
PASCAL CHiME Challenge: baseline recogniser and scoring scripts

Ning Ma (n.ma@dcs.shef.ac.uk), Jon Barker and Heidi Christensen, October 2010 (version 0.1)

1 Introduction

This distribution contains a ‘standard’ HMM-based speech recogniser and a scoring tool for use in the PASCAL
CHiME Challenge (http://www.dcs.shef.ac.uk/spandh/chime/challenge.html). Using this package you should
be able to:

• obtain keyword recognition scores from formatted result files (do score all.sh);

• perform recognition and score the challenge data (do recog all.sh);

• estimate parameters of speaker dependent HMMs (do train all.sh).

Detailed usage of these scripts will be given in Section 3. Note that the estimated HMMs are already included
in this package but the relevant scripts are still supplied for reference. The use of the recogniser is also optional
and is designed for participants whose algorithms produce ‘separated’ or ‘enhanced’ waveforms from the noisy
signals. The package automates the entire process of producing recognition results. For those of you who have
your own recogniser, the package will automate and more importantly standardise the process of obtaining
keyword recognition scores on the challenge data.

While extensive testing has been performed, we would appreciate rapid feedback on any problems that you find.
Please report problems to Ning Ma (n.ma@dcs.shef.ac.uk).

2 Contents of the distribution

The root directory of this package contains a README, 8 subdirectories and 3 shell scripts:

bin/ HTK binaries compiled for 32-bit Linux machines (i686)

do recog all.sh extract MFCC features, recognise and score

do score all.sh generate keyword recognition score

do train all.sh estimate speaker dependent models

etc/ config files for the recogniser

forced alignments/ automatically generated forced alignments

flists/ file lists for various data sets

labels/ master label files for the training set

models/ HMM definitions

README.pdf this document

results/ recognition results

scripts/ auxiliary programs

3 Usage

All the examples given here assume the current working directory is the package root directory. The HTK
package is needed to run the recognition and training programs. This distribution already includes HTK

1

binaries compiled for 32-bit Linux machines (architecture=i686), which should work on most Linux machines.
If you find the HTK binaries are not working for you, you may want to contact us for support, or obtain your
own copy of HTK by visiting http://htk.eng.cam.ac.uk/download.shtml.

3.1 Scoring script: do score all.sh

Even if you have your own recogniser, you should use the scoring script do score all.sh to produce keyword
recognition accuracy. For each condition, your algorithm should produce a results file whose name is of the
form PREFIX SNR.txt, where PREFIX can be anything (e.g. ‘baseline mfcc devel’) and SNR is one of
the SNR subconditions for the dataset {m6dB, m3dB, 0dB, etc ...}. For example, you might use the name
baseline mfcc devel 0dB.txt for the results of your development set 0 dB condition. Put all the results files in
the same directory (e.g. ‘results/devel.mfcc’). You should use the same prefix (here, ‘baseline mfcc devel’) for
all of your results files which are in the same directory so that the scoring script finds them all.

Each result file should contain one line per utterance. The first item on the line is the name of the file being
processed, e.g. s1 bgaa9a. The remainder of the line should contain the keywords part of the recognition result:
letter and digit. An example result file might be

s1 bgaa9a a 9
s1 bgwi1a y 1
...

The challenge is scored over only the two keywords: letter and digit. The scoring procedure is as
follows: each utterance receives a score of 0, 1 or 2, depending on how many of the (letter, digit) keywords are
correct. The score reported is the average of the scores across utterances, expressed as a percentage.

Once your score files are prepared, you can produce a score summary by running the script like this:

./do score all.sh RESULT DIR

where RESULT DIR is the directory containing the results files (e.g. ‘results/devel.mfcc’).

If you want to score a single result file, you can use the script do score.sh in the ‘scripts’ subdirecotry:

./scripts/do score.sh baseline mfcc devel 0dB.txt

3.2 Recogniser script: do recog all.sh

If your algorithms produce ‘enhanced’ waveforms or MFCC features from the noisy signals, you can use the
supplied recogniser to produce recognition results. You should ensure that your separated waveforms or MFCC
features are held in a directory structure identical to the original mixed waveforms, i.e. the directory should
have subdirectories for the various SNRs. The recogniser will only report results for the SNR conditions you
provide in the directory. To use the recogniser, simply run:

./do recog all.sh SETNAME DATAROOT

where SETNAME is used as a unique ID for the data set stored in DATAROOT and DATAROOT is
supposed to contain subdirectories {m6dB, m3dB, 0dB, etc ...}. The recognition script goes through each of
the SNR conditions that it finds in DATAROOT and performs the following steps: i) convert the waveforms
into MFCC features; ii) runs the recogniser, and iii) scores the results. If a SNR subdirectory contains MFCC
features instead of waveforms, they will be used directly by the recogniser.

2

For example, suppose your save the original isolated development set in ‘PCCdata16kHz/devel/isolated’. To
obtain the baseline recognition results use the command

./do recog all.sh orig devel PCCdata16kHz/devel/isolated

The result files will be saved in the directory ‘results/orig devel.mfcc’ and you should obtain precisely the
following keyword recognition accuracies:

-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB

31.08 36.75 49.08 64.00 73.83 83.08

These are the baseline ‘do nothing’ results.

If your processed waveforms of the development set are in a directory called ‘processed devel’, then simply run:

./do recog all.sh devel2 processed devel

The result files will be saved in the directory ‘results/devel2.mfcc’.

By default the extracted MFCC acoustic feature files are saved in the directory ‘features’ within the root
directory of this package. To avoid writing feature files into this directory you could either make a symbolic
link named as ‘features’ to somewhere else, or modify the variable ‘$FEAT ROOT’ in do recog all.sh.

3.3 Training script: do train all.sh

Although estimated HMMs are supplied along with the package, the script used to obtain the HMMs is also
included. You should be able to obtain identical HMM definitions by using:

./do train all.sh WAVROOT

where WAVROOT is the directory that holds training waveforms in each of the subdirectories {id1, id2,... id34}
for each speaker accordingly. For example, suppose you download the CHiME Challenge training set and save
it in ‘PCCdata16kHz/train/reverberated’. Simply run

./do train all.sh PCCdata16kHz/train/reverberated

The trained HMM definitions will be saved in ‘models/mfcc’ in the package root directory.

By default the extracted MFCC acoustic feature files are saved in the directory ‘features’ within the package
root directory. To avoid writing feature files into this directory you could either make a symbolic link named
as ‘features’ to somewhere else, or modify the variable ‘$FEAT ROOT’ in do train all.sh.

If you compute MFCC acoustic features separately and they are in a directory (e.g. features/train) that has
the identical directory structure (i.e. features for each speaker are saved in a separate subdirectory such as id1,
id2... of the directory), then you can use ‘do train.sh’ in the ‘scripts’ subdirectory directly:

./scripts/do train.sh mfcc features/train

where ‘mfcc’ tells the script the acoustic features in ‘features/train’ are MFCC features.

3

4 Recogniser details

The baseline recogniser is based on the HTK package version 3.4.1.

The raw speech waveforms are parameterised into standard 39-dimensional Mel Frequency Cepstral Coeffi-
cients (MFCCs) applied with Cepstral Mean Normalisation (CMN), i.e. 12 Mel-cepstral coefficients and the
logarithmic frame energy plus the corresponding delta and acceleration coefficients and then applying CMN
(MFCC E Z D A).

The words are modelled as whole-word HMMs with a left-to-right model topology with no skips over states and
7 Gaussian mixtures per state with diagonal covariance matrices. The number of states for each word is based
on 2 states per phoneme:

4 states: at by in a b c d e f g h i j k l m n o p q r s t u v x y z one two three eight

6 states: bin lay place set blue green red white with four five six nine now please soon

8 states: again zero

10 states: seven

Speaker dependent HMMs are employed. They are estimated by using a set of trained speaker independent
HMMs as the starting point, and performing 4 more iterations of EM training using the 500 training utterances
for each speaker. The HMMs are trained using reverberant signals without any noise and there is no retraining
on noisy signals.

The following grammar is used during recognition:

$verb = bin|lay|place|set;
$colour = blue|green|red|white;
$prep = at|by|in|with;
$letter = a|b|c|d|e|f |g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|x|y|z;
$digit = zero|one|two|three|four|five|six|seven|eight|nine;
$coda = again|now|please|soon;

($verb $colour $prep $letter $digit $coda)

The CHiME corpus provides binaural signals, but the baseline recogniser employs monaural signals by averaging
the two channels together in waveforms.

4

