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Abstract—The task of the CHiME challenge is to separate
distant speech from noise and recognize the commands being
spoken. We propose a separation approach suitable for the
CHiME data that relies on the existence of a speech-only
recording and assumes fixed positions of the speaker and hearer
and stationary reverberant conditions. Using the clean speech
segment, a filter that suppresses the target speech is designed.
Then, its output provides an estimate of the noise, when the noise
is present and comes from different positions. The estimated noise
is suppressed from original recordings by an adaptive filter, which
outputs the enhanced target signal. The experiments with CHiME
data show that this approach improves the keyword recognition
accuracy by 7–27%.

I. INTRODUCTION

PASCAL CHiME speech separation and recognition chal-
lenge (CHiME) considers the problem of distant speech recog-
nition in a noisy environment. The task is to process a dataset
that consists of short utterances of a speaker who is standing
in a fixed position that is about 2 meters distant from a dummy
head. The utterances are short commands of a fixed structure
and are mixed with natural background noises at various
signal-to-noise levels. The task to recognize the utterances
posses a challenge for several signal processing disciplines
such as audio source separation, feature extraction, or robust
speech recognition [1].

In this paper, we focus on the separation of the target speech
signal from noise, which can be considered as a part of a more
complex solution. We apply a simple separation approach that
is based on the fact that the positions of the speaker and of the
dummy head are fixed. Specifically, using a short noise-free
recording of the speaker, we design a time-invariant MISO
filter that, applied to signals from microphones, suppresses
the source coming from the position of the speaker. Since
the recordings are obtained by two microphones (the binaural
setup), the non-target sources remain in the filtered signal,
which provides an estimate of the noise. Then, the estimated
noise is suppressed from original recordings by a time-variant
filter (masking), which outputs the enhanced target signal.

Many two-microphone noise reduction techniques have al-
ready been proposed [2]. The basic idea considered here was
already used, e.g., in [3] or [4] or in much earlier works cited
therein. Compared to [3], we estimate the noise signals using
time-invariant filter, which is effective on CHiME data thanks

to the fixed position of the speaker. Next, we apply the adaptive
(masking) filter to the sum of channels, that is, not to each
channel separately as in [3], which was used to preserve the
binaural hearing allowing source localization. Since in CHiME
datasets the speaker is standing directly in front of the dummy
head, the sum of both channels already slightly improves the
signal-to-noise ratio.

We evaluate the performance of the separation in terms
of two standard measures, i.e., by the Signal-to-Noise Ratio
(SNR) and Signal-to-Distortion Ratio (SDR). The performance
is also measured in terms of keyword recognition accuracy
achieved by a baseline recognizer provided within the CHiME
challenge. The recognizer is originally trained on a database of
noise-free data. On a testing set of noise-free data it achieves
the keyword recognition accuracy about 93%, while on the
noisy data it achieves 31–83% depending on the noise level.
We show that the recognition of enhanced noisy signals by
the approach proposed here is improved by up to 27%.

The following section describes the problem and the pro-
posed separation approach for the task. The experimental
evaluations and comparisons conducted on CHiME data are
provided by Section III. Section IV concludes the paper and
outlines further perspectives.

II. THE MODEL AND SOLUTION

A CHiME recording can be described by

xL(n) = {hL ⇤ s}(n) + yL(n),

xR(n) = {hR ⇤ s}(n) + yR(n)
(1)

where n is the time index, ⇤ denotes the convolution, xL(n)
and xR(n) are, respectively, the signals from the left and right
microphone, s(n) is the speaker’s signal, and yL(n) and yR(n)
are noise signals that are usually strongly correlated or even
correspond to one noise signal only that is differently filtered
on each channel. The microphone-source impulse responses
denoted by hL(n) and hR(n) are the same in all recordings
since the positions of the microphones and of the speaker are
fixed.

A. Noise Estimation by Target Signal Cancellation

To cancel the target signal s(n) by filtering and suppressing
xL(n) and xR(n), the need is, generally, to find filters gL(n)
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and gR(n) such that

{gL ⇤ hL}(n) = {gR ⇤ hR}(n), (2)

because then the difference

{gL ⇤ xL}(n)� {gR ⇤ xR}(n) = {gL ⇤ yL}(n)� {gR ⇤ yR}(n)
(3)

does not contain the contribution of s(n) and provides infor-
mation about the noise signals.

To find the filters gL(n) and gR(n), a priori information
is needed. Here, we consider the situation when a noise-
free recording of the target is available, i.e., when yL(n) =
yR(n) = 0. Then, gL(n) and gR(n) can be searched by solving

{gL ⇤ xL}(n)� {gR ⇤ xR}(n) = 0. (4)

The solution of (4) is not unique. For example, gL(n) and
gR(n) could be, respectively, chosen as the inverse filters
of hL(n) and hR(n), which dereverberate the target signal
s(n). However, such filters are usually not causal, and they
seriously modify the spectra of the noise signals in (3), thereby
degrading the quality of the noise estimate.

The need is that the noise estimates provided by (3) are
as close to yL(n) or yR(n) as possible (in order to suppress
them from (1) in the further processing stage). This could
be formulated so that gL(n) and gR(n) are close to the unit
impulse function �(n) as much as possible. To this end, the
fact that hL(n) and hR(n) do not differ much, because the
microphones (ears) are close to each other, can be used.

For example, in [3], gL(n) is put equal to �(n), and (4)
is optimized subject to gR(n) only, and vice versa1. It means
that the target signal in one microphone is equalized to have
the same response as in the other microphone.

In case of the CHiME scenario, we propose to find an
equalizing filter g(n) such that it satisfies the condition

{g ⇤ xL}(n)� (xL(n) + xR(n))/2 = 0 (5)

(assuming noise-free recordings xL(n) and xR(n)). The rea-
son is that (xL(n)+xR(n))/2 might be even closer to xL(n)
(or symmetrically to xR(n)), therefore, g(n) might be closer
to �(n).

In [3], the equalizing filters gL(n) and gR(n) are pre-
learned by using the normalized least mean square algorithm
on noise-free data. In case of CHiME, we found that g(n)
can be computed non-adaptively using any noise-free utterance
available in the development CHiME dataset. The filter of a
given length g(n) is found as the solution of a least squares
problem

min
g

NX

n=1

⇣
{g ⇤ xL}(n)� (xL(n) + xR(n))/2

⌘2
, (6)

where N denotes the number of samples.

1Thanks to the symmetry, two different estimates of noise given by (2)
can be obtained, which is partly beneficial for the retrieval of stereo signal
preserving the binaural hearing.

B. Noise Subtraction

Once g(n) is given,

v(n) = {g ⇤ xL}(n)� (xL(n) + xR(n))/2 (7)

provides the estimate of noise in a noisy recording2. Since the
speaker is standing directly in front of the dummy head, it is
efficient to subtract the estimated noise from

u(n) = (xL(n) + xR(n))/2 (8)

by an adaptive filter applied to the signal in the time-frequency
domain [5].

In [3], a Wiener-like filter from [6] using a priori knowledge
of SNR is applied. Here, we apply a similar filter proposed in
[7] that is driven by a single parameter that allows a trade-off
between the achieved SNR and SDR.

Let U(k, `) and V (k, `) be the short-time Fourier transform
of u(n) and v(n), respectively, where k is the frequency index
and ` is the time-frame index. The filter is defined in the time-
frequency domain by

W (k, `) =
|U(k, `)|2

|U(k, `)|2 + ⌧ |V (k, `)|2 (9)

where ⌧ is a free non-negative parameter. The time-frequency
representation of the final output signal is defined through

b
S(k, `) = W (k, `)U(k, `). (10)

Note that for ⌧ = 0, W (k, `) = 1, so the signal u remains
unchanged. On the other hand, if both ⌧ and |V (k, `)| have
large values compared to |U(k, `)|, W (k, `) is close to zero,
which suppresses the (k, `)th time-frequency bin in the output
signal. It follows that ⌧ controls the achieved SNR and SDR,
and (9) could be seen as a “fuzzy” variant of the binary mask
proposed in [5].

III. RESULTS

This section summarizes the proposed separation approach
and describes the results when it was applied to the CHiME
development and final dataset of isolated utterances sampled
at the rate of 16 kHz. Each dataset contains 600 utterances at
6 different noise levels.

Initially, the filter g(n) of length 2000 taps was computed
by finding the minimum in (6) using a randomly chosen noise-
free utterance (from file s1_pgak4p.wav), whose length is
less than two seconds.

Next, we found it effective to remove frequencies below
70 Hz prior to further processing of the recordings. These fre-
quencies usually correspond to noise only and could have large
energy. To this end, we designed the high-pass Butherworth
filter f(n) of the fourth order with the cut-off frequency at
70 Hz.

Each noisy recording of the development and final dataset
was processed in the following steps.

2In [3], the noise estimates are yet equalized by minimizing the mean square
distance between them and original recordings xL and xR in order to restore
their spectra. In case of CHiME, we found that this equalization deteriorates
the final performance, so we did not apply it.
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TABLE I
AVERAGE RESULTS IN TERMS OF SNR IMPROVEMENT AND SDR

ACHIEVED ON THE DEVELOPMENT DATASET

original SNR level -6dB -3dB 0dB 3dB 6dB 9dB
⌧ = 1

SNR impr. [dB] 1.66 1.47 1.36 1.16 0.99 0.74
SDR [dB] 17.53 17.92 18.96 20.03 20.99 22.06

⌧ = 10
SNR impr. [dB] 4.34 3.81 3.38 2.82 2.26 1.65
SDR [dB] 7.89 8.09 8.87 9.57 10.21 10.82

⌧ = 50
SNR impr. [dB] 6.45 5.71 4.93 4.06 3.18 2.39
SDR [dB] 1.90 1.98 2.65 3.22 3.74 4.20

⌧ = 100
SNR impr. [dB] 7.33 6.50 5.58 4.61 3.60 2.78
SDR [dB] -0.59 -0.57 0.08 0.61 1.10 1.53

1) Apply the high-pass filter f(n) to xL(n) and xR(n) to
remove the low-frequency noise below 70 Hz.

2) Compute u(n) according to (8).
3) Using g(n), compute v(n) according to (7).
4) Apply the adaptive filter (9) to u(n) using the noise

estimate v(n); the length of frame in the short-time
Fourier transform is 1024 samples, and the shift of frame
is 32 samples.

5) Store the output signal into a file.

A. Resulting SNR and SDR on the Development Dataset

In case of the development dataset, the clear utterances are
provided, which allows the evaluation of SNR and SDR. Let
bs(n) denote an enhanced signal. It can be written as a sum of
two terms

bs(n) = es(n) + ey(n), (11)

where es(n) is the contribution of the target speech and ey(n) is
the residual noise. We define the SNR of the enhanced signal
bs(n) as

SNR =

PN
n=1 |es(n)|2PN
n=1 |ey(n)|2

, (12)

and the SDR of the enhanced signal as

SDR =

PN
n=1 |es(n)|2PN

n=1 |{(hL + hR)/2 ⇤ s}(n)� es(n)|2
, (13)

where N denotes the length of the recording.
The resulting SNR and SDR averaged over all 600 utter-

ances are summarized in Table I for each of the 6 noise
levels. The results are shown also for different choices of the
parameter ⌧ in (9). As expected, the results demonstrate that ⌧
controls the resulting SDR and SNR so that for higher values
of ⌧ SNR increases while SDR decreases, and vice versa.

B. Recognition Results

The processed datasets were sent to the baseline recognizer
provided by the CHiME organizers3.

The results are evaluated in terms of recognition accuracy of
keywords (i.e. percents of the letter and digit tokens recognized

3
http://www.dcs.shef.ac.uk/spandh/chime/PCC/data/

pcchome.tar.gz

TABLE II
KEYWORD RECOGNITION ACCURACY ACHIEVED ON THE DEVELOPMENT

DATASET

SNR level -6dB -3dB 0dB 3dB 6dB 9dB
untreated [%] 31.08 36.75 49.08 64.00 73.83 83.08

⌧ = 1
enhanced [%] 44.92 52.50 65.50 76.42 83.50 89.08

⌧ = 10
enhanced [%] 54.58 63.50 73.00 82.08 87.67 90.00

⌧ = 50
enhanced [%] 51.83 60.42 69.17 78.92 82.58 86.08

⌧ = 100
enhanced [%] 45.50 54.50 63.42 72.08 78.00 81.67

TABLE III
KEYWORD RECOGNITION ACCURACY ACHIEVED ON THE FINAL DATASET

SNR level -6dB -3dB 0dB 3dB 6dB 9dB
untreated [%] 30.33 35.42 49.50 62.92 75.00 82.42

g(n) derived for the development dataset, ⌧ = 10
enhanced [%] 44.75 54.00 65.33 74.83 83.92 87.50

g(n) derived for the test dataset, ⌧ = 10
enhanced [%] 52.08 62.00 74.75 81.83 88.00 91.25

correctly) and are shown in Tables II and III, respectively, for
the development and testing datasets. To compare, both tables
show the recognition score achieved on untreated noise data.

1) Development dataset: The results achieved on the devel-
opment dataset are shown for various choices of ⌧ . It is seen
that ⌧ can be tuned to make a trade-off between SNR and
SDR and that the optimum value could be different for each
recording. The optimum may also depend on the recognizer.
For instance, the results in Table I and II are indicative of
a different sensitivity of the used recognizer to SDR than to
SNR.

To conclude, the best results for the development dataset
are achieved when ⌧ = 10, where the recognition score is
improved by up to 27%.

2) Test dataset: The test dataset contains different utter-
ances than the development dataset but was constructed in the
same way. The only difference is that the source-microphone
impulse responses hL(n) and hR(n) in (1) were measured
under different conditions (e.g. doors open/closed, curtains
drawn/undrawn). This means that the filter g(n) derived using
a noise-free signal from the development dataset may not be
so efficient on testing data. The results in Table III confirm this
claim, because the maximum improvement of the recognition
score is about 19% only.

We therefore manually selected a noise-free segment of a
test data (the first second of s10_sgwg1s.wav from the
9dB SNR dataset) and recomputed g(n) by minimizing (6).
Table III shows that the results of the repeated experiment
using the novel g(n) are comparable with those achieved on
the development dataset.

IV. CONCLUSION

We have proposed a separation approach that is suitable for
the CHiME data. It improves the recognition score by 7–27%
depending on the original SNR. The approach is not blind
as it relies on the existence of a speech-only recording, fixed
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positions of the speaker and hearer, and stationary reverberant
conditions. The advantage of the approach consists in its
simplicity and speed.

The experiment with the test dataset has demonstrated the
sensitivity of the method to small changes of reverberation.
When the reverberation is slightly changed, the signal is still
enhanced, but the recognition score is not so good. Although
a short segment of clean speech (one second) suffices to
update the filter g(n), the changes may be relatively faster in
more realistic conditions (e.g., small movements of speaker’s
and hearer’s head). It is therefore a challenge for the further
research to put together non-blind approaches such as the one
proposed here and blind methods that might be used for fine-
tuning of the separation system against changes about which
no a priori information is provided.
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