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Abstract
This technical report presents our implementation details of
the speech enhancement system and provides experimental re-
sults on the UDASE task in the CHiME-7 challenge. In the
domain-adapted RemixIT[1] pipeline, we introduce two signif-
icant modifications. Firstly, we incorporate a speech purifica-
tion technique at the pipeline when conducting self-supervised
learning for the student model. This technique predicts the
frame-level SNR of the pseudo-target speech and utilizes them
as weights for the discrepancy function between the pseudo-
target speech and the student model’s estimated speech. As
a second modification, we replace the Sudo-rm-rf[2] architec-
ture with the Mossformer[3], which incorporates convolution-
augmented joint local and global self-attention mechanisms. It
performs fully-computed self-attention on local chunks and uti-
lizes linearized low-cost self-attention over the entire sequence.
We demonstrate the superior performance of our approach com-
pared to the baseline.
Index Terms: speech enhancement, noise suppression, domain
adaptation, CHiME-7 challenge

1. Introduction
Speech enhancement systems that utilize supervised learning
primarily rely on the methodology of extracting clean speech
through a masking network [2, 4, 5, 6]. These systems are effec-
tive in terms of improving speech quality and noise suppression.
However, if only unlabeled noise mixtures are available without
clean source speech, it’s impossible to train such systems. Thus,
designing an unsupervised or self-supervised speech enhance-
ment system that efficiently uses these noise mixtures remains
a big challenge.

In light of this, the CHiME-7 challenge aims to improve the
noise suppression performance on the in-domain speech by uti-
lizing both an unlabeled in-domain CHiME-5[7] dataset and a
labeled out-of-domain Librimix[8] dataset. RemixIT pipeline is
a baseline provided by the challenge organizers. In this system,
the fully-supervised teacher model is trained using Librimix.
Then, CHiME-5 data is fed into the frozen teacher model, which
outputs pseudo-target speeches and noise waveforms. These are
used to create noise-permuted bootstrapped mixtures, which are
then provided to the student model for self-supervised learning.
Additionally, the parameters of the student model can be trans-
ferred back to the teacher model for continuous refinement at
the end of each epoch.

Our main focus is to enhance the performance of the base-
line system by implementing two key modifications. One is
the speech purification technique and another is applying Moss-
former architecture. In the next chapter, we explain a detail of
our approach.
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2. Methodology
2.1. Speech purification

The initial application of the speech purification method in
terms of a self-supervised learning scheme was proposed in the
work by [9]. In previous work, it is assumed that the frames
of noise mixture with high SNR are almost identical to frames
of clean speech. And the target speech is assumed to poten-
tially contain noise. The characteristic of target speech in [9] is
similar to the pseudo-target speech output by the teacher model
in the RemixIT pipeline. This is due to the fact that a teacher
model, trained on out-of-domain (OOD) data, cannot produce
perfectly clear speech for the target domain. Therefore, during
the training of the student model, we can use the corresponding
method.

The core principle of speech purification is to design it in
a way that allows frames of the pseudo-target speech with a
comparatively high signal-to-noise ratio (SNR) to have more
impact on the discrepancy function. Specifically, we calculate
the weight of the frame-wise SNR for the pseudo-target speech
and then multiply it with the frame-wise segmental signal-to-
noise ratio (segmental SNR) proposed by [9].

The frame-wise SNR is output from an independent neu-
ral network referred to as SNR predictor. This network takes a
pseudo-target speech as input and estimates SNR on a frame-
by-frame basis. and the SNR predictor’s output logits pass a
sigmoid function to convert the weights of each frame.

The segmental SNR loss is detailed in equation (1). The J ,
H , and N respectively denote the number of frames, hop size,
and frame size, while j refers to the index of a specific frame.
wi represents the Hann window function of length N , s denotes
the pseudo-target speech (not the bootstrapped mixture), and r
is the residual vector between s and the estimated speech. pj
denotes the weight for the j-th frame. Ultimately, we combine
the segmental SNR loss with the SI-SDR, which is used as the
loss function in the original pipeline, with equal weights.

SegSNR = − 1

J

J−1∑
j=0

pj [10 log10

∑Hj+N−1
i=Hj (wi−Hjsi)

2∑Hj+N−1
i=Hj (wi−Hjri)2

]

(1)

2.2. Mossformer architecture

Mossformer[3] is a transformer-based model specifically de-
signed for monaural speech separation. It incorporates a gated
single-head transformer architecture and enhanced joint self-
attention with convolution. It achieves state-of-the-art re-
sults on the WSJ0-2/3mix[10] and WHAM!/WHAMR![11, 12]
datasets. The model consists of an encoder-decoder structure
with convolutional layers and a masking net. The encoder con-
verts input speech data into feature vectors using Conv1D lay-



LibriCHiME-5 CHiME-5

Model Type SI-SDR OVR-MOS BAK-MOS SIG-MOS

Supervised 9.39 2.81 3.54 3.23
Sudo-rm-rf (baseline) RemixIT 11.70 2.86 3.65 3.28

RemixITvad 11.57 2.85 3.66 3.27

Sudo-rm-rfp RemixITvad 12.42 2.88 3.71 3.33

Supervised 10.63 2.88 3.52 3.39
Mossformer RemixIT 12.42 2.90 3.60 3.39

RemixITvad 12.58 2.84 3.48 3.35

Table 1: Overall experiment results of our implemented pipeline system. The baseline system is Sudo-rm-rf.
Improved version with speech purification is Sudo-rm-rfp. The remaining is the Mossformer implementation system.

ers and ReLU activation. These feature vectors are processed
by the masking net, while the decoder reconstructs the encoded
output back into the original speech format. The masking net in-
cludes normalization, positional encoding, pointwise convolu-
tions, and reshaping operations before entering the Mossformer
block. The Mossformer block, the core part of the model, in-
corporates a convolution module, an attentive gating mecha-
nism, and joint local and global single-head self-attention. The
convolution module captures local feature patterns using linear
layers, SiLU activation functions, and 1D depth-wise convolu-
tions. The attentive gating mechanism improves performance
by incorporating attention-based gating, which combines local
and global attention to model long-range interactions. During
experiments, a large version of Mossformer with 42.1 million
parameters was utilized.

3. Experimental setup
To address the CHiME-7 UDASE challenge, we follow the
guidelines and utilize three different datasets: CHiME-5 (un-
labeled in-domain dataset), Librimix (labeled out-of-domain
dataset), and LibriCHiME-5 (labeled dataset resembling the in-
domain data). We extract subsets for training, development, and
evaluation from each dataset using an official toolkit from the
CHiME-7 challenge’s github1. The model is trained using these
subsets in the original format provided by the toolkit.

To implement the pipeline system described in the method-
ology, we initially used the provided baseline implementation
to assess its performance in our experimental setup. And we
employed two external tools. The first tool2 integrates an SNR
predictor and the segmental SNR loss implementation. Addi-
tionally, we used publicly available pre-trained weights of the
SNR predictor from the same github2 and froze them during
training. The pre-trained model was trained using a mixture of
utterances from Librispeech[13] and noises from MUSAN[14].
More detailed informations are described in [9]. The second
tool we utilized was the Mossformer architecture implementa-
tion3, as described in [3].

Subsequently, we incorporated the aforementioned meth-
ods into the RemixIT baseline system separately. In one ap-
proach, we applied the purification method with SNR predictor,
while in the other, we simply replaced Sudo-rm-rf with Moss-

1https://github.com/UDASE-CHiME2023/baseline
2https://github.com/IU-SAIGE/pse
3https://github.com/modelscope/modelscope

former. The former maintained the same hyperparameters as the
baseline setting without setting 200 epochs, while for the latter,
we followed the configuration for the large model as described
in [3]. During training, we used a learning rate of 1.5e-4, con-
ducted 100 epochs, and employed the Adam optimizer. In both
approaches, we maintained the same learning rate throughout
the training process. All experiments were conducted on six
NVIDIA A100 GPUs with 80 GB of memory.

4. Result
Table 1 shows our experiment results. We used self-supervised
learning with two subsets: unlabeled-10s (RemixIT setting) and
vad-10s (RemixITvad setting) from CHiME-5. The baseline
Sudo-rm-rf experiment yielded an SI-SDR score of 11.57 using
the vad-10s subset. This was achieved by training the models
from scratch without altering the provided code by the chal-
lenge organizers. As incorporating purification techniques, the
SI-SDR score improved to 12.42. Additionally, the correspond-
ing systems achieved the highest BAK-MOS score of 3.71.

Mossformer outperforms Sudo-rm-rf in SI-SDR with an
impressive score of 12.58 in RemixITvad setting. In RemixIT
setting, Mossformer also achieved the highest scores, recording
2.90 for OVR-MOS and 3.39 for SIG-MOS, respectively. De-
spite having significantly more parameters and slower training
speeds compared to Sudo-rm-rf, latency is not a constraint in
this challenge, so we proposed both system pipelines.

Consequently, we submitted two systems for the chal-
lenge. ISDS1 utilized the Mossformer model in the RemixIT
setting, trained on unlabeled-10s data. For ISDS2, we em-
ployed the Sudo-rm-rf model with the purification method in
the RemixITvad setting.

5. Conclusions
In the CHiME-7 challenge, our speech enhancement system
showed significant improvements through two key modifica-
tions: speech purification and the integration of the Mossformer
architecture. By implementing speech purification techniques
and incorporating convolution-augmented self-attention in the
Mossformer model, we surpassed the performance of the base-
line system. These results underscore the significance of speech
purification methods and the advantages of using the innova-
tive Mossformer architecture for noise suppression in speech
enhancement tasks.
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