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Abstract

In this work an exemplar-based technique for speech enhance-
ment of noisy speech is proposed. The technique works by find-
ing a sparse representation of the noisy speech in a dictionary
containing both speech and noise exemplars, and uses the ac-
tivated dictionary atoms to create a time-varying filter to en-
hance the noisy speech. The speech enhancement algorithm
is evaluated using measured signal to noise ratio (SNR) im-
provements as well as by using automatic speech recognition.
Experiments on the PASCAL CHiME challenge corpus, which
contains speech corrupted by both reverberation and authentic
living room noise at varying SNRs ranging from 9 to -6 dB,
confirm the validity of the proposed technique. Examples of en-
hanced signals are available at http://www.cs.tut.fi/
˜

tuomasv/.
Index Terms: speech enhancement, exemplar-based, noise ro-
bustness, sparse representations

1. Introduction

Recognizing speech — either by humans or by machines — in
noisy environments remains a difficult problem. A large number
of algorithms have been proposed in the literature to address the
problem of mitigating the effect of noisy environments on the
speech signal. Many of these methods, however, are only effec-
tive when speech is corrupted by stationary noise [1, 2], or rely
on statistical models of the corrupting noise [3, 4]. Some meth-
ods achieve impressive performance when a detailed model of
the noise is available [6], but their performance on modelling
unseen noise environments is limited.

In this work, we present a non-parametric, speech enhance-
ment method for noisy speech that models noisy speech as a
combination of speech and noise. As such, it is very similar
to the source separation approaches based on Probabilistic La-
tent Component Analysis (PLCA) or Non-negative Matrix Fac-
torisation (NMF), largely pioneered by Smaragdis et al. [5].
In this work, however, we build on earlier work on template-
based sparse representations [7, 8, 9, 10] and we represent
Mel-spectral representations of noisy speech as a sparse, non-
negative linear combination of exemplars: spectrographic rep-
resentations of speech spanning 20 frames (200 ms). First a lin-
ear combination is found by finding the smallest number of ex-
emplars in a very large collection of speech and noise exemplars
(a dictionary) that jointly approximates the observed speech sig-
nal. After obtaining this sparse representation, Mel-spectral re-
constructions of the underlying speech and noise sources are
created using the weights of the linear combination of exem-
plars. These are then used to create a time-varying filter to en-
hance the noisy speech signal.

In comparison to conventional speech enhancement meth-
ods, the proposed method has some interesting characteristics.
First, since the weights of the speech and noise exemplars are
estimated based on a noisy utterance, it does not require an ex-
ternal noise estimator, instead, the speech and noise character-
istics are estimated jointly from the noisy signal. Second, since
the weights are estimated separately for each 200 ms segment,
the method allows modelling non-stationary noises. Third, as
the method is exemplar-based both the speech dictionary and
the noise dictionary can accurately model many different speak-
ers and noises, to the limit of computational feasibility. At the
same time, its exemplar-based nature means the dictionaries can
be changed on-the-fly: for example, if more knowledge on the
corrupting noise becomes available, these noise frames can be
added to the noise dictionary.

We explore the effectiveness of the speech enhancement
method using the PASCAL CHiME challenge data. CHiME
contains speech corrupted by both reverberation and authentic
living room noise at varying signal to noise ratios (SNRs) rang-
ing from 9 to -6 dB. As the speaker identities are assumed to
known in the challenge, the speech dictionary will be speaker-
dependent. We will use two different noise dictionaries: a fixed
dictionary that contains random noise exemplars from the pro-
vided background noise data, and an adaptive dictionary that
is created on the fly from the background noise surrounding
of each noisy utterance to be processed. The method will be
evaluated using both SNR measurements of the clean and noisy
reconstructed speech as well as by using an automatic speech
recognition (ASR) system. Out of interest for ASR applications,
we investigate to what extent speech recognition accuracy can
improve using re-training and multi-condition methods.

The rest of the paper is organised as follows. The exemplar-
based speech enhancement method is described in Section 2.
The experimental setup, such as the CHiME database, the im-
plementation details of the speech enhancement technique and
the speech recognition system are described in Section 3. The
SNR measurement and speech recognition results are presented
in Section 4 and discussed in Section 5. Conclusions and sug-
gestions for future work are given in Section 6.

2. Method

The speech enhancement technique employed in this paper is
based on representing the signal using magnitudes in the Mel-
spectral domain. The input signal is windowed into frames, and
a discrete Fourier transform (DFT) of each frame is taken. The
absolute values of the DFT in each frame are stored into a vec-
tor. The magnitudes in Mel-frequency bands are obtained by
multiplying the vector by matrix B, where each row of the ma-
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trix is the magnitude response of a single Mel band for the DFT
frequencies. We use triangular responses which overlap 50%.
The above processing is applied in each frame, and the result-
ing values are stored into a B ⇥ T noisy speech spectrogram
matrix Y (with B Mel-frequency bands and T time frames).

2.1. Exemplar-based representation of noisy speech

We assume Y is a linear addition of underlying clean speech S

and noise N magnitude spectrograms. To simplify the notation,
the columns of each matrix are stacked into the vectors y, s and
n, respectively, each of length D = B · T

We model s as a sparse, non-negative linear combination of
example speech spectrograms exemplars, which are extracted
from the training data. The exemplars are denoted as a

s
j , with

j = 1, . . . , J denoting the exemplar index. Accordingly, the
noise spectrogram is modelled using K noise exemplars: a

n
k,

with k = 1, . . . ,K.
We then write:
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with x

s and x

n sparse representations of the underlying speech
and noise, respectively. In order to obtain x, we minimize the
cost function:

d(y,Ax) + ||� .⇤ x||1 s.t., x � 0 (5)

where d is the generalized Kullback-Leibler (KL) divergence
and the second term a sparsity inducing L-1 norm of the acti-
vations weighted by element-wise multiplication (operator .⇤)
with vector � = [�1 �2 . . .�E ]. The cost function (5) is mini-
mized using a multiplicative updates routine as in [8].

2.2. Speech enhancement

Let us denote speech exemplar j spectrum and noise exemplar
k spectrum in frame t as as

j,t and a

n
k,t, respectively.

The model for the clean speech spectrum, and model for the
noise spectrum are given as

˜

st =

JX

j=1
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s
j,t. (6)

˜

nt =

KX

k=1

x

n
ka

n
k,t. (7)

In order to decode utterances of arbitrary lengths, we adopt
a sliding time window approach as in [8]. In this approach, we
represent a noisy utterance as a number of fixed-size, overlap-
ping speech segments, each of length T . For each segment,
we calculate clean speech estimates ˜st and noise estimates ˜

nt

as described above. For the entire utterance, the segment-wise
estimates are averaged over the overlapping windows, to get a
single clean speech and noise estimate per each frame t. The
spectral estimates of speech and noise averaged over windows
are denoted with vectors ˆst and ˆ

nt, respectively.

Table 1: SNR measurements on development set. The rows
“Enhanced-fixed” and “Enhanced - adaptive” refer to speech
enhancement with a fixed or adaptive noise dictionary, respec-
tively.

SNR (dB) -6 -3 0 3 6 9
Noisy speech -7.0 -4.8 -2.5 -0.2 2.0 3.8

Enhanced - fixed -2.2 -1.2 0.2 1.7 3.1 4.2
Enhanced - adaptive -2.8 -1.6 0.0 1.6 3.1 4.4

Incidentally, the use of a sliding window approach is an al-
ternative for a de-convolution approach [5] in which exemplars
can be placed at arbitrary positions in the spectrogram. Theo-
retically, the use of deconvolution would alleviate the need for
time-shifted exemplars in the dictionary [11]. However, pilot
tests revealed that in our experimental setup, the use of decon-
volution yields the same separation quality at the cost of roughly
a factor two in computational effort.

We design a DFT-domain filter magnitude response vector
ht for each frame t as

ht = B

T
ˆ

st ./(B
T
ˆ

st +B

T
ˆ

nt), (8)

with ./ denoting element-wise division. The multiplication by
B

T maps the Mel magnitude vectors to the DFT domain. We
also tried mapping the Mel magnitude vectors by multiplication
with the pseudo-inverse of B. It produced marginally better
results in some test scenarios, but was not used in simulation
results shown in this paper.

Element-wise multiplication between the complex DFT
vector of noisy speech in frame t and the corresponding filter
magnitude response above is calculated to obtain an enhanced
complex spectrum. The enhanced spectrum is transformed into
time domain by taking inverse DFT. Frames are combined using
overlap-add to get the whole enhanced signal. Example samples
are available at http://www.cs.tut.fi/

˜

tuomasv/

3. Experimental setup

3.1. Database

The PASCAL ‘CHiME’ Speech Separation and Recognition
Challenge 1 is designed to address some of the problems oc-
curring in real word noisy speech recognition. The challenge
data is based on the GRID corpus [12], in which 34 speakers
read simple command sentences. These sentences are of form
verb-colour-preposition-letter-digit-adverb. There are 25 dif-
ferent ‘letter’ class words and 10 different digits. Other classes
have four word options each. When doing automatic speech
recognition, the recognition accuracy is the percentage of cor-
rectly recognised letter and digit keywords.

CHiME utterances simulate a scenario, where sentences are
spoken in a noisy living room. The original, clean speech utter-
ances are reverberated according to the actual room response,
and then mixed to selected noise sections, which produce the
desired SNR mixture level for each noisy set. The noisy sets
have target SNR levels of 9, 6, 3, 0, -3 and -6 dB.

For modelling/training, there are 500 reverberated utter-
ances per speaker (no noise), and six hours of background noise
data. The development and test sets consist of 600 utterances
at each SNR level, Additionally, noiseless (only reverberation)

1http://www.dcs.shef.ac.uk/spandh/chime/challenge.html
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development utterances are available. Development and test ut-
terances are both given in a strictly endpointed format, but also
as embedded signals within a longer noise context. All data is
stereophonic and has a sampling rate of 16 kHz.

3.2. Dictionary selection

In our speech enhancement experiments, we used a dictionary
A consisting of 5000 speech and 5000 noise exemplars with
T = 20. In exemplar-based sparse classification [9], using 20
adjacent frames to model the temporal modulations was found
sufficient to distinguish well between speech and noise by mod-
eling their temporal modulations. On the other hand, very dif-
ferent time-frequency resolutions such as the DFT spectrum
in individual 60 ms frames have been found to produce good
exemplar-based enhancement for speech recognition [10].

We created two different dictionaries for each speaker. In
the first, the 5000 noise exemplars are randomly extracted from
the provided background noise data. The second set is different
for each test utterance, and there 5000 noise exemplars are se-
lected by sampling the neighbourhood of embedded utterances
in both directions with a shift of 4 to 7 frames, excluding loca-
tions where other test utterances were embedded.

In both dictionaries, the speech part of the dictionary is
formed by constructing an initial speech dictionary for the spe-
cific speaker by extracting exemplars from a randomly selected
subset of 60% of the noiseless speech training utterances, us-
ing a random frame shift of 4 to 8 frames. This resulted in
an initial dictionary containing approximately 10000 to 17000
partially overlapping exemplars for each speaker. These were
then reduced to a fixed size of 5000 exemplars by selecting ex-
emplars such that there is a maximally flat coverage between
words. This is done because in the initial dictionary, words from
classes with fewer options are overrepresented.

Finally, each speaker-dependent dictionary was reweighted
to have equal Euclidean norm over Mel bands and exemplars.
During feature extraction for speech enhancement, the same
band weights were applied to the noisy utterances to unify the
scale of bands.

3.3. Speech enhancement

The speech enhancement method requires, in addition to the
noisy speech signal, mel-spectral magnitude features. These
were calculated from partially overlapping 25 ms frames with
a shift of 10 ms between frames. We used 26 Mel bands,
which matches the number of bands used for the default CHiME
MFCC models. Features were extracted separately for both
stereo channels, thus effectively doubling the number of fea-
ture bands. Using a low-resolution frequency representation (26
Mel bands) makes the exemplars less sensitive to the pitch and
allows us to represent a wide range of spectral shapes without
the need to model all the phoneme-pitch combinations.

In the sparsity penalty matrix � we use two different val-
ues, one for speech exemplars and another for noise exemplars.
These were tuned on a random subset of the development set
by maximising recognition accuracy using the exemplar-based
classification system described in [8]. The tuned values are 2.0
and 1.7 for speech and noise exemplars, respectively. Although
the speech enhancement method uses binaural features to find a
sparse representation, the resulting time-varying filter is applied
to mono waveforms (the average of binaural waveform) because
the subsequent analysis does not exploit the binaural nature of
the signals.

The SNRs of the enhanced signals, also known as the

signal-to-distortion ratio (SDR) [13], were calculated as

SNRdB = 10 log10

P
n y(n)

2

P
n(y(n)� ŷ(n)

2
)

. (9)

Above y(n) is the original signal as the function of time n and
ŷ(n) is the corresponding enhanced signal.

3.4. Speech recognition

For speech recognition experiments, we used the HTK recog-
nition setup provided by the CHiME challenge organisers. In
brief, the recogniser works on mean-normalised 12 -band Mel-
cepstral features and their delta and delta-delta derivatives. If
the speech is binaural, the two channels are averaged prior to
feature extraction. The recogniser employs whole-word mod-
els ranging from 4 tot 10 states per word, with each state de-
scribed by 7 Gaussian mixtures. The employed models are
speaker-dependent, and trained by performing 4 more itera-
tions of EM training on a speaker-independent model using the
speaker-specific training utterances.

We experimented with several acoustic models. The base-
line model is trained using the reverberant ‘clean’ training sig-
nals and is not retrained on noisy signals. We also trained a
multi-condition model by doing another 4 iterations of speaker-
dependent retraining using both clean training utterances as
well as the noisy, speaker-dependent development utterances.
In addition, we train acoustic models that are (partly) based
on speech processed with the enhancement method. For the
‘clean’ model, we first apply speech enhancement to those 40%
of training utterances that were not used for extracting exem-
plars in the speech dictionary. As no adaptive noise dictionary
can be constructed for these clean utterances, only the fixed
noise dictionary was used. The enhanced-clean acoustic model
was then constructed using the provided training recipe. For
the multi-condition models, we retrained this enhanced-clean
model with another 4 iterations of speaker-dependent retrain-
ing using both partly-enhanced clean training utterances as well
as the enhanced, noisy, speaker-dependent development utter-
ances. This was done both using the fixed noise dictionary and
the adaptive noise dictionary.

4. Results

4.1. SNR measurements

We carried out SNR measurements of the enhanced noisy
speech using the development set, for which clean speech ut-
terances are provided. This was done both using the fixed noise
dictionary as well as the adaptive noise dictionary. For compar-
ison, we also did the SNR measurement on the original noisy
utterances. The measured average SNRs are shown in Table 1.

Note that the measured SNR levels of the original noisy
utterances do not match the corresponding SNR level designa-
tions. This is mainly due to the fact that during the creation
of the CHiME database, SNR measurements were done using
high-pass filtered noise utterances.

In order to evaluate the effect of the enhancement algorithm
on clean speech, we also carried out an SNR measurement of
enhanced clean speech using those 40% of training utterances
that were not used for extracting exemplars in the speech dic-
tionary. Only the fixed noise dictionary was used. The average
SNR on these 6800 utterances was 18.9, with a standard devia-
tion of 2.8.
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Table 2: Speech recognition accuracies using the CHiME baseline acoustic model. The rows “Enhanced-fixed” and “Enhanced -
adaptive” refer to speech enhancement with a fixed or adaptive noise dictionary, respectively.

(a) Development set

SNR (dB) -6 -3 0 3 6 9 inf
Noisy speech 31.1 36.8 49.1 64.0 73.8 83.1 94.2

Enhanced - fixed 44.5 54.5 64.8 75.5 82.8 87.7 -
Enhanced - adaptive 37.9 48.4 59.5 71.3 79.2 85.9 -

(b) Test set

SNR (dB) -6 -3 0 3 6 9
Noisy speech 30.3 35.4 49.5 62.9 75.0 82.4

Enhanced - fixed 45.2 54.3 67.3 75.0 83.8 87.8
Enhanced - adaptive 48.2 58.5 71.8 78.0 85.0 88.5

Table 3: Speech recognition accuracies using an acoustic model trained on enhanced clean speech, where the clean speech is enhanced
using the fixed noise dictionary. The rows “Enhanced-fixed” and “Enhanced - adaptive” refer to speech enhancement with a fixed or
adaptive noise dictionary, respectively.

(a) Development set

SNR (dB) -6 -3 0 3 6 9 inf
Noisy speech 31.4 35.9 49.2 61.8 73.3 83.5 94.2

Enhanced - fixed 46.3 54.5 66.3 75.5 83.3 87.2 -
Enhanced - adaptive 39.4 49.1 59.8 71.6 80.6 86.9 -

(b) Test set

SNR (dB) -6 -3 0 3 6 9
Noisy speech 30.3 34.8 47.9 60.8 74.1 82.9

Enhanced - fixed 44.9 54.7 68.1 76.3 84.5 89.0
Enhanced - adaptive 49.3 58.3 70.5 77.3 85.8 88.9

Table 4: Speech recognition accuracies using a multi-condition acoustic model. The rows “Enhanced-fixed” and “Enhanced - adaptive”
refer to speech enhancement with a fixed or adaptive noise dictionary, respectively. The rows “Noisy speech” are recognised using an
acoustic model trained on clean speech and noisy development data. The rows “Enhanced - fixed” are recognised using a model trained
on enhanced clean speech (fixed dictionary), which was then refined using development data enhanced with a fixed dictionary. The
rows “Enhanced - adaptive” are recognised using a model trained on enhanced clean speech (fixed dictionary), which was then refined
using development data enhanced with a adaptive dictionary.

(a) Development set

SNR (dB) -6 -3 0 3 6 9 inf
Noisy speech 81.8 86.7 93.1 96.8 98.7 99.6 99.75

Enhanced - fixed 89.9 94.5 97.5 99.0 99.8 99.8 -
Enhanced - adaptive 87.3 92.2 97.1 98.7 99.8 99.8 -

(b) Test set

SNR (dB) -6 -3 0 3 6 9
Noisy speech 34.7 40.9 50.8 61.7 72.0 80.1

Enhanced - fixed 49.3 57.4 68.9 76.6 83.5 86.3
Enhanced - adaptive 52.8 59.4 69.2 76.1 84.1 87.2

4.2. Speech recognition

We carried out speech recognition experiments using three
types of acoustic models (cf. Section 3.4). The ‘baseline’
acoustic model is provided by the CHiME organisers and is
trained on clean speech (only reverberated). Recognition results
using this acoustic model for the original noisy speech, as well
as the enhanced speech with fixed or adaptive noise dictionar-
ies are shown in Table 2. A second acoustic model was created
by training on enhanced clean speech, shown in Table 3. Fi-
nally, recognition was carried out using multi-condition trained
models. For brevity, in Table 4 only the results are shown of
the corresponding acoustic model, e.g. the recognition results
for the enhanced speech using an adaptive dictionary were ob-
tained using a multi-condition model trained on development
data enhanced with an adaptive dictionary.

5. Discussion

5.1. Effectiveness of speech enhancement

The results in Table 1 show that both variants of exemplar-based
speech enhancement — using a fixed or adaptive noise dictio-
nary — improve the measured SNR substantially. Also in Ta-
bles 2-4 it can be observed that speech recognition on the en-
hanced speech achieves substantially higher accuracies, both at
low and high SNRs.

5.2. Influence of noise dictionary

With the exception of the highest SNR level, speech enhance-
ment using a fixed noise dictionary achieves slightly higher
SNR improvements, as shown in Table 1. Likewise, substan-
tially higher recognition accuracies are obtained on the devel-
opment set using a fixed noise dictionary.

On the test set however, speech enhancement using an adap-
tive dictionary performs better than speech enhancement using
a fixed noise dictionary, although the differences are smaller. In
Table 2 it can be observed that the baseline recognition scores
differ only slightly between the test and development set, indi-
cating that it is not very likely that the test set is much more
difficult than the development set. A more likely explanation is
that the chosen sparsity values, that were tuned on development
data using a fixed dictionary, are over-trained on the develop-
ment set and suboptimal for the enhancement with an adaptive
dictionary.

5.3. Retraining the acoustic model

When speech enhancement is used as a noise robustness front-
end prior to speech recognition, it is common practise to adapt
or retrain the acoustic models used by the ASR system to ac-
count for the artefacts the speech enhancement process intro-
duces. Often, this improves the results substantially since ASR
systems are very sensitive to the artefacts created by speech en-
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hancement, such as musical noise.
Comparing the results in Tables 2 and 3, we can observe

that retraining the acoustic models on enhanced clean speech
generally improves the speech enhancement recognition results,
both on the development data as on the test set. As expected, no
consistent improvement can be observed on the original noisy
speech.

At the same time, the benefit of retraining the acoustic
model is only slight. This may indicate that the distortions in-
troduced by the speech enhancement method are not severe, a
hypothesis supported by the high SNR on clean speech reported
in Section 4.1.

5.4. Multi-condition training

As a final approach to improving speech recognition by adapt-
ing the acoustic model, we consider multi-condition train-
ing. Multi-condition training is a straightforward approach to
achieving noise robustness, but is known to suffer from a lack
of generalisability to unseen conditions and a reduced perfor-
mance on high-SNR speech.

Comparing Tables 2 and 4 we can observe that when doing
noisy speech recognition using a multi-condition trained acous-
tic model, the performance on the development set increases
enormously, because we are now effectively testing on the train-
ing data. At the same time, we observe that on the test set, re-
sults only improve at SNRs < 3dB, and the improvement is
far smaller. This confirms the conventional wisdom on multi-
condition training.

In combination with speech enhancement, a very similar
effect can be observed, resulting in a trade-off between low
and high SNR accuracy. Interestingly, the benefit of speech en-
hancement with a fixed noise dictionary using a multi-condition
trained model seems slightly larger than speech enhancement
using an adaptive dictionary. This may be due to the fact that
thanks to the fixed dictionary, the speech enhancement makes
more consistent errors which can be learned and compensated
by the acoustic model.

6. Conclusions and future work

We proposed an exemplar-based technique for speech enhance-
ment of noisy speech. The technique works by finding a sparse
representation of the noisy speech in a dictionary containing
both speech and noise exemplars, and uses the activated dictio-
nary atoms to create a time-varying filter to enhance the noisy
speech.

The speech enhancement algorithm was evaluated using
measured SNR improvements as well as by using automatic
speech recognition. Experiments on the PASCAL CHiME chal-
lenge corpus, showed substantial improvements, both in mea-
sured SNR and in speech recognition accuracy. It was shown
that on the unseen test data, using a adaptive noise dictionary
performed better than a fixed noise dictionary, and that the
speech recognition results can be improved by retraining of the
acoustic models.

In future work, we plan on a more through investigation of
the impact of feature dimension, amount of time context and
sparsity penalty values on speech enhancement quality. Also,
we plan on refining the speech enhancement method, for exam-
ple by performing multiple iterations of speech enhancement.
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