
41

A Two-Channel Acoustic Front-End for Robust Automatic Speech Recognition

in Noisy and Reverberant Environments

Roland Maas, Andreas Schwarz, Yuanhang Zheng, Klaus Reindl,
Stefan Meier, Armin Sehr, Walter Kellermann

Multimedia Communications and Signal Processing
University of Erlangen-Nuremberg

Erlangen, Germany
{maas,schwarz,zheng,reindl,smeier,sehr,wk}@LNT.de

Abstract

An acoustic front-end for robust automatic speech
recognition in noisy and reverberant environments is pro-
posed in this contribution. It comprises a blind source
separation-based signal extraction scheme and only re-
quires two microphone signals. The proposed front-end
and its integration into the recognition system is analyzed
and evaluated in noisy living room-like environments ac-
cording to the PASCAL CHiME challenge. The results
show that the introduced system significantly improves
the recognition performance compared to the challenge
baseline.

Index Terms: PASCAL CHiME challenge, robust auto-
matic speech recognition, blind source extraction, speech
enhancement

1. Introduction

Automatic speech recognition (ASR) with distant-talking
microphones constitutes a major challenge and, at the
same time, a major chance of our days. We can imagine
many possible applications easing our daily life, such as
voice interaction with television sets, humanoid robots,
or smart homes.

In such scenarios however, an ASR system has to
deal with unwanted additive interference and reverbera-
tion picked up by the microphones besides the desired
signal. Therefore, the system’s robustness to such distor-
tions has to be increased, which can either be achieved
by applying signal or feature enhancement techniques or
by adapting the acoustic models of the ASR system to
capture the distortions.

In real-world scenarios, a large variety of interfer-
ences must be expected, and there can be highly nonsta-
tionary and unpredictable noise and interference compo-
nents leading to very low signal-to-noise ratios (SNRs).
A reliable recognition of spoken commands is therefore
hardly possible without proper preprocessing of the noisy
signals. Correspondingly, it is highly desirable to de-

sign an acoustic front-end that reliably extracts the target
speech components from the acquired noisy microphone
signals independently of the underlying scenario and the
corresponding SNR level. In terms of speech recognition,
this means that the target speech components extracted
from the noisy mixtures should lead to speech features
that are largely independent of the SNR level and the
underlying scenario. The goal is here to design such a
robust acoustic front-end for the PASCAL CHiME chal-
lenge [1].

The PASCAL CHiME challenge calls for recogniz-
ing speech commands uttered in noisy living room-like
environments and captured by two distant-talking in-ear
microphones placed in a manikin. Hereby, the main prob-
lem arises from the partly nonstationary additive distor-
tions in low SNR levels. To cope with this problem, we
propose a speech enhancement technique based on Blind
Source Extraction (BSE) for interference estimation and
Wiener filtering for interference suppression. Adaptive
training techniques are used to integrate the preprocess-
ing system into the recognizer. Recognition experiments
carried out on the CHiME corpus [2] show that a re-
duction in word error rate (WER) of up to 71% can be
achieved.

This paper is structured as follows: The proposed
acoustic front-end and its integration into the ASR system
is explained in Sec. 2. Experimental results are discussed
in Sec. 3, and Sec. 4 concludes the paper.

2. Acoustic Front-End

The signal model for robust ASR in adverse environ-
ments is depicted in Fig. 1. It is based on a two-channel
audio capture and a BSE scheme followed by the ASR
system. The acquired microphone signals xp, p ∈ {1, 2},
contain the signals of Q simultaneously active point
sources, where only one signal (here: s1 without loss of
generality) is considered as desired signal to be extracted,
and the remaining Q − 1 source signals are regarded as
interfering signals. Moreover, background noise denoted
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by nb,p, p ∈ {1, 2}, is present in the observed micro-
phone signals. The mixing of the original sources is mod-
eled by finite impulse response (FIR) filters of length M
(denoted by hqp = [hqp(0), . . . , hqp(M − 1)]T in Fig. 1)
which capture reverberation in real environments leading
to the sensor signals

xp(k) =
Q
∑

q=1

M−1
∑

κ=0

hqp(κ)sq(k−κ)+nb,p(k), p ∈ {1, 2},

(1)
where hqp(k), k = 0, . . . ,M − 1 denote the coefficients
of the FIR filter model from the q-th source sq, q =
1, . . . , Q to the p-th sensor xp, p ∈ {1, 2}. As mentioned
above, for a speech recognizer it is important that the tar-
get speech components (here: s1) are properly extracted
from the acquired noisy microphone signals. Therefore,
the microphone signals are fed into a two-channel BSE
unit. This concept extracts the desired speech signal com-
ponents by suppressing all noise and interference com-
ponents. The output signal of the BSE scheme denoted
by ŝ1, which represents an estimate of the spoken com-
mand, is then fed into the ASR system where the com-
mand should be robustly recognized.

The applied signal extraction scheme is illustrated in
Fig. 2. It consists of two building blocks: a blocking
matrix that yields a reference of all noise and interfer-
ence components (denoted by n̂) and a noise suppression
unit providing an estimate of the desired signal (here: ŝ1).
These two building blocks are described in more detail in
the following. The approach of separating all noise and
interference components from the target speech compo-
nents and subsequently suppressing the estimated noise
signals contained in the noisy mixtures seems to be an
adequate strategy for the given case, where only two mi-
crophone signals are available and where the scenarios
may vary widely. This has already been shown to be a
promising strategy in other contexts, e.g., in [3, 4].

2.1. Noise and Interference Estimation

For separating all noise and interference components
from the desired signal, a blocking matrix based on the
TRINICON (TRIple-N-Independent component analysis
for CONvolutive mixtures) framework (see, e.g., [5, 6])
is designed. Before the blocking matrix is introduced,
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Figure 1: Signal model for robust speech recognition

the generic broadband algorithm derived from the TRINI-
CON framework for separating convolutive mixtures is
briefly reviewed.

Source separation algorithms aim at finding a demix-
ing system (denoted by wpq = [wpq(0), . . . , wpq(L −
1)]T in Fig. 2), whose output signals yq(k) are described
by (here, the determined case of two active sources and
two microphone signals is considered)

yq(k) =
2
∑

p=1

L−1
∑

κ=0

wpq(κ)xp(k − κ), q ∈ {1, 2}, (2)

wherewpq(k), k = 0, . . . , L−1 denote the weights of the
adaptive demixing filter from the p-th sensor channel to
the q-th output channel within the MIMO (mulitple input/
multiple output) demixing system. The generic TRINI-
CON cost function for blind source separation (BSS)
is given by the Kullback-Leibler divergence (KLD) be-
tween the estimated PD-variate joint probability density
function (PDF) f̂y,PD(y1, . . . , yP ) of the output signals

of the demixing system and the product
∏P

p=1 f̂yp,D(yp)
of the estimated D-variate marginal output PDFs [6]:

JBSS(n) =
∞
∑

i=0

β(i, n) · J̃BSS(i), (3)

J̃BSS(i) =
1

N

iL+N−1
∑

j=iL

{

log

(

f̂y,PD(y1, . . . , yP )
∏P

p=1 f̂yp,D(yp)

)}

,

(4)

where i and n denote block indices and the vectors yp
contain D consecutive output samples each. β(i, n) de-
notes a window function that allows for offline, online,
and block-online algorithms. In general, the KLD in-
volves the expectation operator which is here replaced by
a short-time average J̃BSS over N blocks of length D.
If and only if the BSS outputs are statistically indepen-
dent, i.e., for perfect separation of mutually independent
source signals, (4) becomes zero as the joint output PDF
can then be written as the product of the marginal output
PDFs. A natural-gradient-descent approach is applied for
iterative optimization of the BSS filter coefficients [7].
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Figure 2: Realization of the BSE unit
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For the noise and interference estimation approach an
efficient second-order-statistics (SOS) realization of the
TRINICON update rule was derived based on multivari-
ate Gaussian probability density functions [8].

In a real scenario, where only two microphone signals
are available, it is unrealistic that always only two com-
peting speakers are active. As for the intended application
more than two point sources and also diffuse sources may
be active, determined BSS algorithms are not directly ap-
plicable without modifications. As there is no determined
solution for a demixing matrix to separate the individual
sources in an underdetermined case (more active sources
than available microphone signals) or a noisy scenario,
the generic TRINICON cost function as given by (3) and
(4) is modified so that all noise and interference compo-
nents can be separated from the target signal when only
two microphone signals are available. The cost function
of this ’directional BSS’ concept [9] is given by

JDirBSS = JBSS + ηCJC, (5)

whereJC represents a geometrical constraint and is given
by

JC = ‖ w11(k) + w21(k − τφ) ‖
2 . (6)

The weight ηC, typically in the range 0.4 < ηC < 0.6,
indicates the relative importance of the geometrical con-
straint [9]. The directional constraint as given in (6)
forces a spatial null towards the desired source location,
which has to be estimated or is known a priori in real
applications. τφ describes the time difference of arrival
(TDOA) of the target source between the two sensors.
It has to be noted that in real applications, this can be
any fractional delay. If a-priori information about the tar-
get angular position is missing, the localization concept
as discussed, e.g., in [10, 11] can be applied. Owing to
the property of BSS to produce independent output sig-
nals, directional BSS also suppresses correlated compo-
nents arriving from other directions, i.e., reflections and
reverberation will also be suppressed to the greatest ex-
tent possible so that the BSS output signal can be used as
an interference estimate n̂(k).

The ability to suppress also reflections of the desired
signal makes directional BSS superior to conventional
beamforming techniques, e.g., null-beamformers, in sup-
pressing the target signal, especially in reverberant envi-
ronments (see [9]). Moreover, in contrast to many beam-
former techniques, e.g., [12, 13], no voice-activity detec-
tor is needed and no prior knowledge on the microphone
positions is required. The output signal of directional
BSS can be approximated by

n̂(k) = w11(k) ∗ x1(k) + w21(k) ∗ x2(k)

≈
2
∑

p=1

(

Q
∑

q=2

hqp(k) ∗ sq(k) + nb,p(k)

)

∗ wp1(k),

(7)

where ∗ denotes convolution and wp1, p ∈ {1, 2} denote
the demixing coefficients obtained by directional BSS.

2.2. Noise and Interference Suppression

In order to extract the desired speech signal components
from noisy mixtures, either single-channel or multichan-
nel noise reduction techniques can be applied. However,
multichannel techniques require reliable estimates of the
noise and interference components in all available mi-
crophones. Since, in practice, it is extremely challeng-
ing to obtain these separate noise and interference es-
timates in highly nonstationary scenarios, the combina-
tion of BSS methods for noise and interference estimation
with single-channel Wiener filtering techniques for noise
and interference suppression to obtain an estimate of the
desired speech signal components ŝ1 is investigated. To
this end, the single-channel noise and interference ref-
erence n̂(k) (7) obtained by directional BSS is used to
control spectral enhancement filters gp, p ∈ {1, 2}, as
shown in Fig. 2. Optimum spectral weights for a Wiener
filtering strategy are given by

gopt,p(ν) = 1−
Ŝnpnp

(ν)

Ŝxpxp
(ν)

, p ∈ {1, 2}, (8)

where ν represents the frequency index. Ŝnpnp
(ν) and

Ŝxpxp
(ν), p ∈ {1, 2}, represent power spectral density

(PSD) estimates of the true noise and interference com-
ponents contained in channel p and the microphone sig-
nals, respectively. However, from the directional BSS al-
gorithm discussed above, only a single noise reference is
obtained that rather describes all noise and interference
components than the channel-specific components. The
corresponding PSD estimate of (7) reads:

Ŝn̂n̂(ν) = Ŝñ1ñ1
(ν) + Ŝñ2ñ2

(ν) + 2&{Ŝñ1ñ2
(ν)},

(9)

Ŝñpñp
(ν) = |Wp1(ν)|

2Ŝnpnp
(ν), p ∈ {1, 2}, (10)

Ŝñ1ñ2
(ν) = W11W

∗

21(ν)Ŝn1n2
(ν), (11)

where &{·} represents the real part. In order to ap-
proximate the optimum spectral weights (optimum in the
Wiener sense) given by (8), a method is derived to obtain
a PSD estimate of the channel-specific noise and inter-
ference components from Ŝn̂n̂(ν) (9). Therefore, let us
define the noise power ratio R(ν) and the coherence as
follows: The noise power ratio between the two channels
R(ν) is defined as

R(ν) =
Ŝñ1ñ1

(ν)

Ŝñ2ñ2
(ν)

, (12)

and the coherence of all noise and interference compo-
nents between the two channels is given by

Γ̂ñ1ñ2
(ν) =

Ŝñ1ñ2
(ν)

√

Ŝñ1ñ1
(ν)Ŝñ2ñ2

(ν)
. (13)
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Using (12) and (13), the PSD estimate (9) can be written
as

Ŝn̂n̂(ν) = Ŝñ1ñ1
(ν) ·

F (ν)

R(ν)
(14)

= Ŝñ2ñ2
(ν) · F (ν), (15)

where F (ν) is given by

F (ν) = 1 +R(ν) + 2
√

R(ν)&{Γ̂ñ1ñ2
(ν)}. (16)

Assuming a spherically isotropic diffuse noise field,
which is usually given in reverberant environments with
large distances between the sources and the microphones,
(12) simplifies to R(ν) = 1, and the coherence (13) is
given by [14]

Γdiff(ν) =
sin
(

2πfs · c−1 · d · ν ·M−1
)

2πfs · c−1 · d · ν ·M−1
,

ν = 0, ...,M − 1, (17)

where c and d represent the speed of sound and the dis-
tance between two omnidirectional microphones, respec-
tively. fs denotes the sampling frequency and M the total
number of frequency bins. F (ν) (16) thus simplifies to

Fdiff(ν) = 2 (1 + Γdiff(ν)) (18)

and estimates of the PSDs of the channel-specific noise
components can be obtained by

Ŝñpñp
(ν) =

Ŝn̂n̂(ν)

2 (1 + Γdiff(ν))
, p ∈ {1, 2}. (19)

Finally, the spectral weights for noise and interference
suppression gp, p ∈ {1, 2} are calculated as

gp(ν) = max

[

1− µ
Ŝñpñp

(ν)

Ŝvpvp(ν)
, gmin

]

, p ∈ {1, 2},

(20)
where µ and gmin denote a gain factor and the spectral
floor, respectively. These parameters are real-valued con-
stants and are used to achieve a trade-off between noise
and interference suppression and speech distortion.

Summarizing the above, the main advantages of the
acoustic preprocessing as illustrated in Fig. 2 are as fol-
lows: Applying BSS algorithms in unknown noisy and
underdetermined scenarios for noise and interference es-
timation is very powerful as a reference with very low
target speech components can be obtained as already
shown, e.g., in [4, 9]. Moreover, no voice activity detec-
tion algorithm is necessary, which is usually unreliable in
nonstationary and unpredictable scenarios at low SNRs.
Besides, the scheme requires only two sensor channels,
which makes it very attractive for practical applications.

2.3. Integration into the ASR System

For optimum performance, the ASR system has to be
tuned to the preprocessing algorithm. Since perfect
speech enhancement cannot be achieved in practice, the
output of the front-end will always contain some resid-
ual interference and some distortion of the desired sig-
nal. Therefore, it is beneficial to carefully adjust the hid-
den Markov models (HMMs) of the ASR system to the
front-end. To this end, we perform speech enhancement
both on the test and training data. For capturing differ-
ent interference characteristics by the acoustic model, the
set of training utterances comprises different noise con-
ditions as in multi-style training. As the speech enhance-
ment reduces the variability of the training data due to dif-
ferent interferences significantly, a more compact acous-
tic model can be obtained from the enhanced data com-
pared to the noisy data. Since the acoustic model trained
with the enhanced data does not have to spend many
degrees of freedom on capturing different noise charac-
teristics, it can represent the variability due to different
words more accurately. This type of training efficiently
combines speech enhancement and multi-style training
and can be considered as noise-adaptive training [15] or
model-independent adaptive training [16].

3. Experiments

The experiments are carried out according to the PAS-
CAL CHiME challenge conditions [1]. In the following,
we therefore describe the most important challenge set-
tings, the configuration of the employed acoustic front-
end and ASR back-end, and present the achieved recog-
nition results.

3.1. PASCAL CHiME Setup

The PASCAL CHiME challenge addresses the problem
of recognizing commands being uttered in a noisy living
room environment. All utterances are taken from the
Grid corpus [17] and are artificially convolved with
binaural room impulse responses (BRIRs) measured with
a binaural manikin at a distance of 2 meters in broadside
direction [2]. For testing, the utterances are mixed with
binaural background noise recordings from the CHiME
domestic audio corpus and controlled such that different
SNR levels are obtained [2]. The measurements of both
the BRIRs and the background noise are performed in
a lounge and a kitchen with a reverberation time T60

of 300 ms each. The noise sources are typical for a
family home, e.g., TV, kitchen and laundry appliance
sounds, footsteps, electronic gadget sounds, or play-
ing children. All recordings are sampled at a rate of
16 kHz. The ASR task itself is speaker-dependent and
imposes a simple grammar superseding any kind of
language model. Each utterance is of the form <com-
mand−color−preposition−letter−number−adverb>,
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where only the so-called keyword accuracy is of interest,
which is based on the number of correctly recognized
<letter> and<number> tokens. Two disjoint test sets
are considered, namely the development test set and the
final test set, where solely the former one is allowed to
be used for parameter tuning.

Note that for all performed tests, we did furthermore
neither exploit the available continuous audio streams [1],
nor the SNR labels, nor the fact that the test sets contain
the same utterances at each SNR level.

3.2. Acoustic Front-End

For the directional BSS, we use filters of the length
LDirBSS = 1024. The relative importance of the direc-
tional constraint ηC is set to 0.5. For the processing of
the training data and the development and test set, we use
fixed filter coefficients for each speaker that are obtained
by adapting the filter over all utterances of the speaker
from the training, development or test set, respectively.

In order to achieve a trade-off between noise and
interference suppression and speech distortion of the
Wiener filtering concept, the parameters µ and gmin are
set to 1.2 and 0.15, respectively. The Wiener filter is
implemented using a polyphase filterbank with a filter
length of 1024, 512 complex-valued subbands, and a
downsampling rate of 128.

3.3. ASR Back-End

In order to evaluate the performance of our proposed
acoustic front-end, we employed a speech recognizer
based on the ASR toolkit Sphinx-4 [18].

The recognizer uses triphone HMMs with 3 states per
model, 8 Gaussian output densities per state, and a to-
tal number of 600 tied states. From the input signals,
features consisting of 13 mel-frequency cepstral coeffi-
cients (MFCCs) as well as 13 delta and 13 acceleration
coefficients are derived. Furthermore, cepstral mean sub-
traction is applied to compensate for short convolutive
distortions. We created our own training data by mix-
ing each utterance of the provided training set with two
isolated background noise sequences for each SNR level.
The set of noise sequences corresponds to the one un-
derlying the development test set [1]. All utterances are
then fed into the proposed acoustic front-end (except for
the case “w/o front-end” in Table 1). Afterwards, the en-
tire set of preprocessed “noisy” training data is used to
perform Baum-Welch training [19] leading to a speaker-
independent HMM. To obtain speaker-dependent HMMs,
the adaptation techniques MLLR (Maximum Likelihood
Linear Regression) and MAP (Maximum A Posteriori)
are applied to the means of the HMM’s output densities
[20]. Solely the training data of the concerned speaker
over all SNR levels are exploited resulting in one SNR-
multi-style HMM per speaker.

ASR SNR in dB

system −6 −3 0 3 6 9

prop. front-end

+ Sphinx
78.9 84.5 88.4 90.8 94.3 94.3

Sphinx

(w/o front-end)
70.8 75.3 84.1 87.4 91.4 94.1

CHiME

baseline
31.1 36.8 49.1 64.0 73.8 83.1

ASR SNR in dB

system −6 −3 0 3 6 9

prop. front-end

+ Sphinx
79.8 83.3 88.3 92.8 92.6 95.1

Sphinx

(w/o front-end)
70.1 74.5 82.8 89.8 90.5 93.8

CHiME

baseline
30.3 35.4 49.5 62.9 75.0 82.4

Table 1: Comparison of keyword accuracies in % for the
development (top) and final test set (bottom).

We would like to underline that the development and
the final test set consist of different utterances, temporally
positioned at different points in the CHiME background
noise recordings [1]. For the training of the recognizer,
only the noise recordings from the development test set
have been exploited. Hence, no data from the final test
set was used for training.

The CHiME challenge baseline recognition system is
based on HTK [21] with word-level HMMs and 7 Gaus-
sian output densities per state. The same type of fea-
tures as for Sphinx is used. To create both speaker-
independent and speaker-dependent HMMs, the Baum-
Welch [21] method is performed on the provided noise-
free training data [1]. The CHiME challenge baseline re-
sults are then obtained when no preprocessing algorithm
is applied to the test data.

3.4. Experimental Results

Table 1 compares the keyword accuracies for the devel-
opment and the final test set. Besides the results of the
Sphinx back-end with and without employing the pro-
posed acoustic front-end, the CHiME challenge baseline
results are listed.

For all SNRs and both test sets, the noise-adapted
back-end itself without front-end leads to a consistent im-
provement of the recognition performance. Applying the
proposed acoustic front-end achieves another remarkable
gain especially for low SNRs. In the case of the final test
set at an SNR of −6 dB, the reduction of the WER due
to the back-end adaptation is 57% relative to the chal-
lenge baseline results. The additional improvement by
the front-end is 32% resulting in an overall relative WER
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reduction of 71%.

These results clearly underline the potential of the in-
troduced speech enhancement algorithm based on BSS
and Wiener filtering. Furthermore, they show that noise-
adaptive training is a promising way of combining a pow-
erful front-end with an ASR system.

4. Summary and Conclusions

A two-channel acoustic front-end for robust automatic
speech recognition was presented. The concept is based
on blind source separation and Wiener filtering strate-
gies. Its integration into the ASR system was realized
via noise-adaptive training of the recognizer’s acoustic
model. Experiments under noisy and reverberant condi-
tions showed a remarkable reduction in word error rate of
up to 71%. These results indicate that the application of
multichannel speech enhancement techniques along with
the adaptation of the recognizer represents a very power-
ful combination significantly increasing the reliability of
distant-talking ASR systems.

5. Acknowledgements

The authors would like to thank the Deutsche
Forschungsgemeinschaft (DFG) for supporting this
work (contract number KE 890/4-1).

6. References

[1] J. Barker, H. Christensen, N. Ma, P. Green, and
E. Vincent. The PASCAL CHiME speech separation
and recognition challenge 2011. [Online]. Available:
http://www.dcs.shef.ac.uk/spandh/chime/challenge.html

[2] H. Christensen, J. Barker, and P. Green, “The CHiME
corpus: a resource and a challenge for Computational
Hearing in Multisource Environments,” Proc. Interspeech,
2010.

[3] Y. Takahashi, T. Takatani, K. Osako, H. Saruwatari, and
K. Shikano, “Blind spatial subtraction array for speech
enhancement in noisy environment,” IEEE Trans. Audio,
Speech, and Language Processing, vol. 17, no. 4, pp. 650–
664, 2009.

[4] K. Reindl, Y. Zheng, A. Lombard, A. Schwarz, and
W. Kellermann, “An acoustic front-end for interactive TV
incorporating multichannel acoustic echo cancellation and
blind signal extraction,” in Proc. 44th Asilomar Confer-
ence on Signals, Systems, and Computers, Pacific Grove,
CA, USA, November 2010.

[5] H. Buchner, R. Aichner, and W. Kellermann, “A general-
ization of a class of blind source separation algorithms for
convolutive mixtures,” in Int. Symp. Independent Compo-
nent Analysis and Blind Separation (ICA), Nara, Japan,
April 2003, pp. 945–950.

[6] ——, “Blind source separation for convolutive mixtures:
A unified treatment,” in Audio signal processing for next-
generation multimedia communication systems, Y. Huang
and J. Benesty, Eds. Boston: Kluwer Academic Publish-
ers, 2004, pp. 255–293.

[7] S. I. Amari, “Natural gradient works efficiently in learn-
ing,” in Neural Computation, vol. 10, 1998, pp. 251–276.

[8] H. Buchner, R. Aichner, and W. Kellermann, “A general-
ization of blind source separation algorithms for convolu-
tive mixtures based on second-order statistics,” in IEEE
Trans. Speech Audio Processing, vol. 13, no. 1, Jan. 2005,
pp. 120–134.

[9] Y. Zheng, K. Reindl, and W. Kellermann, “BSS for im-
proved interference estimation for blind speech signal
extraction with two microphones,” in Int. Workshop on
Comp. Advances in Multi-Sensor Adapt. Proc. (CAM-
SAP), Aruba, Dutch Antilles, Dec. 2009.

[10] C. H. Knapp and G. C. Carter, “The generalized corre-
lation method for estimation of time delay,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. 24, pp. 320–327,
August 1976.

[11] A. Lombard, T. Rosenkranz, H. Buchner, and W. Keller-
mann, “Multidimensional localization of multiple sound
sources using averaged directivity patterns of blind source
separation systems,” in IEEE Int. Conf. Acoustics, Speech,
Signal Processing (ICASSP), Taipei, Taiwan, April 2009,
pp. 233–236.

[12] O. Hoshuyama, B. Begasse, A. Hirano, and A. Sugiyama,
“A realtime robust adaptive microphone array controlled
by an SNR estimate,” in IEEE Int. Conf. Acoustics,
Speech, Signal Processing (ICASSP), May 1998.

[13] W. Herbordt, H. Buchner, S. Nakamura, and W. Keller-
mann, “Application of a double-talk resilient DFT- do-
main adaptive filter for bin-wise stepsize controls to adap-
tive beamforming,” in Int. Workshop on Nonlinear Signal
and Image Processing (NSIP), Sapporo, Japan, May 2005.

[14] H. Kuttruff, Room Acoustics. London: Taylor & Francis,
2000.

[15] L. Deng, A. Acero, M. Plumpe, and X. Huang, “Large-
vocabulary speech recognition under adverse acoustic en-
vironments,” Proc. ICSLP, vol. 3, pp. 806–809, 2000.

[16] M. Gales, “Adaptive training for robust ASR,” Proc.
ASRU, pp. 15–20, 2001.

[17] M. Cooke, J. Barker, S. Cunningham, and X. Shao, “An
audio-visual corpus for speech perception and automatic
speech recognition,” The Journal of the Acoustical Society
of America, vol. 120, no. 5, pp. 2421–2424, 2006.

[18] W. Walker, P. Lamere, P. Kwok, B. Raj, R. Singh, E. Gou-
vea, P. Wolf, and J. Woelfel, “Sphinx-4: A Flexible
Open Source Framework for Speech Recognition,” Sun
Microsystems Technical Report, 2004.

[19] CMUSphinx Wiki. Training acoustic model
for CMUSphinx. [Online]. Available:
http://cmusphinx.sourceforge.net/wiki/tutorialam

[20] ——. Adapting the default acous-
tic model. [Online]. Available:
http://cmusphinx.sourceforge.net/wiki/tutorialam

[21] S. Young, G. Evermann, M. Gales, T. Hain, D. Ker-
shaw, X. Liu, G. Moore, J. Odell, D. Ollason, D. Povey,
V. Valtchev, and P. Woodland, The HTK Book. University
of Cambridge, 2009.


