. The paper reports recent ad-
vances in combining adaptive noise floor modelling and bin-
aural localisation cues within this framework. The decoder is
able to derive significant recognition performance benefits from
both noise floor tracking and fragment location estimates. Us-
ing models trained on noise-free speech, the system achieves an
average keyword recognition accuracy of 80.60% for the final
test set on the PASCAL CHiME Challenge task.

1. Introduction
Automatic speech recognition (ASR) technology is finally start-
ing to become commonplace. However, in most applications the
expectation is that the user is employing a close-talking micro-
phone. For ASR technology to become truly ubiquitous it needs
to be freed from this constraint and designed to work reliably
with distant microphones.

The scarcity of distant microphone ASR applications is not
a lack of demand, but rather because recognition in these condi-
tions is a difficult and largely unsolved problem [1]. There are
two sources of variability that make it more challenging than
close-talking ASR. First, there exists an increased channel vari-
ability. The speech signal arriving at the microphone is rever-
berated by a room response, which in turn is dependent on a
host of details that may be changing over time in significant and
unpredictable ways. Second, there will generally be substantial
additive noise because the microphones will unselectively cap-
ture signals from all sound sources in the environment. Further,
most ‘everyday’ environments will contain an unknown num-
ber of sound sources whose activity level – and possibly loca-
tion – is changing over time. Fig. 1 displays a time-frequency
(T-F) representation of audio recorded in a family home that is
used in the PASCAL CHiME Speech Separation and Recogni-
tion Challenge [2]. The heterogeneous multi-source nature of
the audio is readily apparent.

Our approach to distant microphone ASR is inspired by
the human ability to attend to individual components of com-
plex acoustic mixtures, even when only presented with a single
acoustic channel [4]. We model this ability using a two-stage
approach: first, an ‘auditory’ front-end exploits the continu-
ity of signal characteristics to identify robust spectro-temporal
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Figure 1: A time-frequency representation of a 20 second sam-
ple from the binaural CHiME domestic audio corpus used as
noise background in the current study [3].

source fragments, i.e. regions in the spectro-temporal domain in
which the energy is dominated by a single acoustic source. Sec-
ond, a statistical back-end, through a process termed fragment
decoding, selects sound source fragments based on the extent to
which they match models of the target source [5].

We recently proposed two extensions to the fragment de-
coding approach. The first extension employs an adaptive noise
floor model to account for ambient, slowly varying noise floor
[6]. The second one incorporates spatially motivated cues to
bias the decoder towards accepting fragments that are believed
to originate from a known target source location [7]. This paper
presents our latest advances in combining the two extensions
together with the fragment decoding approach.

An overview of the system is shown in Fig. 2. Section 2 re-
views the basic fragment decoding framework. Adaptive noise
floor modelling is presented in Section 3. Section 4 describes
techniques of localising the source fragments that act as input
to the decoding process. The reverberant binaural speech-in-
noise data used for evaluation is described in Section 5. Sec-
tion 6 compares the recognition performance delivered by vari-
ous ASR systems on the CHiME challenge. Section 7 discusses
future directions and concludes this paper.

2. The fragment decoding framework
The energy in a speech signal is not evenly spread across time
and frequency but instead is highly concentrated in local T-F re-
gions (e.g. formant resonances). Typically, even when the noise
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Figure 2: Overview of the proposed system. Localised spectro-temporal fragments are indicated using different colours.

background has higher energy than the speech on average, in
these local regions the speech energy will be many decibels
greater than the noise. This view of masking leads naturally
to the ‘missing data’ approach to robust ASR [8].

The difficulty with the missing data ASR approach is that
the foreground/background segmentation is obviously not pro-
vided a priori. In some situations a good candidate segmenta-
tion can be estimated using a simple model of the noise, but this
is not generally possible when the noise is itself highly unpre-
dictable. The fragment decoding framework [5] acknowledges
that the segmentation is not directly observed, and instead em-
ploys a segmentation model that represents a distribution of pos-
sible segmentations estimated from the noisy data. In particular
this distribution only allows segmentations that are consistent
with a set of local spectro-temporal sound source fragments.

2.1. Formulation

The fragment decoding framework is formalised as follows. Let
Y be a sequence of noisy speech observations {y1, ...,yT }
where each yt is a feature vector representing a spectral energy
component at time t. The ASR task is to find the best word se-
quence given these observations, or equivalently to find the best
underlying acoustic model state sequence Q = {q1, ...,qT }:

Q̂ = argmax
Q

P (Q|Y) (1)

The sequence of noise-free target speech vectors X and the
foreground/background segmentation S are not directly ob-
served but can be introduced by integrating over all possibili-
ties,

Q̂ = argmax
Q

∑

S

{
∫

X

P (Q,X,S|Y)dX

}

(2)

Typically, the sum over S is intractable, so we instead select
a single segmentation and state sequence that jointly maximise
the integral,

Q̂, Ŝ = argmax
Q,S

∫

X

P (Q,X,S|Y)dX (3)

= argmax
Q,S

∫

X

P (Q|X)P (X|Y,S)P (S|Y)dX (4)

The acoustic model represented by the integral in the above
can be estimated by making a series of independence as-
sumptions described in detail in [5]. A simple segmenta-
tion model, P (S|Y), assigns equal probability to any fore-
ground/background segmentation that can be constructed from
the set of fragments that have been identified by the front-end
processing, i.e. the region covered by each of N fragments must
be either allocated exclusively to the foreground or to the back-
ground – in this way 2N segmentations can be generated. All
other segmentations are assigned a probability of 0. The max-
imisation over state sequence Q and segmentation S can then
be achieved via a Viterbi search over a lattice of segmentation
and state sequence hypotheses as described in [5].

2.2. Fragment generation

The key to success in the fragment decoding system lies in the
reliable identification of fragments of significant extent in fre-
quency and/or time: the larger the fragments are, the more they
constrain the segmentation model. Periodicity information is
among the most robust cues for auditory grouping and it has
been the major cue for fragment generation in previous frag-
ment decoding systems (e.g. [9, 10]).

The strategy for fragment generation is to exploit the dis-
tinctness and continuity of signal-level properties of the individ-
ual sound sources. Frequency channels dominated by the same
periodic or quasi-periodic source will have a common funda-
mental frequency (F0), hence it can be used as evidence to label
channels as belonging to the same fragment. Further, by track-
ing the F0 trajectory of sound sources it is possible to extend
cross-frequency grouping through time.

The pitch-based grouping is implemented via the computa-
tion of an autocorrelogram [11, 12]. First, the signal is passed
through a 32-channel Gammatone filterbank with centre fre-
quency distributed between 50 Hz and 8000 Hz with equal spac-
ing on an equivalent rectangular bandwidth (ERB) scale. The
autocorrelogram is then formed from the short-time autocorre-
lation computed on the output of each Gammatone filter (using a
30 ms Hann window). For periodic sounds, the autocorrelogram
exhibits symmetric tree-like structures whose stems are located
on the delays that correspond to the pitch periods of sources
in the acoustic mixture. These pitch-related structures are ex-
ploited to group spectral components at each time frame, from
which local pitch estimates are computed. Simultaneous pitch
tracks are formed by linking local pitch estimates across time,
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and each pitch track is then used to recruit a spectro-temporal
fragment [9]. Energy not accounted for by the pitch-based frag-
ments is segmented into disjoint ‘inharmonic fragments’ using
techniques also described in [9].

3. Adaptive Noise Floor Modelling
In many natural listening conditions the auditory scene can be
approximately described as a slowly varying noise floor plus
highly unpredictable acoustic ‘events’. This work combines
adaptive noise floor modelling and fragment decoding tech-
niques to handle both the quasi-stationary and unpredictable
components of the noise background. The adaptive noise floor
model is used to estimate the degree to which energetic acous-
tic events are masked by the noise floor. A fragment decod-
ing system then attempts to interpret the energetic regions that
are not accounted for by the noise floor model. The combined
technique will be termed adaptive noise floor speech fragment
decoding (ANF-SDF).

3.1. Noise floor tracking

We employ an adaptive noise floor tracking algorithm [13, 6]
similar to minimum tracking-based methods [14, 15, 16]. The
tracker models a rolling buffer of noisy speech as a mixture of
Gaussians using the expectation maximisation (EM) algorithm.
The distribution that has the minimum mean value is used as the
noise estimate. The mixture model is continuously updated with
a half second increment, producing a fresh noise floor estimate
for every half second.

3.2. Combing noise tracking and SFD

The output of noise floor tracking can be expressed as a spectro-
temporal map holding local signal-to-noise ratio (SNR) esti-
mates. Such local SNR maps have formed the basis of missing
data mask estimation in many previous missing data ASR sys-
tems [17, 18, 19]. The local SNR estimate in dB is computed
as:

SNR = 20
(

log10
(

10y − 10n̂
)

− n̂
)

(5)

where y represents the log-compressed noisy observation and n̂
is the log-compressed noise estimate. A soft missing data mask
is obtained by applying a sigmoid function to the local SNR
estimates:

ωtf =
1

1 + e−α(SNRtf−β)
(6)

where α determines the slope of the sigmoid function and the
centre β serves as the SNR threshold when computing soft
masks. A higher SNR threshold will cause more T-F regions
to be biased towards being interpreted as the noise background
during decoding.

The T-F elements with values less than 0.5 are identified
in the SNR-based soft mask. These low SNR regions are most
likely to have originated from some noise sources, and they are
interpreted as part of the background during fragment decod-
ing, regardless of any segregation hypothesis. The fragments
excluding these low SNR regions are treated by SFD as normal.

Fig. 3 illustrates this process. Fig. 3a is the auditory spec-
trogram of a speech/noise mixture. The missing data mask de-
rived from local SNR estimates is shown in Fig. 3b, where re-
gions with soft value > 0.5 are displayed in black. Source frag-
ments are represented in Fig. 3c using different colours. Fig. 3d
shows the fragments after the low SNR regions tracked by the
adaptive noise floor model are forced into the background (rep-

(a) Auditory spectrogram of a
speech/noise mixture.

(b) SNR mask where high SNR
regions are displayed in black.

(c) Source fragments represented
using different colours.

(d) Fragments excluding regions
with low SNR estimates.

Figure 3: Combining speech fragment decoding and adaptive
noise floor modelling.

resented in white). The process is akin to using the missing data
mask in Fig. 3b to filter the fragments in Fig. 3c.

The ANF-SFD system differs from the standard SFD sys-
tem because fragment decoding is only applied to regions that
are not accounted for by the adaptive noise floor model, i.e. the
noise floor is marked as being part of the background in all frag-
ment labelled hypotheses. The standard SFD system would, by
contrast, segment the regions dominated by the noise floor into
fragments (often poorly because the noise floor tends to exhibit
weak grouping cues) and may be prone to errors if any of these
fragments happens to match the speech models.

4. Binaural fragment localisation
Binaural localisation cues are important for sound organisa-
tion [20, 21]. For example, if the target source was known to be
directly ahead, then regions of energy coming from other direc-
tions could be labelled as part of the background. This section
presents a binaural extension to the fragment decoding system.

4.1. Fragment-based localisation cues

Localisation estimates can be made by measuring the time and
level difference of the signal arriving at the two ears, known
as the interaural time difference (ITD) and the interaural level
difference (ILD), respectively. If the direction of origin of the
energy dominating each T-F element could be estimated, then
this cue could be used to segment the representation. Unfor-
tunately, binaural cues cannot be measured reliably within sin-
gle frequency filter channels due to phase ambiguity and room
reverberation [22]. Reliability can be increased, however, by
integrating estimates over extended spectro-temporal regions.
Indeed, [23] shows how, in a multisource scenario, fragments
derived from periodicity cues can be localised with sufficient
precision to benefit a simultaneous speaker tracking task.

ITD is estimated by computing a cross-correlation on the
output of each auditory filter, based on Sayer and Cherry’s im-
plementation of the Jefress model [21]. When estimating the
location of a single source, the standard approach is to sum
the cross-correlation functions across frequency – to form a so-
called summary cross-correlogram – and then to find the delay
of the largest peak. In [23] this idea is generalised so that the
summary is computed by integrating the cross-correlation func-
tions over a spectro-temporal fragment.

A running cross-correlation is computed on the output
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of each gammatone filter. At a given time step, the cross-
correlation for each channel is computed iteratively with a de-
cay window of 8 ms for temporal integration – long enough
to produce robust correlations and short enough to approxi-
mately satisfy the assumption of stationarity over the correla-
tion window. The cross correlation is normalised following the
approach described in [24]. To address the problem of low
frequency bands having very broad peaks, we skeletonise the
cross-correlogram by replacing the largest peak in each channel
by a Gaussian.

This work does not use ILD cues as they provide little dis-
crimination power on the CHiME task [7].

4.2. Integrating binaural cues

We integrate binaural cues and acoustic models in a probabilis-
tic framework via the segmentation model in (4). By assuming
independence of fragments, the segmentation model can be ap-
proximated as :

P (S|Y) =
∏

f∈FS

P (f)
∏

f /∈FS

1− P (f) (7)

where FS is the subset of fragments labelled as the foreground
under hypothesis S, and P (f) is the probability of fragment f
belonging to the target source. Once a fragment has been lo-
calised, its estimated location can be used to inform P (f). This
probability becomes smaller for fragments that do not come
from the same direction of the target source, and larger if they
do. More details will be given in Section 6.

5. Speech recognition task
The recognition system has been evaluated using the 2011 PAS-
CAL CHiME Speech Separation and Recognition Challenge
data set [2], sampled at 48 kHz. The task entails the recog-
nition of Grid command utterances that have been mixed into
binaural recordings made in a noisy domestic environment after
convolution with carefully measured room impulse responses.
The target speech is positioned directly in front of the manikin.
The SNRs have been controlled by selecting temporal positions
within the CHiME recordings that would result in the required
SNR when the sources are mixed at their naturally occurring
levels. Note, this means that the noise backgrounds are neces-
sarily different in each SNR condition.

All the recognisers employ word level HMMs with a topol-
ogy that was standardised in the CHiME Challenge [2]. Our
recognition systems are trained on the noise-free CHiME train-
ing set. The binaural training and test data is reduced to a sin-
gle channel by averaging the left and right ear signals. Feature
extraction is then applied to the single channel signals. A set
of models is initially trained using all 17 000 utterances, then
speaker dependent models are constructed by using 500 utter-
ances from each speaker as adaptation data.

The baseline system employs 39-dimensional MFCC fea-
tures (deltas and delta-deltas) and cepstral mean normalisa-
tion. SFD based systems require spectral features – missing
features are localised in the spectral domain but not in the
cepstral domain. The spectral features employed in the work
were produced via a 32-channel Gammatone filterbank dis-
tributed in frequency between 50 Hz and 8000 Hz on the ERB
scale, log-compressed and supplemented with deltas to form 64-
dimensional feature vectors.

6. Analysis and experiments
We evaluate four fragment decoding systems. The first sys-
tem, labelled as SFD, is the standard fragment decoding sys-
tem. The second SFD system, ANF-SFD, combines SFD with
adaptive noise floor modelling, as discussed in Section 3. ITD-
SFD incorporates binaural localisation cues (ITD cues only) as
discussed in Section 4. The final system, ANF-ITD-SFD, com-
bines both extensions. All the SFD based systems employ frag-
ments produced as discussed in Section 2.2.

Table 1 shows the keyword accuracies of baseline systems
for the development set. As might be expected, the perfor-
mance of the MFCC system degrades rapidly as SNR is reduced
since little account is taken of the noise. The SFD in the base-
line single-channel configuration produces more robust perfor-
mance. For example, at 0 dB 77 % of the tokens are recognised
correctly compared to only 49 % for the MFCC system.

Table 1: Keyword recognition accuracy rates (%) of baseline
systems for the development set

-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB
MFCC 31.08 36.75 49.08 64.00 73.83 83.08
SFD 70.25 72.58 77.25 82.17 85.75 86.58

6.1. Incorporating adaptive noise floor modelling

ANF-SFD is a fragment decoding system combined with adap-
tive noise floor modelling. The soft SNR-based masks were
computed using (6): α was heuristically fixed to 0.1 and the
SNR threshold β was tuned on the development set. Table 2
shows the keyword recognition accuracies with different values
for β. The results of the standard SFD system is also included
for comparison.

The combined ANF-SFD system exhibits improved perfor-
mance over the standard SFD system at SNRs across various
SNR conditions. The best results on the development set were
obtained with the SNR threshold of -6 dB.

6.2. Incorporating localised fragment

The azimuthal angle of each source fragment was calculated
from ITD estimated as described in Section 4.1. In the CHiME
dataset the target speaker source is always located at 0 de-
gree. Clearly, originating from 0 degrees does not imply that
the source is the target speaker. However, originating from a
direction other than 0 degrees should be logically taken as evi-
dence that the fragment is not part of the speech source. Hence,
the estimates could be used in the manner of a filter that rejects
fragments from wider angles, or which reduces the probability
of including these fragments as part of the foreground.

Fig. 4 illustrates the potential for using azimuth estimates
as a filter that rejects fragments from wide angles by assign-
ing them to the background. The abscissa shows a rejection
threshold. – i.e. fragments whose absolute angle is above this
threshold are counted as part of the background. The dashed
curve shows the increasing proportion of noise fragments that
would be correctly rejected as the threshold is decreased, while
the solid curve shows the proportion of speech fragments that
would be falsely rejected. With a 20 degree threshold around
40% of noise fragments can be rejected at a cost losing only
10% of speech fragments.

The ‘ITD-SFD’ system employs the ITD azimuth estimates
to inform the probability P (f) in the segmentation model (Sec-
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Table 2: Keyword recognition accuracy rates (%) of the ‘ANF-SFD’ systems with various SNR threshold β for the development set.
The results of the standard SFD system are also included for comparison.

-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Avg.
SFD 70.25 72.58 77.25 82.17 85.75 86.58 79.10

β = −12 dB 70.92 74.17 78.25 82.83 87.58 87.17 80.15
β = −9 dB 71.33 74.67 78.33 82.42 87.75 87.67 80.36
β = −6 dB 71.75 74.00 78.58 82.50 87.67 87.75 80.38
β = −3 dB 71.75 73.50 78.17 82.42 87.33 87.25 80.07
β = 0 dB 71.42 72.83 77.00 82.58 87.33 87.42 79.76
β = 3 dB 70.92 71.83 76.50 82.58 87.25 87.67 79.46

Table 3: Keyword recognition accuracy rates (%) of the ‘ITD-SFD’ systems for the development set, with various P (f) values for
fragments inside (in) and outside an azimuth threshold (out), respectively. The results of the standard SFD system are also listed.

-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Avg.
SFD 70.25 72.58 77.25 82.17 85.75 86.58 79.10

in = 0.5, out = 0.4 71.58 73.33 77.83 82.33 85.58 87.25 79.65
in = 0.5, out = 0.45 71.33 73.08 77.75 82.67 85.83 87.33 79.67
in = 0.52, out = 0.4 71.25 73.67 79.17 82.67 86.33 88.25 80.22
in = 0.52, out = 0.45 71.75 73.33 78.75 83.17 86.25 88.25 80.25
in = 0.55, out = 0.4 69.83 71.33 78.50 83.25 86.83 88.50 79.71
in = 0.55, out = 0.45 70.17 71.17 77.92 83.58 86.83 88.58 79.71

tion 4.2). The respective values of P (f) for fragments inside
an azimuth threshold and the remaining fragments were opti-
mised on the development set, as shown in Table 3. The azimuth
threshold was heuristically selected to be 18 degrees, which ac-
cording to Fig. 4 rejects a high proportion of background for
little loss of speech data. Since smaller fragments tend to have
less reliable location estimates, for fragments with less than 8
T-F elements we set the P (f) to 0.5, i.e. they are not biased
towards either foreground or background.

90 80 70 60 50 40 30 20 10 0 

20%

40%

60%

80%

100%

Azimuth Threshold

 

 
Foreground fragments lost
Background fragments removed

Figure 4: True rejection rate vs. false rejection rate of fragments
using the absolute azimuth as a threshold.

The ‘ITD-SFD’ system produces improvement over the
SFD baseline across all SNRs. By penalising fragments that do
not come from the direction of the target source while favour-
ing those that do, the fragment decoder is able to make use of
a better segmentation model than the simple one which assigns
equal probability to any foreground/background segmentation
constructed from the fragments. The best results were obtained
with P (f) set to 0.52 for fragments inside the azimuth thresh-
old and 0.45 for the remaining fragments. With this setting frag-

ments coming from the front are slightly biased towards fore-
ground whereas fragment from lateral angles are biased towards
being labelled as background.

6.3. Fusion of noise floor and localisation cues

The adaptive noise floor modelling and fragment localisation
techniques can be combined together to further improve recog-
nition accuracies. The noise model is first used to identify
spectro-temporal regions that are likely to be part of the noise
background. The remaining fragments are localised based on
localisation cues extracted from binaural recordings at the frag-
ment level.

Table 4 shows the best results of the combined system
(ANF-ITD-SFD) for the development set. The parameters for
the ANF-ITD-SFD system were optimised independently from
the ANF-SFD system and the ITD-SFD system and they were
then fixed for the final evaluation test set. The results for the
final test set are shown in Table 5.

7. Conclusions
This paper has presented a fragment based recognition system
that addresses the problem of distant microphone speech recog-
nition in reverberant multisource conditions. The system com-
bines adaptive noise floor modelling and binaural localisation
cues with acoustic models in a probabilistic framework to si-
multaneously separate and recognise speech. Essentially, the
noise model is being allowed a first view of the data to esti-
mate the degree to which energetic acoustic events are masked
by the noise floor. A fragment decoding system then uses mod-
els of the target speech to interpret the energetic regions that
are poorly predicted by the noise model. The binaural cues are
integrated over each spectro-temporal fragment, which bias the
decoder towards accepting fragments that are believed to origi-
nate from a known target source location.

In the current system the fragment separation, noise track-
ing and binaural fragment localisation are conducted indepen-
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Table 4: Keyword recognition accuracy rates (%) of various ASR systems for the development set.

-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Avg.
MFCC 31.08 36.75 49.08 64.00 73.83 83.08 56.33
SFD 70.25 72.58 77.25 82.17 85.75 86.58 79.10

ANF-SFD 71.75 74.00 78.58 82.50 87.67 87.75 80.38
ITD-SFD 71.75 73.33 78.75 83.17 86.25 88.25 80.25

ANF-ITD-SFD 72.67 75.08 79.25 83.67 88.42 88.00 81.18

Table 5: Keyword recognition accuracy rates (%) for the final test set.

-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Avg.
MFCC 30.33 35.42 49.50 62.92 75.00 82.42 55.93

ANF-ITD-SFD 72.25 73.17 81.75 84.08 85.50 86.83 80.60

dently of each other. Options exist for closer coupling. For ex-
ample, the ongoing noise floor estimate could be used to inform
parameters of the pitch estimation and across frequency pitch
grouping processes that are essential to the harmonic fragment
generation. Working in the other direction, spectro-temporal
regions that are clearly implicated in a fragment of an acoustic
event, by pitch or location grouping cues, should not be con-
tributing to the noise floor estimate.
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