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Abstract

This paper describes a novel adaptive beamforming technique,
for speech enhancement applications, designed to be robust to
nonstationary interfering sources in noisy and reverberant en-
vironments. The proposed beamforming architecture aims at
extracting the desired source signal and suppressing interfer-
ing signals in a multisource environment with unknown a priori
conditions. This purpose is realized by means of a multi-stage
collaborative generalized sidelobe canceller. The trademark
of this architecture relies on a two-level convex combination
of two multiple-input single-output (MISO) adaptive systems,
which improves the beamformer capability to track undesired
sources, in order to achieve a stronger suppression of interfer-
ing signals. The potency of the proposed architecture is proved
enhancing the speech quality of the desired source in a hands-
free teleconferencing application.

Index Terms: Nonstationary Adaptive Beamforming, Speech
Enhancement, Combination of Adaptive Filters

1. Introduction

Machine listening aims at extracting, from audio signals, useful
informations for computational or human purpose, such as anal-
ysis or synthesis of audio signals. In hands-free speech com-
munications, the audio signals of interest are speech signals,
and the audio spatial perception is the desired information to re-
trieve because it allows to distinguish a certain voice in a noisy
environment, simulating the binaural human hearing. In mul-
tisource environments, the presence of interfering signals and
reverberation may cause the loss of spatial information, thus
resulting in a degradation of speech intelligibility. In order to
tackle this problem, speech enhancement systems are widely
employed in distant talking applications. Microphone array
beamforming represents a class of such speech enhancement
techniques. Beamforming systems exploit the properties of mi-
crophone interfaces which facilitate binaural hearing. However,
in order to achieve a quite good recovery of binaural percep-
tion, beamforming techniques need to control some aspects of
the multisource communication: the spatial realism of sound
rendering, the high-quality of acquired speech signals, and the
nonstationary of sources which can talk without tethered micro-
phones while moving in the environment [1].

Among beamforming techniques, the generalized sidelobe
canceller (GSC) [2] is highly effective in acquiring a desired
source and adaptively reducing interfering signals. The potency
of an adaptive beamformer depends on the choice of the adap-

tive algorithm. The most popular adaptive algorithms in time-
domain are based on the gradient rule, such as the least mean
squares (LMS) algorithm. The advantage of this family of al-
gorithms is the cheaper computational cost. However, LMS
shows poor convergence performance when the filter length
is quite long [3], that is the rule in acoustic applications. A
faster convergence rate can be yield using Hessian-based adap-
tive filtering; a typical algorithm is the recursive least squares
(RLS). However, RLS entails an high computational complex-
ity; therefore, adaptation can become prohibitively expensive,
compromising real-time implementations. A good compromise
can be obtained by using the family of affine projection algo-
rithm (APA), which is widely used in adaptive beamforming
[4], [5], showing better convergence rates and manageable com-
putational complexity. The proposed beamforming technique
uses a fast affine projection (FAP) algorithm [6] to adapt filter
coefficients.

Moreover, in order to make the beamformer robust to non-
stationary sources, we propose a collaborative adaptive struc-
ture, in which, for each channel, we perform the convex com-
bination of two adaptive filters of different families in order to
obtain an algorithm with superior tracking capability [7]. Fur-
thermore, in order to use the best parameter setting for each
filter we introduce a preventive convex combination between
filters of the same family, thus achieving optimum conditions
for each combination [8]. The proposed approach is realized
in a multi-stage collaborative architecture, since the filtering is
carried out in more steps.

This paper is organized as follows: the microphone array
beamforming technique is described in Section 2; the proposed
multi-stage collaborative filtering is detailed in Section 3 and in
Section 4 the effectiveness of the proposed beamforming system
is assessed. Finally, in Section 5 our conclusions are drawn.

2. Microphone Array Beamforming
Technique

The beamforming architecture used in this paper, depicted in
Fig. 1, is a typical GSC configuration composed of a mi-
crophone array interface, a fixed delay-and-sum beamformer
(DSB), and an adaptive noise cancelling (ANC) path.

Considering a microphone array interface composed of M
sensors, the m-th microphone signal, with m = 0, . . . ,M − 1,
is a delayed replica of the target signal s [n] convolved with the
acoustic impulse response (AIR) am between the m-th micro-
phone and the desired source, with the addition of background
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Figure 1: Microphone array beamforming architecture.

noise vm [n]. The DSB spatially aligns the microphone sig-
nals with reference to the desired source direction, yielding the
speech reference signal d [n]:

d [n] =
M−1
∑

m=0

L−1
∑

l=0

am [l] s [n− l] + vm [n] (1)

where we suppose that each AIR between the desired source
and the m-th microphone has the same length denoted with L.

In the adaptive path of the beamformer, the blocking ma-
trix (BM) generates the noise references xk [n], with k =
0, . . . ,K − 1, being K = M − 1. The blocking matrix is im-
plemented by pairwise differences between microphone signals
[9]. The noise reference signals are then processed by the col-
laborative ANC, whose structure will be described in the next
section. The task of the collaborative ANC is to remove the
residual noise components in the speech reference signal, min-
imizing the output power and yielding the beamformer output
signal e [n].

3. Collaborative Adaptive Noise Canceller

The trademark of the proposed beamforming technique is repre-
sented by the structure of the collaborative ANC. Generally, an
ANC is composed of an adaptive filter bank forming a MISO
system. The adopted architecture, depicted in Fig. 2, is a
multi-stage convex combination of adaptive filters. In partic-
ular, the structure is composed of four different MISO systems,
each bringing different filtering capabilities to the whole beam-
former. Each MISO system receives the same input signals,
which are the noise reference signals coming from the BM. The
j-th MISO system can represent the input signals in an L×P (j)

reference noise matrix X
(j)
n,k:

X
(j)
n,k =

[

xn,k xn−1,k . . . xn−P (j)+1,k

]

(2)

=

















xk [n] · · · xk

[

n− P (j) + 1
]

xk [n− 1] · · · xk

[

n− P (j)
]
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...

xk [n− L+ 1] · · · xk

[

n− P (j) − L+ 2
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where P (j) represents the projection order for all the fil-

ters of the j-th MISO system. We denote with w
(j)
n,k =

[

w
(j)
k [n] , w(j)

k [n− 1] , . . . , w(j)
k [n− L+ 1]

]T

the L×1 co-

efficient vector of the k-th filter belonging to the j-th MISO
system, with j = 1, . . . , 4, at n-th time instant. Each filter
of the ANC is adapted according to the fast affine projection

FAP Algorithm

1. Initialization: R0,k = δIP , ε̂0,k = 0, Ê0,k = 0

2. Rn,k = Rn−1,k +X
"P#T

n,k X
"P#
n,k −X

$P%T

n−1,kX
$P%
n−1,k

3. rn,k = [Rn,k [n− 1] , . . . ,Rn,k [n− P + 1]]

4. yk [n] = wT
n,kxn,k + rn,kε̂n,k

5. ek [n] = d [n]− yk [n]

6. En,k =





µek [n]

(1− µ) Ên−1,k





7. Ên,k = [Ek [n] , . . . , Ek [n− P ]]T

8. gn,k = R−1
n,kEn,k

9. εn,k =





0

ε̂n−1,k



+ gn,k

10. ε̂n,k = [ε̂k [n] , . . . , ε̂k [n− P ]]T

11. wn,k = wn−1,k + εk [n− P + 1]xn−P+1,k

Table 1: Summary of FAP algorithm.

(FAP) algorithm [6], which is summarized in Table 1, omitting
the MISO system index for a better comprehension.

It is well known that the combination of filters of different
families of algorithms can improve the tracking capabilities of
the whole system [7]. In particular, important results can be
achieved combining a family of gradient-based algorithms and
a family of Hessian-based algorithms [7]. Taking into account
this point, a first distinction between the four MISO systems
can be made choosing different values for the projection order.
In fact, for P (j) = 1 the FAP algorithm turns into the NLMS
algorithm yielding gradient-based properties, while for P (j) >
1 the FAP algorithm preserves its Hessian nature. Therefore,
we set P (j) = P1 = 1 for j = 1, 2, and P (j) = P2 > 1
for j = 3, 4. This choice will affect the second-stage convex
combination. The second stage combination is a system-by-
system combination scheme. On the other hand, the convex
combination of the first-stage will involve the MISO systems
having the same projection order. In particular, the first stage
involves two different convex combinations, one for systems
j = 1, 2 and another one for systems j = 3, 4. In this case we
differentiate the systems according to the step size value µ(j):
we choose a small step size µ(j) = µ1 for j = 1, 3 and a large
step size µ(j) = µ2 for j = 2, 4. In this way we further improve
the mean-square performance of the adaptive filtering [8]. The
kind of combination scheme performed in the first stage is the
filter-by-filter scheme.

Let i = 1, 2 the index which refers to the convex combi-
nation of the first stage. As it is possible to see in Fig. 2, con-
sidering the i-th combination, the k-th filter output of the first
MISO system, is convex combined with the correspondent k-th
filter output of the second MISO system, yielding K outputs,

denoted as z
(i)
k [n], each related to a noise reference:

z
(i)
k [n] = λ

(i)
k [n] y(j)

k [n] +
(

1− λ
(i)
k [n]

)

y
(j+1)
k [n] (3)

where, in this case, the system index is j = 1 when i = 1,
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Figure 2: Multi-stage collaborative adaptive noise canceller.

and j = 3 when i = 2. In (3), λ
(i)
k [n] represents the k-th

mixing parameter of the i-th combination of the first stage, and
it is updated using a gradient descent rule through the adapta-

tion of an auxiliary parameter, a
(i)
k [n], related to λ

(i)
k [n] by the

expression λ
(i)
k [n] = sgm

(

a
(i)
k [n]

)

, according to [8]:

a
(i)
k [n+ 1] = a

(i)
k [n] + (4)

+
µa

q
(i)
k [n]

e
(j)
k [n+ 1]∆e

(i)
k [n+ 1]λ(i)

k [n]
(

1− λ
(i)
k [n]

)

where ∆e
(i)
k [n+ 1] = e

(j+1)
k [n+ 1] − e

(j)
k [n+ 1], µa is a

common step size value for the adaptation of each auxiliary pa-

rameter; q
(i)
k [n] = βq

(i)
k [n− 1] + (1− β)

(

∆e
(i)
k [n+ 1]

)2

is the estimated power of ∆e
(i)
k [n+ 1], and β is a smoothing

factor.
In the second stage a system-by-system convex combina-

tion is carried out between the two outputs yielded by the first
stage. The second-stage output signal, denoted with z [n], rep-
resents the overall ANC output:

z [n] = η [n]
K−1
∑

k=0

z
(1)
k [n] + (1− η [n])

K−1
∑

k=0

z
(2)
k [n] (5)

where η [n] is the mixing parameter of the second stage, adapted
using an auxiliary parameter, similarly to (4).

Once computing the second stage convex combination, it is
possible to derive the overall beamformer output signal e [n]:

e [n] = d [n]− z [n] . (6)

The multi-stage collaborative architecture presented above im-
proves the tracking capabilities of the ANC [7], giving robust-
ness to the overall beamforming system in presence of nonsta-
tionary interfering signals.

4. Simulation Results

In the this section we carry out two different sets of experi-
ments: the first set aims to assess the effectiveness of the multi-
stage collaborative filtering adopted in the proposed beamform-
ing architecture; the second set of experiments is performed to
evaluate the proposed beamforming architecture for speech en-
hancement application in multisource environments. Both the
experiments take place in a 10× 6, 6× 3 m room with a rever-
beration time of T60 = 150 ms.

4.1. Evaluation of the Multi-stage Collaborative Filtering

In the first set of experiments, in order to prove the effectiveness
of the multi-stage collaborative filtering, we analyze a single-
channel (i.e. K = 1) acoustic echo cancelling application, in
which the acoustic environment changes due to a nonstationary
source or to an alteration in the environemental conditions. The
AIR is simulated by means of Roomsim, which is a Matlab tool
[10]; the AIR is measured by using an 8 kHz sampling rate and
it is truncated after L = 300 samples. The length of the experi-
ment is t = 10 s. Furthermore, an independent white Gaussian
noise with zero mean and unit variance is added as background
noise, in order to provide 20 dB of signal to noise ratio (SNR).
In order to introduce an abrupt change in the environment, we
shift the AIR circularly to the right by 50 samples, 5 s after the
start of the adaptive process. We choose the following parame-
ter settings: µ1 = 0.1, µ2 = 0.9, P1 = 1, P2 = 2, δ = 30σ2

xk
,

where σ2
xk

is the power of the input signal. In order to measure
the filtering performance we use the normalized misalignment
M, expressed in dB, defined as:

M = 20 log10







∥

∥

∥
hn − ĥ

(j)
n,k

∥

∥

∥

2

‖hn‖2






(7)

where hn is the AIR column vector, and ĥ
(j)
n,k is the estimated

filter.
Figure 3 displays the performance results; it is possible

to see that the multi-stage collaborative filtering exploits the
tracking capabilities of all the four filters, always taking the be-
haviour of the best performing filtering. Furthermore, in Fig. 4
it is possbile to notice the behaviour of the three mixing parame-
ters, λ(1) [n] and λ(2) [n] related to the first-stage combination,
and η [n] related to the second-stage combination. Observing
Fig. 4 it’s still more easy to comprehend the collaboration be-
tween the four different filterings.

4.2. Evaluation of the Collaborative Beamformer

In the second set of experiments we assess the effectiveness of
the proposed beamforming architecture in terms of speech en-
hancement. The scenario is the same of the previous simula-
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Figure 3: Normalized misalignment comparison.

tions; in this case the source of interest is a female speaker lo-
cated 50 cm from the center of the microphone array. Two inter-
fering pink noise sources are located respectively 1, 2 m and 2, 2
m from the center of the microphone interface; the first source
is on the right of the speaker and the second is on the left. White
Gaussian noise is added at microphone signals as diffuse back-
groud noise. The overall input SNR level, measured for each
microphone signal, is of about 5 dB. The microphone interface
is a common uniform linear array (ULA) composed of 5 omni-
directional sensors equally spaced with a distance of 4 cm. In
order to introduce a change in the acoustic environment, after 5
s from the start of the experiment, we move the two interfering
sources 50 cm to the right, keeping unchanged their distance
from the center of the array. The enhancement of the speech,
provided by the beamformer, and the resulting noise reduction,
are usually associated with an SNR improvement, defined as
[9]:

SNR = 10 log

[

E
{

u2
in [n]

}

E {u2
in [n]}− E {u2

out [n]}

]

(8)

where uin [n] is the generic input clean signal and uout [n] is
the processed signal. The operator E {·} is the mathematical
expectation. We compute the SNR level over the total length
of the experiment (0 − 10 s) and also in 4 different time sub-
intervals: in the first transient state, from 0 − 2 s; in the fol-
lowing steady state from 2 − 5; from 5 − 7 s to evaluate the
new transient state after the path changes; in the following new
steady state from 7 − 10 s. We compare the proposed multi-
stage collaborative (MSC) GSC with four simple GSC beam-
formers, each having one of the MISO system used in the MSC
architecture. The results are collected in Table 2 2, in which it
is possible to notice the behaviour of the different beamformers
and their contribution to the noise reduction in terms of SNR
improement. However, it is evident from Table 2 that the best
performing architecture is the proposed MSC GSC.

5. Conclusions

In this paper we have introduced a new beamforming technique
whose trademark relies on the use of a multi-stage collabora-
tive filtering in the ANC block. The multi-stage collaborative
structure is composed of four different MISO systems; in the
first stage we carry out the convex combinations of MISO sys-
tems adapted by the same family of algorithms in order to find
the best configuration for each kind of system. Then, in the
second stage, the two combination outputs are combined in or-
der to give robustness to the beamformer in nonstationary en-
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Figure 4: Mixing parameter behaviours.

GSC 0-2 s 2-5 s 5-7 s 7-10 s 0-10 s

NLMS, µ1 13.2 22.7 12.5 22.5 15.2

NLMS, µ2 15.1 17.3 15.8 18.2 16.1

FAP, µ1 15.2 22.6 13.1 23.7 17.9

FAP, µ2 17.4 18.5 17.1 19.6 17.8

MSC 24.6 31.2 26.7 32.3 28.5

Table 2: SNR comparison in dB.

vironments. The proposed architecture is evaluated in terms of
convergence performance and SNR improvement in speech en-
hancement applications, in which the multi-stage collaborative
beamformer outperforms standard beamforming techniques.
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